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1. Introduction 

A generalized fractional program consists in finding an optimal solution x* of the 
problem 
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Where       To 
simplify the presentation, we assume that (GPF) has an optimal solution. 

p.,1,ifor)(0,C:gandR,C:f,RC ii
n =∞+→→⊂≠Φ

When p = 1, one speaks of a fractional program, and the term generalized fractional 
program stands for the case p > 1. If C is convex, if the functions fi are convex, and  
if the functions gi are concave, then the problem is called a generalized convex 
fractional program. Similarly, if C is a polyhedral convex set and the functions fi 
and gi are affine, then the problem is called a generalized linear fractional program. 
Charnes and Cooper [12] introduce a variable transformation that can be used to 
reduce a convex (linear) fractional program to a convex (linear) program. 

The case p=1, Fractional Programming 

Dinkelbach [11] introduced his original algorithm designed for the case p = 1. It 
relies on the family of problems parameterized by Rλ∈ , 
 C]x:λg(x)[f(x)inf )F(

x
∈−=λ                             (Pλ) 

Note that  to reduce notation,  we omit  the subscript  “1” in presenting 
this case,  and thus f  and g  s tand for f1  and g1.  By construction,  F  is 
concave, non increasing and upper semi continuous. Then,  

 )(P and (GFP) andλ*,λ if λF0,*)F( *λ><= 0)(λ share the same set  of  
optimal solutions.  If  in addit ion,   has an optimal solution for 
some 

)(Pλ

*λλ < ,  then .)( λλ allfor  0λF *<>  Thus the problem of finding 
*λ  consists  in searching for the root of  the equation of one variable 

 .0)λ(F =
It is clear that if  μ allfor  then ),P( ofsolution  optimalan  is x λλ

                                 .)()( )λ)g(x(μλF)μg(x)f(xμF λλλ −−=−≤              (1) 

Hence  In particular, since .λat   Fof ntialsupdiffere  the tobelongs )g(x λ−
,0*)( =λF  

                                     )g(xλ)*()F(0 λ−−≤ λλ                                           (2) 
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and 

   
.
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Note that  The Dinkelbach algorithm is 
the following straightforward adaptation of the Newton method to a non 
differentiable context: the supgradient 

.)( λat  abledifferenti is F if )g(xλF' λ−=

).(λF' replaces )g(xλ−  The algorithm is as 
follows: 

The one-ratio Dinkelbach algorithm 

• Initialization. 
o Start with some .Cx0 ∈  

o Take 
)g(x
)f(x:λ

0

0
0 = , and k = 1. 

• Step k. 
o Solve the problem 

                                               .C]x:g(x)λ[f(x)mint 1kxk ∈−= −            (Pλ) 

Let  be an optimal solution of this problem. kx
o Stopping rule. If ,0=kt  then STOP: 1-kλλ*=  and  is an optimal 

solution of (GFP). 
kx

o Otherwise, let .
)g(x
)f(x:λ

k

k
k =  Let 1+= k:k , and go back to Step k.  

By construction, the algorithm generates a sequence { } Cxk ⊂  and a strictly 
decreasing sequence{ . It inherits a high speed of convergence from the Newton 
method, but because F is not differentiable in general, the convergence in the worst 
case is only superlinear (see Benadada et al. [2] for instance). Still, due to the 
concavity of F, the speed of convergence is better than the one of other methods 
finding the root of an equation of one real variable, like interval methods 
(dichotomy or secant methods for instances).  

}kλ
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Generalized Fractional Program, the case p > 1 

The Dinkelbach approach is generalized to the multi-ratio case in Crouzeix et al. [6] 
and [5]. Given a weight vector w > 0, the function F is replaced by  

      ,:)( ⎥
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⎤
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∈

−
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≤≤
Cx

w
(x)λg(x)fmaxminλF
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].:[ R tC, xpi10,tw(x)λg(x)f:tmin iii tx,
∈∈≤≤≤−−=     (5) 

Here again, Fw is non increasing and upper semi continuous, but not concave 
anymore. If (GFP) has an optimal solution, then 0*)( =λFw and  if 

If in addition problem (4) (or equivalently (5)) has an optimal solution for 
some then  for all 

0)( <λFw

.*λλ >
*,λλ < 0)( >λFw .*λλ <  These results are proved in details by 

Crouzeix et al. [6] for the case where pi1 allfor  wi ≤≤=1 . The extension for any 
vector w > 0 is immediate (see Crouzeix et al. [5]). 
Before going any further, it is worth to note the nice properties of the problems (4) 
and (5). Indeed, if C is convex, if the functions  are convex and if the functions 

 are concave, then the problems (4) and (5) are convex whenever . 
Furthermore if C is a polyhedral convex set and if the functions  and are affine, 
then (4) and (5) are linear programs.  

