
Under review as a conference paper at ICLR 2017

REVISITING DISTRIBUTED SYNCHRONOUS SGD

Jianmin Chen∗, Xinghao Pan∗†, Rajat Monga, Samy Bengio
Google Brain
Mountain View, CA, USA
{jmchen,xinghao,rajatmonga,bengio}@google.com

Rafal Jozefowicz
OpenAI
San Francisco, CA, USA
rafal@openai.com

ABSTRACT

Distributed training of deep learning models on large-scale training data is typi-
cally conducted with asynchronous stochastic optimization to maximize the rate
of updates, at the cost of additional noise introduced from asynchrony. In con-
trast, the synchronous approach is often thought to be impractical due to idle time
wasted on waiting for straggling workers. We revisit these conventional beliefs
in this paper, and examine the weaknesses of both approaches. We demonstrate
that a third approach, synchronous optimization with backup workers, can avoid
asynchronous noise while mitigating for the worst stragglers. Our approach is
empirically validated and shown to converge faster and to better test accuracies.

1 INTRODUCTION

The recent success of deep learning approaches for domains like speech recognition (Hinton et al.,
2012) and computer vision (Ioffe & Szegedy, 2015) stems from many algorithmic improvements
but also from the fact that the size of available training data has grown significantly over the years,
together with the computing power, in terms of both CPUs and GPUs. While a single GPU often
provides algorithmic simplicity and speed up to a given scale of data and model, there exist an
operating point where a distributed implementation of training algorithms for deep architectures
becomes necessary.

Currently, popular distributed training algorithms include mini-batch versions of stochastic gradient
descent (SGD) and other stochastic optimization algorithms such as AdaGrad (Duchi et al., 2011),
RMSProp (Tieleman & Hinton, 2012), and ADAM (Kingma & Ba, 2014). Unfortunately, bulk-
synchronous implementations of stochastic optimization are often slow in practice due to the need
to wait for the slowest machine in each synchronous batch. To circumvent this problem, practi-
tioners have resorted to asynchronous approaches which emphasize speed by using potentially stale
information for computation. While asynchronous training have proven to be faster than their syn-
chronous counterparts, they often result in convergence to poorer results.

In this paper1, we revisit synchronous learning, and propose a method for mitigating stragglers in
synchronous stochastic optimization. Specifically, we synchronously compute a mini-batch gradient
with only a subset of worker machines, thus alleviating the straggler effect while avoiding any
staleness in our gradients. The primary contributions of our paper are:

• Illustration of how gradient staleness in asynchronous training negatively impacts test ac-
curacy and is exacerbated by deep models.

• Measurement of machine response times for synchronous stochastic optimization in a large
deployment of 100 GPUs, showing how stragglers in the tail end affect convergence speed.

• Proposal of synchronous stochastic optimization with backup workers to mitigate straggler
effects without gradient staleness.

• Establishing the need to measure both speed of convergence and test accuracy of optimum
for empirical validation.

∗Joint first authors
†UC Berkeley, Berkeley, CA, USA, xinghao@eecs.berkeley.edu
1This is an extension of our ICLR 2016 workshop extended abstract (Chen et al., 2016).

1

Under review as a conference paper at ICLR 2017

• Empirical demonstration that our proposed synchronous training method outperforms asyn-
chronous training by converging faster and to better test accuracies.

The remainder of this paper is organized as follows. We briefly present preliminaries and notation
in Section 1.1. Section 2 describes asynchronous stochastic optimization and presents experimental
evidence of gradient staleness in deep neural network models. We present our approach in Section 3,
and exhibit straggler effects that motivate the approach. We then empirically evaluate our approach
in Sections 4. Related work is discussed in Section 5, and we conclude in Section 6.

1.1 PRELIMINARIES AND NOTATION

Given a dataset X = {xi : i = 1, . . . , |X |}, our goal is to learn the parameters θ of a model with
respect to an empirical loss function f , defined as f(θ)

∆
= 1
|X |

∑|X |
i=1 F (xi; θ), where F (xi; θ) is the

loss with respect to a datapoint xi and the model θ.

A first-order stochastic optimization algorithm achieves this by iteratively updating θ using a
stochastic gradient G ∆

= ∇F (xi; θ) computed at a randomly sampled xi, producing a sequence
of models θ(0), θ(1), Stochastic optimization algorithms differ in their update equations. For
example, the update of SGD is θ(t+1) = θ(t) − γtG(t) = θ(t) − γt∇F (xi; θ

(t)), where γt is the
learning rate or step size at iteration t. A mini-batch version of the stochastic optimization algo-
rithm computes the stochastic gradient over mini-batch of size B instead of a single datapoint, i.e.,
G

∆
= 1

B

∑B
i=1∇F (x̃i; θ

(t)), where x̃i’s are randomly sampled from X . We will often evaluate
performance on an exponential moving average θ̄(t) = αθ̄(t−1) + (1− α)θ(t) with decay rate α.

Our interest is in distributed stochastic optimization using N worker machines in charge of comput-
ing stochastic gradients that are sent to M parameter servers. Each parameter server j is responsible
for storing a subset θ[j] of the model, and performing updates on θ[j]. In the synchronous setting,
we will also introduce additional b backup workers for straggler mitigation.

2 ASYNCHRONOUS STOCHASTIC OPTIMIZATION

An approach for a distributed stochastic gradient descent algorithm was presented in Dean et al.
(2012), consisting of two main ingredients. First, the parameters of the model are distributed on
multiple servers, depending on the architecture. This set of servers are called the parameter servers.
Second, there can be multiple workers processing data in parallel and communicating with the pa-
rameter servers. Each worker processes a mini-batch of data independently of the others, as follows:

• The worker fetches from the parameter servers the most up-to-date parameters of the model
needed to process the current mini-batch;
• It then computes gradients of the loss with respect to these parameters;
• Finally, these gradients are sent back to the parameter servers, which then updates the

model accordingly.

Since each worker communicates with the parameter servers independently of the others, this is
called Asynchronous Stochastic Gradient Descent (Async-SGD), or more generally, Asynchronous
Stochastic Optimization (Async-Opt). A similar approach was later proposed by Chilimbi et al.
(2014). Async-Opt is presented in Algorithms 1 and 2.

In practice, the updates of Async-Opt are different than those of serially running the stochastic
optimization algorithm for two reasons. Firstly, the read operation (Algo 1 Line 2) on a worker may
be interleaved with updates by other workers to different parameter servers, so the resultant θ̂k may
not be consistent with any parameter incarnation θ(t). Secondly, model updates may have occurred
while a worker is computing its stochastic gradient; hence, the resultant gradients are typically
computed with respect to outdated parameters. We refer to these as stale gradients, and its staleness
as the number of updates that have occurred between its corresponding read and update operations.

Understanding the theoretical impact of staleness is difficult work and the topic of many recent
papers, e.g. Recht et al. (2011); Duchi et al. (2013); Leblond et al. (2016); Reddi et al. (2015);

2

Under review as a conference paper at ICLR 2017

Algorithm 1: Async-SGD worker k
Input: Dataset X
Input: B mini-batch size

1 while True do
2 Read θ̂k = (θ[0], . . . , θ[M]) from PSs.
3 G

(t)
k := 0.

4 for i = 1, . . . , B do
5 Sample datapoint x̃i from X .
6 G

(t)
k ← G

(t)
k + 1

B
∇F (x̃i; θ̂k).

7 end
8 Send G(t)

k to parameter servers.
9 end

Algorithm 2: Async-SGD Parameter Server j
Input: γ0, γ1, . . . learning rates.
Input: α decay rate.
Input: θ(0) model initialization.

1 for t = 0, 1, . . . do
2 Wait for gradient G from any worker.
3 θ(t+1)[j]← θ(t)[j]− γtG[j].
4 θ̄(t)[j] = αθ̄(t−1)[j] + (1− α)θ(t)[j].
5 end

Figure 1: Gradient staleness dependence on model layer. Gradients
are computed in a bottom-up forward propagation step followed by a
top-down back propagation step. Parameters are read from servers in
the forward prop, but gradients are sent to servers during the back prop.
Thus, gradients of lower layers are more stale than top layers.

Figure 2: Degradation of test classi-
fication error with increasing average
gradient staleness in MNIST CNN
model.

De Sa et al. (2015); Mania et al. (2015), most of which focus on individual algorithms, under strong
assumptions that may not hold up in practice. This is further complicated by deep models with mul-
tiple layers, since the times at which model parameters are read and which gradients are computed
and sent are dependent on the depth of the layers (Figure 1). To better understand this dependence
in real models, we collected staleness statistics on a Async-Opt run with 40 workers on a 18-layer
Inception model (Szegedy et al., 2016) trained on the ImageNet Challenge dataset (Russakovsky
et al., 2015), as shown in Table 1.