if

ig 0≥λ

if ig

As in the one-ratio case, the problem reduces to searching for the root of one 
equation of one real variable. The multi-ratio Dinkelbach algorithm is as follows 
(Crouzeix et al. [6]): 

The multi-ratio Dinkelbach algorithm 

• Initialization. 
o Start with some .Cx0 ∈  

o Take .
)(xg
)(xfmax:λ

0i

0i
pi10

≤≤
=  Choose . Let k = 1. 0>0w

• Step k. 
o Solve the problem 

].:  tC, xpi10,tw(x)gλ(x)f:[tmin 1k
ii1ki tx,

R∈∈≤≤≤−− −
−         (Pk) 
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  Let (  be an optimal solution of this problem. )kk t,x
o Stopping rule. If ,0=kt  then STOP: 1-kλλ*=  and  is an optimal 

solution of (GFP). 
kx

o Otherwise, let .
)(xg
)(xfmax:λ

ki

ki
pi1k

≤≤
=  Choose . Let , 

and go back to Step k.                                                                                                                        

0>kw 1+= k:k

From the definition of , it follows that 1kλ − i k 1 k 1 i k 11 i p
max [f (x ) λ g (x )] 0− − −
≤ ≤

− = .  

Hence, since  is a feasible solution of (P1kx − k), then .0 1kkk λλλ* and t −≤≤≤   

Crouzeix et al. [6] introduce the first version of this algorithm referred here as 
MAX, where  The convergence is then only linear. A more 
efficient version introduced by Crouzeix et al. [5], referred as MAXMOD, consists 
in updating w at step k by taking  for all i. Then, the convergence 
becomes superlinear under suitable assumptions (see Borde and Crouzeix [4] for 
instance). The correction algorithm for discrete fractional 

.1 and i allfor  w k
i = k

)(xgw ki
k
i =

ionapproximat−∞l (see 
Barrodale et al. [10], and Flachs [8]) is related to MAXMOD. A combination of 
MAXMOD with the proximal-method is introduced by Gugat [1]. 

Because w  is not concave in general, the MAX and MAXMOD algorithms do not 
enjoy the high speed of the one-ratio Dinkelbach algorithm for the case p = 1. As a 
consequence, interval methods searching for the root of equation  
become competitive. Such methods have been introduced by Bernard and Ferland 
[3] and Ferland and Potvin [7]. We shall compare numerically these methods with 
the new one introduced in the next section.  

F

0)( =λFw

2. A new variant of Dinkelbach algorithm 

In the new multi-ratio Dinkelbach algorithm, a sequence of values μk of λ is 
generated according to an approach similar to the one used to generate the sequence 
of k in the multi-ratio Dinkelbach algorithm, but using the information given by 
several previous iterates rather than given by only the last one. The procedure is 
also initialized with some , and 

λ

Cx ∈0

.max:
1 )(xg

)(xfμ
0i

0i
pi0

≤≤
=  

At Step k of the procedure, we solve the parameterized problem ( )kP                         
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    ].R tC, x:pi10,tw(x)gμ(x)f:[tmin 1k
ii1-ki tx,

∈∈≤≤≤−− −                       ( )kP  

Let (xk, tk) be an optimal solution of this problem. As long as tk ≤ 0, the procedure 
evolves as the multi-ratio Dinkelbach algorithm. But whenever tk > 0, then the 
procedure is restarted using xk-1 or xk (see below) as a new initial solution . 0x
A lower bound lb is also introduced to reduce computational effort by eliminating  
the resolution of ( )kP  in some cases. The value of lb is initialised at a value small 
enough to have lb ≤ *λ . For instances, lb can take a very small value close to –∞, 
or a better value like 0 if p.,1,ifor  fi =≥ ,0  The value of lb is updated using the 
different values of  generated on the left-hand side of 1-kμ *λ whenever tk > 0. 
Before we go any further, we summarize the new procedure, and further 
justifications are given afterward. 

The new multi-ratio Dinkelbach algorithm 

• Initialization. 
o Start with some .*λlb some and Cx 0 <∈  

• Step 0. 

o Take .
)(xg
)(xfmax:μ

0i

0i
pi10

≤≤
=  Let k = 1. 