Layer Min Mean Median Max Std Dev Count
18 4 14.54 13.94 29 3.83 10908
12 5 11.35 11.3 23 3.09 44478
11 8 19.8 19.59 34 3.65 187
0 24 38.97 38.43 61 5.43 178

Table 1: Staleness of gradients in a 18-layer Inception model. Gra-
dients were collected in a run of asynchronous training using 40
machines. Staleness of a gradient is measured as the number of
updates that have occurred between its corresponding read and up-
date operations. The staleness of gradients increases from a mean
of ∼14.5 in the top layer (Layer 18) to ∼39.0 in the bottom layer
(Layer 0).

Despite the abovementioned prob-
lems, Async-Opt has been shown to
be scale well up to a few dozens of
workers for some models. However,
at larger scales, increasing the num-
ber of machines (and thus staleness
of gradients) can result in poorer
trained models.

2.1 IMPACT OF STALENESS ON
TEST ACCURACY

We explore how increased staleness contributes to training of poorer models. In order to mimic the
setting on a smaller scale, we trained a state-of-the-art MNIST CNN model but simulated staleness
by using old gradients for the parameter updates. Details of the model and training are provided in
Appendix A.1.

The best final classification error on a test set was 0.36%, which increases to 0.47% with average
gradient staleness of 20 steps, and up to 0.79% with 50 steps (see Figure 2).

3

Under review as a conference paper at ICLR 2017

Once the average simulated staleness was chosen to be more than 15 steps, the results started to
significantly deteriorate and the training itself became much less stable. We had to employ following
tricks to prevent the results from blowing up:

• Slowly increase the staleness over the first 3 epochs of training. This mimics increasing
the number of asynchronous workers and is also very important in practice for some of the
models we experimented with (e.g. large word-level language models). The trick was not
relevant with a simulated staleness less than 15 but became crucial for larger values.

• Use lower initial learning rates when staleness is at least 20, which reduces a frequency of
explosions (train error goes to 90%). This observation is similar to what we found in other
experiments - we were able to use much larger learning rates with synchronous training
and the results were also more stable.

• Even with above tricks the divergence occurs occasionally and we found that restarting
training from random weights can lead to more successful runs. The best results were then
chosen based on validation set performance.

3 REVISTING SYNCHRONOUS STOCHASTIC OPTIMIZATION

Both Dean et al. (2012) and Chilimbi et al. (2014) use versions of Async-SGD where the main po-
tential problem is that each worker computes gradients over a potentially old version of the model.
In order to remove this discrepancy, we propose here to reconsider a synchronous version of dis-
tributed stochastic gradient descent (Sync-SGD), or more generally, Synchronous Stochastic Op-
timization (Sync-Opt), where the parameter servers wait for all workers to send their gradients,
aggregate them, and send the updated parameters to all workers afterward. This ensures that the
actual algorithm is a true mini-batch stochastic gradient descent, with an effective batch size equal
to the sum of all the mini-batch sizes of the workers.

While this approach solves the staleness problem, it also introduces the potential problem that the
actual update time now depends on the slowest worker. Although workers have equivalent compu-
tation and network communication workload, slow stragglers may result from failing hardware, or
contention on shared underlying hardware resources in data centers, or even due to preemption by
other jobs.

To alleviate the straggler problem, we introduce backup workers (Dean & Barroso, 2013) as follows:
instead of having only N workers, we add b extra workers, but as soon as the parameter servers
receive gradients from any N workers, they stop waiting and update their parameters using the
N gradients. The slowest b workers’ gradients will be dropped when they arrive. Our method is
presented in Algorithms 3, 4.

Algorithm 3: Sync-SGD worker k, where k =
1, . . . , N + b

Input: Dataset X
Input: B mini-batch size

1 for t = 0, 1, . . . do
2 Wait to read θ(t) = (θ(t)[0], . . . , θ(t)[M])

from parameter servers.
3 G

(t)
k := 0

4 for i = 1, . . . , B do
5 Sample datapoint x̃k,i from X .
6 G

(t)
k ← G

(t)
k + 1

B
∇F (x̃k,i; θ

(t)).
7 end
8 Send (G

(t)
k , t) to parameter servers.