• Step k. 
o Solve the problem 

             ].R tC, x:pi10,tw(x)gμ(x)f:[tmin 1k
ii1ki tx,

∈∈≤≤≤−− −
−          ( )kP  

                   Let (  be an optimal solution of this problem, and )kk t,x

                                   .
)(xg
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pi1

k
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o Stopping rule. If ,0=kt  then STOP: 1-kμλ*=  and  is an optimal 
solution of (GFP). 

kx

o IF :)λ*μlb(then  0t 1kk <<> −   
 Let  .1kμ:lb     −=

 IF 0. Step  togo and x: then x,λλ k01kk =< −  

 IF 0. Step  togo and x: then x,λλ 1k01kk −− =≥  
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o IF :)1k1kk λμλ*(then  0t −− <<<  

 Let   
)(xg
)(xf
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ji
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kj0pi1k
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=  

 IF μk ≤ lb, then k0 x:x =  and go to Step 0. 

 Otherwise, choose . Let 0>kw 1k:k += , and go back to Step k.  
Now we analyze more closely the general Step k. First, it is interesting to note the 

similarity between 
)(xg
)(xfmax:λ
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pi1
k

≤≤
=  and the value λk generated in the multi-ratio 

Dinkelbach algorithm using the parameterized problem ( )kP . Assume that during 
the last (k – 1) iterations, tj <0 , 1 ≤ j  ≤ (k – 1), and suppose that tk <0. Let  

.
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Furthermore, since we assume that tj <0, 1 ≤ j  ≤ (k – 1), then  

k.j1       λμ jj ≤≤≤  

Since we suppose that tk <0, then referring to problem ( )kP , it follows that  

( ) p.i10,)(xgμxf ki1-kki ≤≤<−  

Thus                                                  
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and hence                                        
( )

k
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pi11-k λ

)(xg
xfμ =>

≤≤
max . 

Then we can conclude that as long as tj < 0 , 1 ≤ j  ≤ k, 

012k1k1kkk μλμλμλμλ* <≤≤<≤<≤≤ −−− . 

Thus .kk λ than *λ  tocloser"" isit  and λ*, of side hand-right on the remains μ  

Unfortunately, nothing prevents tk to be positive. In such a situation, μk-1 < λ*, and 
μk-1 is a lower bound on λ*. Hence the value μk-1 can be used to update the best 
lower bound lb found so far during the execution of the procedure. Furthermore, 
whenever tk > 0 or μk < lb, the procedure is restarted with a new initial solution  
selected differently according to the following cases: 

0x

Case 1: If μk < lb, then we do not solve ( )1kP +  since we know that its optimal value 
is positive. In this case, .  k0 x:x =

Case 2: If μk-1 ≥ lb but tk > 0, then lb < μk-1 < λ*. Hence .1kμ:lb −=  To determine x0 

we consider the solution xk-1 and xk, and the corresponding values .k1k λ and λ −  If 
k1k λ  λ >− (i.e., 1kk λ than *λ closer to is λ − ),then k0 x:x = . Otherwise .  1-k0 x:x =

It is easy to see that reinitializing the procedure according to this strategy induces a 
decreasing sequence of values for λ converging to λ* like in the original multi-ratio 
Dinkelbach algorithm. 

As for the previous algorithm, we consider two choices for updating the weight 
vector w. In the REST algorithm, , and in the  RESTMOD 
algorithm,   

i andk  allfor   1wk
i =
i. andk  allfor   )(xgw ki

k
i =

3.Generalized linear fractional programming 

A generalized linear fractional programming problem is of the form: 
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where i ia  and b  denote rows i of the p n matrices A and B, respecively,⋅ ⋅ ×  

belong to  α and β .mp R γand matrix,n m a is E ,R ∈×

We make the following assumptions: 

(H1)  Feasibility assumption: there exists .γxEsuch that  0x ≤≥  

(H2)  Positivity assumption:  0.β and 0B >>

(H3)  Optimality assumption: (GLFP) has optimal solutions. 

Now we introduce a specific version of the new multi-ratio Dinkelbach algorithm 

where we take advantage of the fact that the functions are linear to update the lower 

bound lb on *λ  not only when the optimal value )kk P( of t  is positive , but even 

when is negative. In order to do this, we introduce the following analysis where 

for any weight vector w > 0, the parameterized problems in 

 t k

Rλ∈  are denoted 

       [ ].()(
,

 R t0,x:λβαtwA)xλBγ,Ex:tinfλF
 txw ∈≥−≥+−−≥−=        (Prλ) 

These problems are linear, and their duals are as follows: 

[ ].(()( 0z0,y0,zE)yAλB1,yw:zγyλβ)αsupλG tttttt
w ≥≥≤−−=−−=   (Duλ) 

If both problems (Prλ) and (Duλ) are feasible, then both have optimal solutions and 

the equality  holds. In view of (H3),  )()( λGλF ww =

[ ] 0λG :λmaxλ*   and    0λGλF www ≥=== )(*)(*)( . 