9 end

Algorithm 4: Sync-SGD Parameter Server j
Input: γ0, γ1, . . . learning rates.
Input: α decay rate.
Input: N number of mini-batches to aggregate.
Input: θ(0) model initialization.

1 for t = 0, 1, . . . do
2 G = {}
3 while |G| < N do
4 Wait for (G, t′) from any worker.
5 if t′ == t then G ← G ∪ {G}.
6 else Drop gradient G.
7 end
8 θ(t+1)[j]← θ(t)[j]− γt

N

∑
G∈G G[j].

9 θ̄(t)[j] = αθ̄(t−1)[j] + (1− α)θ(t)[j].
10 end

4

Under review as a conference paper at ICLR 2017

3.1 STRAGGLER EFFECTS

The use of backup workers is motivated by the need to mitigate slow stragglers while maximizing
computation. We investigate the effect of stragglers on Sync-Opt model training here.

We ran Sync-Opt with N = 100 workers, b = 0 backups, and 19 parameter servers on the Inception
model. Using one variable as a proxy, we collected for each iteration both the start time of the
iteration and the time when the kth gradient of that variable arrived at the parameter server. These
times are presented in Figure 3 for k = 1, 50, 90, 97, 98, 99, 100. Note that 80% of the 98th gradient
arrives in under 2s, whereas only 30% of the final gradient do. Furthermore, the time to collect the
final few gradients grows exponentially, resulting in wasted idle resources and time expended to wait
for the slowest gradients. This exponential increase is also seen in Figure 4.

Figure 3: CDF of time taken to aggregate gradients
from N machines. For clarity, we only show times of
≤ 6s; the maximum observed time is 310s.

Figure 4: Mean and median times, across all itera-
tions, to collect k gradients on N = 100 workers and
b = 0 backups. Most mean times fall between 1.4s
and 1.8s, except of final few gradients.

Thus, one might choose to drop slow stragglers to decrease the iteration time. However, using fewer
machines implies a smaller effective mini-batch size and thus greater gradient variance, which in turn
could require more iterations for convergence. We examine this relationship by running Sync-Opt2
with N = 50, 70, 80, 90, 100 and b = 6, and note the number of iterations required for convergence
in Figure 5. Additional details of this training are provided in Appendix A.2. As N is doubled from
50 to 100, the number of iterations to converge nearly halves from 137.5e3 to 76.2e3.

Figure 5: Number of iterations to converge when ag-
gregating gradient from N machines.

Figure 6: Estimated time to converge when aggregat-
ing gradients from N machines on a N + b = 100
machine configuration. Convergence is fastest when
choosing N = 96, b = 4.

2 Since we are interested in the gradient quality and convergence behavior but not running time in this
experiment, the backups serve only to reduce our data collection time but do not affect our analysis.

5

Under review as a conference paper at ICLR 2017

Hence, there is a trade-off between dropping more stragglers to reduce iteration time, and waiting
for more gradients to improve the gradient quality. Consider a hypothetical setting where we have
N + b = 100 machines, and we wish to choose the best configuration of N and b to minimize
running time to convergence3. For each configuration, we can estimate the iterations required from
Figure 5 (linearly interpolating for values of N for which we did not collect data). We can multiply
this with the mean iteration times (Figure 4) to obtain the running time required to converge for each
setting of N and b. These results are shown in Figure 6, indicating that N = 96, b = 4 converges
fastest. Therefore, this motivates our choice to use a few backup workers for mitigating stragglers.

4 EXPERIMENTS

In this section, we present our empirical comparisons of synchronous and asynchronous distributed
stochastic optimization algorithms as applied to models such as Inception and PixelCNN. All exper-
iments in this paper are using the TensorFlow system (Abadi et al., 2015).

4.1 METRICS OF COMPARISON: FASTER CONVERGENCE, BETTER OPTIMUM

We are interested in two metrics of comparison for our empirical validation: (1) test error or ac-
curacy, and (2) speed of convergence3. We point out that for non-convex deep learning models,
it is possible to converge faster to a poorer local optimum. Here we show a simple example with
Inception using different learning rates.

Initial Test Epochs
rate precision to
γ0 at converge

convergence
1.125 77.29% 52628
2.25 77.75% 65811
4.5 78.15% 76209
9.0 78.17% 77235

Table 2: Test accuracies at con-
vergence and number of epochs to
converge for different initial learning
rates γ0. Low initial learning rates
result in faster convergence to poorer
local optimum.