Since  is non negative if and only if there exists (y, z) such that )(λGw

,yλBzEyA   and   λ
yβ

zγyα

1yw0,z0,y             

ttt
t

tt

t

≥+≥
−

=≥≥
 

it follows that, according to Borde and Crouzeix [4] and Crouzeix et al. [9],  
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where l  denote columns l of matrices A, B, and E, respectively. It is 

interesting to note that (d

ll e and,b,a ⋅⋅⋅

w) is also a generalized linear fractional program. 

Now assume that  is an optimal solution of (Pr( λλ t,x ) λ) and that is an 

optimal solution of (Du

)( λλ z,y

λ). Then, 

.yλBzEyA,zγyλβ)(αλGλFt λ
t

λ
t

λ
t

λ
t

λ
t

wwλ ≥+−−=== )()(  

Hence, 
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Note also that is a feasible solution for (d)( λλ z,y w) and  Consider the 

two following cases : 

.0>λ
t yβ

• .     0<λt

 Then,             and    λλ*< .
λ

t
l

λ
t
lλ

t
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nl1λ
t

λ
t

λ
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It follows from (6) that  

                                            λ*λ
yβ

tλ
λ

t
λ <<+ .                                                (7) 

•  .0>μt

Then it follows from (6) that 
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In both cases, we obtain a lower bound for *λ  that can be used to update lb. 
Furthermore, since the simplex algorithm applied to problem (Prλ) (or (Duλ)) 
generates at the same time, an optimal solution for (Prλ) and also for (Duλ), then the 
required information to evaluate this lower bound is available. Therefore, we 
modify the algorithm of the last section as follows. 

The new linear multi-ratio Dinkelbach algorithm 

• Initialization. 
o Start with some { } .*λlb    and    0xγ,Ex:xx0 <≥≤∈  

• Step 0. 

o Take .
)(xg
)(xfmax:μ

0i

0i
pi10

≤≤
=   Choose .  Let k = 1. 0>0w

• Step k. 
o Solve the problem  .                                  )(Pr 1−kμ

Let (  be an optimal solution of this problem, and an 
optimal solution of its dual . Let  

)kk t,x )( kk z,y
)( 1−kμDu

                                         
)(xg
)(xfmax:λ

ki

ki
pi1

k
≤≤

= . 

o Stopping rule. If ,0=kt  then STOP: 1kμλ* −=  and  is an optimal 
solution of (GLFP). 

kx

o IF :)0 λ*μlb(then  1k <<> −kt   
 Let  

  .min: ⎟⎟
⎠
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⎝

⎛ +
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⋅

⋅⋅

≤≤
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k
t
l
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nl1k
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k
1k yb

zeyamin,
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tμlb  

 IF 0. Step  togo and x: then xλλ k01kk =< − ,  

 IF 0. Step  togo and x: then x,λλ 1k01kk −− =≥  

o IF :)1k1kk λμλ*(then  0t −− <<<  
 Let  
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⎠

⎞
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⎝

⎛
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k
t

k
1k yβ

tμlb,max:lb  

 IF μk ≤ lb, then kxx =:0  and go to Step 0. 

 Otherwise, choose . Let 0>kw 1+= k:k , and go back to Step k.  
Finally, it is worthy of noting that the lower bound lb specified in (6) has an 
important practical impact since when any Dinkelbach-type algorithm is 
implemented numerically, the stopping rule 

..." 0 tIf k ="  

is in fact replaced by 

   ..." ε tIf k <" . 

Thus the value of the lower bound lb specified in (8) allows evaluating the distance 

of  

μk-1 (or ) from 1−kλ *λ since  

.lbμλ*μ 1k −≤−−  

Furthermore, the value of lb specified in (9) justifies a posteriori the stopping rule 

   ..." εtIf k <" . Indeed, if εt k < , then 

k
t

k
1k1k1k1k yβ

tμμlbμλ*μ −−≤−≤− −−−−  

and 

.
k

t1k yβ
ελ*μ ≤−−  

4. Numerical experiments 

The new algorithms REST and RESTMODM are compared numerically with the 
algorithms MAX and MAXMODM and with two interval-type algorithms 
NEWMAX and NEWMODM introduced in Bernard and Ferland [3] and Ferland 
and Potvin [7]. The test problems used in the numerical tests are generalized linear 
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fractional programs similar to those used in Ferland and Potvin [7]. Hence the 
subproblems (Pk) are linear programs that are solved with the software CPLEX. 
Problems with n = 10, 20, 30, 50, 70, and 100 variables and p = 10 and 20 ratios are 
generated randomly, The elements iij are random numbers in [−50, 50], and 
elements iij are random numbers in [0, 50] and [0.01, 50], respectively. Five 
different types of feasible domains are considered: 

α and a
β and b

⎭
⎬
⎫

⎩
⎨
⎧

≤≤≥== ∑
=

n

1j
jj nj10,x;1x:xX1  

⎭
⎬
⎫

⎩
⎨
⎧

≤≤≥≤≥= ∑ ∑
= =

n

1j
j

n

1j
jj nj10,x;5x;2x:xX2  

⎭
⎬
⎫

⎩
⎨
⎧

≤≤≤≤≤≥= ∑ ∑
= =

n

1j
j

n

1j
jj nj120,x0;30x;10x:xX3  

⎭
⎬
⎫

⎩
⎨
⎧

≤≤≤≤≥= ∑
=

n

1j
jj nj130,x0;35x:xX4  

{ }jX5 x: 0 x 10, 1 j n= ≤ ≤ ≤ ≤ . 

The theoretical  stopping rule t  = 0 is changed to t  < ε ,  and 
numerical  tests are completed using three different  values for 

0.000005.εand0.0001,ε0.01,ε:ε 321 === Thus the algori thms are 
compared on 180 problems (one for each feasible domain,  and each 
value of n,  p and ε ) .  
The results are summarized in Table 5.1 and 5.2 where each figure is the average 
number of iterations required by the technique associated with the row to solve the 
set of problems of the corresponding column. As expected, the variant where 

is more efficient than the corresponding variant where  k
i i kw g (x ) for all k and i=

.i andk  allfor  1w k
i ≡  Furthermore the new algorithms REST and RESTMODM 

are more efficient than MAX and MAXMODM, respectively but the interval-type 
algorithms remain more efficient. The overall ranking of the techniques in 
decreasing order of efficiency is as follows; NEWMODM, RESTMODM, 
MAXMODM, NEWMAX, REST, MAX. 
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Algorithm                              n 
  10       20       30       50       70       100 

        m  
  10       20 

MAX 
NEWMAX 

REST 
MAXMODM 
NEWMODM 
RESTMODM 

12.80  10.20  10.73  12.80  13.30  11.47 
  9.87    9.57    7.63    8.00    8.97  10.23 
10.17    8.83  10.00  11.80  12.93  10.97 
  7.27    6.50    7.27    7.40    7.77    6.83 
  5.93    5.13    5.53    5.57    6.00    5.40 
  6.73    6.10    6.93    7.03    7.10    6.50    

11.33  12.37 
10.63    7.40 
10.83  10.70 
  7.13    7.10 
  5.60    5.53 
  6.63    6.77 

Table 5.1 Average number of iterations for the subsets of problems associated with the columns 

Algorithm Domain types 
  X1      X2      X3      X4      X5 

Epsilon 
0.01 0.0001 0.000005 

Overall 
average 

MAX 
NEWMAX 

REST 
MAXMODM 
NEWMODM 
RESTMODM 

10.73  11.80  11.77  12.97  11.97 
 8.57   10.37    8.83    9.37    7.87 
 8.63     8.87  11.47  12.07  12.67 
 5.87     6.27    7.23    7.83    8.43 
 5.07     5.00    5.43    6.03    6.23 
 5.73     5.80    6.70    7.07    8.13 

9.70     12.60    13.20 
7.10       9.60    10.30 
8.30     11.10    12.90 
6.70       7.20      7.50 
5.00       5.60      6.00 
6.20       6.90      7.10 

11.80 
  9.00 
10.70 
  7.10 
  5.50 
  6.60 

 

 Table 5.2 Average number of iterations for the subsets of problems associated with the columns. 

5. Conclusion 

In this paper, we introduce a new Dinkelbach-type algorithm improving the choice 
of k  at each iteration. Numerical results indicate that for generalized linear 
fractional programs, these new algorithms REST and RESTMODM are more 
efficient than MAX and MAXMODM, respectively, but that they remain less 
efficient than interval-type algorithms. 

λ
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