(a) Convergence (b) Epochs to ε test precision 1.

Figure 7: Convergence of Sync-Opt on Inception model using N =
100 workers and b = 6 backups, with varying initial learning rates γ0.
To reach a lower ε test precision, small γ0’s require fewer epochs than
large γ0’s. However, small γ0’s either fail to attain high ε precision, or
take more epochs than higher γ0’s.

We ran Sync-Opt on Inception with N = 100 and b = 6, but varied the initial learning rate γ0

between 1.125 and 9.0. (Learning rates are exponentially decreased with iterations.) Table 2 shows
that smaller γ0 converge faster, but to poorer test precisions. Focusing on speed on an early phase
of training could lead to misleading conclusions if we fail to account for eventual convergence.
For example, Figure 3b shows that using γ0 = 1.125 reaches ε = 75% precision 1.5× faster than
γ0 = 4.5, but is slower for ε = 77.75%, and fails to reach higher precisions.

4.2 INCEPTION

We conducted experiments on the Inception model (Szegedy et al., 2016) trained on ImageNet Chal-
lenge dataset (Russakovsky et al., 2015), where the task is to classify images out of 1000 categories.
We used several configurations, varying N + b from 53 to 212 workers. Additional details of the
training are provided in Appendix A.3. An epoch is a synchronous iteration for Sync-Opt, or a full
pass of N updates for Async-Opt, which represent similar amounts of computation. Results of this
experiment are presented in Figure 8.

Figure 8b shows that Sync-Opt outperforms Async-Opt in test precision: Sync-Opt attains ∼0.5%
better test precision than Async-Opt for comparable N + b workers. Furthermore, Sync-Opt con-

3Convergence is defined as the point where maximum test accuracy or lowest test error is reached.

6

Under review as a conference paper at ICLR 2017

(a) Convergence (b) Test precision @ 1

(c) Epochs to converge (d) Time to converge (e) Mean epoch time

Figure 8: Convergence of Sync-Opt and Async-Opt on Inception model using varying number of machines.
Sync-Opt with backup workers converge faster, with fewer epochs, to higher test accuracies.

verges 6h and 18h faster than Async-Opt for 106 and 212 workers respectively, and is 3h slower
when 53 workers are used, as seen in Figure 8d. This difference in speed is largely due to the fewer
epochs (Figure 8c) needed by Sync-Opt, but comparable or better epoch time (Figure 8e).

4.3 PIXELCNN EXPERIMENTS

The second model we experimented on is PixelCNN (Oord et al., 2016), a conditional image gener-
ation deep neural network, which we train on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset.
Configurations of N + b = 1, 8, 16 workers were used; for Sync-Opt, we always used b = 1 backup
worker. Additional details are provided in Appendix A.4.

(a) (b)

Figure 9: Convergence of synchronous and asynchronous training on PixelCNN model. Sync-Opt achieves
lower negative log likelihood in less time than Async-Opt.

7

Under review as a conference paper at ICLR 2017

Convergence of the test negative log likelihood (NLL) on PixelCNN is shown in Figure 9a, where
lower is better. Observe that Sync-Opt obtains lower NLL than Async-Opt; in fact, Async-Opt
is even outperformed by serial RMSProp with N = 1 worker, with degrading performance as N
increases from 8 to 16. Figure 9b further shows the time taken to reach ε test NLL. Sync-Opt reduces
the time to reach ε = 2.145 from 247h to 58.3h; this NLL is not even achieved by Async-Opt.

5 RELATED WORK

Multicore and distributed optimization algorithms have received much attention in recent years.
Asynchronous algorithms include Recht et al. (2011); Duchi et al. (2013); Zhang et al. (2015a);
Reddi et al. (2015); Leblond et al. (2016). Implementations of asynchronous optimization include
Xing et al. (2015); Li et al. (2014); Chilimbi et al. (2014). Attempts have also been made in Zinke-
vich et al. (2010) and Zhang & Jordan (2015) to algorithmically improve synchronous SGD.

An alternative solution, “softsync”, was presented in Zhang et al. (2015b), which proposed batching
gradients from multiple machines before performing an asynchronous SGD update, thereby reducing
the effective staleness of gradients. Similar to our proposal, softsync avoids stragglers by not forcing
updates to wait for the slowest worker. However, softsync allows the use of stale gradients but we
do not. The two solutions provide different explorations of the trade-off between high accuracy (by
minimizing staleness) and fast throughput (by avoiding stragglers).

Watcharapichat et al. (2016) introduces a distributed deep learning system without parameter
servers, by having workers interleave gradient computation and communication in a round-robin
pattern. Like Async-Opt, this approach suffers from staleness. We also note that in principle, work-
ers in Sync-Opt can double as parameter servers and execute the update operations and avoid the
need to partition hardware resources between workers and servers.

Das et al. (2016) analyzes distributed stochastic optimization and optimizes the system by solving
detailed system balance equations. We believe this approach is complimentary to our work, and
could potentially be applied to guide the choice of systems configurations for Sync-Opt.

Keskar et al. (2016) suggests that large batch sizes for synchronous stochastic optimization leads to
poorer generalization. Our effective batch size increases linearly with the number of workers N .
However, we did not observe this effect in our experiments; we believe we are not yet in the large
batch size regime examined by Keskar et al. (2016).

6 CONCLUSION AND FUTURE WORK

Distributed training strategies for deep learning architectures will become ever more important as
the size of datasets increases. In this work, we have shown how both synchronous and asynchronous
distributed stochastic optimization suffer from their respective weaknesses of stragglers and stal-
eness. This has motivated our development of synchronous stochastic optimization with backup
workers, which we show to be a viable and scalable strategy.

We are currently experimenting with different kinds of datasets, including word-level language mod-
els where parts of the model (the embedding layers) are often very sparse, which involves very
different communication constraints. We are also working on further improving the performance
of synchronous training like combining gradients from multiple workers sharing the same machine
before sending them to the parameter servers to reduce the communication overhead. An alternative
of using time-outs instead of backup workers is also being explored.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/.

8

http://tensorflow.org/

Under review as a conference paper at ICLR 2017

Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting distributed synchronous sgd.
arXiv preprint arXiv:1604.00981, 2016.

T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building an efficient and scalable deep
learning training system. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and
Implementation, 2014.

Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidynathan, Srinivas Sridharan, Dhiraj
Kalamkar, Bharat Kaul, and Pradeep Dubey. Distributed deep learning using synchronous stochastic gradient
descent. arXiv preprint arXiv:1602.06709, 2016.

Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A unified analysis of
hogwild-style algorithms. In Advances in Neural Information Processing Systems, pp. 2674–2682, 2015.

J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. A. Ranzato, A. Senior,
P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In Advances in Neural Information
Processing Systems, NIPS, 2012.

Jeffrey Dean and Luiz Andr Barroso. The tail at scale. Communications of the ACM, 56:74–80, 2013. URL
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

John Duchi, Michael I Jordan, and Brendan McMahan. Estimation, optimization, and parallelism when data is
sparse. In Advances in Neural Information Processing Systems, pp. 2832–2840, 2013.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal
Processing Magazine, 29:82–97, 2012.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML, 2015.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Asaga: Asynchronous parallel saga. arXiv
preprint arXiv:1606.04809, 2016.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James Long,
Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter server. In 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pp. 583–598, 2014.

Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and
Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. arXiv preprint
arXiv:1507.06970, 2015.

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray Kavukcuoglu.
Conditional image generation with pixelcnn decoders. arXiv preprint arXiv:1606.05328, 2016.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to paral-
lelizing stochastic gradient descent. In Advances in Neural Information Processing Systems, pp. 693–701,
2011.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex J Smola. On variance reduction in
stochastic gradient descent and its asynchronous variants. In Advances in Neural Information Processing
Systems, pp. 2647–2655, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual
recognition challenge. In International Journal of Computer Vision, 2015.

9

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Under review as a conference paper at ICLR 2017

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer
vision. In ArXiv 1512.00567, 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2), 2012.

Pijika Watcharapichat, Victoria Lopez Morales, Raul Castro Fernandez, and Peter Pietzuch. Ako: Decentralised
deep learning with partial gradient exchange. In Proceedings of the Seventh ACM Symposium on Cloud
Computing, pp. 84–97. ACM, 2016.

Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng, Pengtao Xie, Abhi-
manu Kumar, and Yaoliang Yu. Petuum: A new platform for distributed machine learning on big data. IEEE
Transactions on Big Data, 1(2):49–67, 2015.

Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging sgd. In Advances
in Neural Information Processing Systems, pp. 685–693, 2015a.

Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. Staleness-aware async-sgd for distributed deep learning.
arXiv preprint arXiv:1511.05950, 2015b.

Yuchen Zhang and Michael I Jordan. Splash: User-friendly programming interface for parallelizing stochastic
algorithms. arXiv preprint arXiv:1506.07552, 2015.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic gradient descent. In
Advances in neural information processing systems, pp. 2595–2603, 2010.

10

Under review as a conference paper at ICLR 2017

A DETAILS OF MODELS AND TRAINING

A.1 MNIST CNN, SECTION 2.1

The model used in our experiments is a 4-layer CNN that have 3x3 filters with max-pooling and
weight normalization in every layer. We trained the model with SGD for 25 epochs and evaluated
performance on the exponential moving average θ̄ using a decay rate of α = 0.9999. Initial learning
rate was set to be 0.1 and linearly annealed to 0 in the last 10 epochs. We also used small image
rotations and zooms as a data augmentation scheme.

A.2 INCEPTION, SECTION 3.1

For our straggler experiments, we trained the Inception (Szegedy et al., 2016) model on the Im-
ageNet Challenge dataset (Russakovsky et al., 2015). 10 parameter servers were used, and each
worker was equipped with a k40 GPU.

The underlying optimizer was RMSProp with momentum, with decay of 0.9 and momentum of 0.9.
Mini-batch size B = 32 was used. Initial learning rates γ0 were set at 0.045N , which we found to
provide good test precisions for Inception. Learning rates were also exponentially decreased with
decay rate β = 0.94 as γ0β

tN/(2T), where T = |X |/B is the number of mini-batches in the dataset.

Test precisions were evaluated on the exponential moving average θ̄ using α = 0.9999.

A.3 INCEPTION, SECTION 4.2

For experiments comparing Async-Opt and Sync-Opt on the Inception model in Section 4.2, each
worker is equipped with a k40 GPU. For N + b = 53 workers, 17 parameter servers were used;
for N + b = 106 workers, we used 27 parameter servers; and 37 parameter servers were used for
N + b = 212.

In the asynchronous training mode, gradient clipping is also needed for stabilization, which requires
each worker to collect the gradient across all layers of the deep model, compute the global norm
||G|| and then clip all gradient accordingly. However, synchronization turns out to be very stable so
gradient clipping is no longer needed, which means that we can pipeline the update of parameters
in different layers: the gradient of top layers’ parameters can be sent to parameter servers while
concurrently computing gradients for the lower layers.

The underlying optimizer is RMSProp with momentum, with decay of 0.9 and momentum of 0.9.
Mini-batch size B = 32 was used. Initial learning rates γ0 for Async-Opt were set to 0.045; for
Sync-Opt, we found as a rule-of-thumb that a learning rate of 0.045N worked well for this model.
Learning rates were then exponentially decayed with decay rate β = 0.94 as γ0β

t/(2T) for Async-
Opt, where T = |X |/B is the number of mini-batches in the dataset. For Sync-Opt, we learning rates
were also exponentially decreased at rate of γ0β

tN/(2T), so that the learning rates after computing
the same number of datapoints are comparable for Async-Opt and Sync-Opt.

Test precisions were evaluated on the exponential moving average θ̄ using α = 0.9999.

A.4 PIXELCNN, SECTION 4.3

The PixelCNN (Oord et al., 2016) model was trained on the CIFAR-10 (Krizhevsky & Hinton,
2009) dataset. Configurations of N + b = 1, 8, 16 workers each with a k80 GPU, and 10 parameter
servers were used. For Sync-Opt, we always used b = 1 backup worker. The underlying optimizer
is RMSProp with momentum, using decay of 0.95 and momentum of 0.9. Initial learning rates γ0

were set to 1e − 4 and slowly decreased to 3e − 6 after 200,000 iterations. Mini-batch size B = 4
was used.

11

	Introduction
	Preliminaries and Notation

	Asynchronous Stochastic Optimization
	Impact of staleness on test accuracy

	Revisting Synchronous Stochastic Optimization
	Straggler effects

	Experiments
	Metrics of comparison: Faster convergence, Better optimum
	Inception
	PixelCNN Experiments

	Related Work
	Conclusion and Future Work
	Details of Models and Training
	MNIST CNN, Section 2.1
	Inception, Section 3.1
	Inception, Section 4.2
	PixelCNN, Section 4.3

