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Revisiting Feature Fusion for RGB-T Salient Object
Detection

Qiang Zhang, Tonglin Xiao, Nianchang Huang, Dingwen Zhang* and Jungong Han*

Abstract—While many RGB-based saliency detection algo-
rithms have recently shown the capability of segmenting salient
objects from an image, they still suffer from unsatisfactory
performance when dealing with complex scenarios, insufficient
illumination or occluded appearances. To overcome this problem,
this paper studies RGB-T saliency detection, where we take
advantage of thermal modality’s robustness against illumination
and occlusion. To achieve this goal, we revisit feature fusion
for mining intrinsic RGB-T saliency patterns and propose a
novel deep feature fusion network, which consists of the multi-
scale, multi-modality, and multi-level feature fusion modules.
Specifically, the multi-scale feature fusion module captures rich
contexture features from each modality feature, while the multi-
modality and multi-level feature fusion modules integrate comple-
mentary features from different modality features and different
level of features, respectively. To demonstrate the effectiveness of
the proposed approach, we conduct comprehensive experiments
on the RGB-T saliency detection benchmark. The experimental
results demonstrate that our approach outperforms other state-
of-the-art methods and the conventional feature fusion modules
by a large margin.

Index Terms—Salient object detection, RGB-T, Multi-scale,
Multi-modality, Multi-level, Feature fusion

I. INTRODUCTION

SALIENT object detection aims to detect objects that can
attract human attention in various scenarios and accurately

segment object and background regions. Due to its high re-
search value and significance in practical applications, salient
object detection has attracted a lot of attention from the fields
of image processing, computer vision, pattern recognition
and artificial intelligence. Recent studies have shown that the
salient object detection techniques can be applied in many
applications, such as object recognition [1], image and video
compression [2], image segmentation [3], content-based image
resizing [4], visual tracking [5], image retrieval [6] and person
re-identification [7].

RGB-based saliency detection models have been well stud-
ied for a long time and achieved great progress [8]–[16].
Conventional RGB saliency models can be roughly divided
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Fig. 1. Saliency maps generated by RGB-based salient object detection model
for some images in complex scenarios (occlusion, lack of illumination and
low contrast) and their ground truth annotations. The last column shows the
corresponding spatially aligned thermal images to the RGB images.

into two categories [17]: top-down [16], [18], [19] and bottom-
up [15], [20], [21] pipelines. Top-down models are primarily
based on high-level saliency priors of a particular category
and various hand-crafted features, so that they are usually
task-driven models. Bottom-up models, however, require low-
level visual features such as color, texture, and contrast.
Generally, these traditional methods depend mainly on hand-
crafted saliency features and may be unreliable in discrim-
inating the salient objects from complicated scenarios due
to the lack of high-level contexts. In recent years, the Fully
Convolutional Neural Network (FCN) has been widely used
in many computer vision tasks [22], [23] and a large number
of FCN-based models have been designed for RGB-based
salient object detection. By building multi-level and multi-
scale feature representations, these FCN-based salient object
detection models achieved appealing performance.

Most of those saliency detection models perform saliency
detection merely on RGB images, which making use of
detailed visual cues, such as color, texture, and spatial de-
tails. However, such visual cues are sensitive to illumination,
weather condition, and occlusion. Therefore, it is difficult
for those RGB-based models to accurately distinguish the
salient objects in complex scenarios, e.g., poor illumination
conditions or clutter backgrounds (see Fig. 1). Being com-
plementary to RGB images, thermal images, which capture
the radiated heat of objects, can present silhouettes of salient
objects clearly even in the case of insufficient illumination.
However, they usually lack detailed visual cues as shown in
the last column in Fig. 1. Therefore, it is desirable to combine
the RGB images and thermal images to solve the salient object
detection problem in complex visual scenes.

Essentially, with the rapid development of sensor technolo-
gies, the images in different modalities can be acquired easily.
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Fig. 2. The overall framework of our proposed model. Two feature extraction branches take an RGB image and a thermal image as input respectively and both
of them are built on VGG-16 net. An HPA module is used to capture rich multi-scale contextual information for single modality images at different levels.
Then the multi-scale multi-modality features are integrated by a CW module, which adaptively fuses multi-modality features by weighing their importance.
Finally, the combined low-level RGB-T features are progressively integrated with the combined RGB-T global semantic features to predict fine saliency maps
through a SG module, which employs global semantic features to supervise the passing of low-level details.

Furthermore, these multi-modality images have been exten-
sively applied to different computer vision tasks. For instance,
many RGB-D salient object detection works [24]–[34] have
been proposed to work on depth images that contain affluent
spatial structure and 3D layout information. However, depth
data, in practice, are less robust to insufficient illumination
and occlusion. A recent work [35] utilized thermal data to
provide additional saliency information, where fusing multi-
modal information at the saliency map level may not fully
utilize the complementary information across RGB and ther-
mal images. The latest RGB-T and RGB-D saliency detection
methods [30], [32], [36] adopt feature fusion to combine multi-
modality information. However, these methods fuse multi-
modality features via simple concatenation or element-wise
summation operation without considering the importance of
the feature maps from different modalities. Such operations
allows redundant or non-salient features to be involved, thus
making the fusion process less complementary. Finally, most
existing multi-modality salient object detection models may
not take the multi-scale deep features into consideration,
although multi-scale deep features have already been proved to
be effective for the conventional salient object detection task
[10], [37].

Considering those aforementioned issues, we propose a
novel RGB-T saliency detection approach by revisiting fea-
ture fusion in the built Deep Convolutional Neural Network
(DCNN) model. As shown in Fig. 2, the proposed DCNN
model consists of a single-modality feature learning phase
and a multi-modality feature learning phase. In this DCNN
model, we study three feature fusion mechanisms for RGB-
T saliency detection, including the multi-scale feature fusion,
multi-modality feature fusion and multi-level feature fusion,
respectively.

The multi-scale feature fusion is explored in the single-
modality feature learning phase, where we propose a Hybrid

Pooling-Atrous (HPA) module to capture multi-scale con-
textual information at each single-modality feature learning
branch. This module introduces a cascade of hybrid atrous con-
volutional layers [38], where the gap between adjacent dilation
rates is smaller, to alleviate the ‘gridding’ problem existing
in the traditional atrous convolutional framework [39]. Thus,
it can better aggregate contextual information in neighbor
locations. Notice that, before each atrous convolutional layer
in HPA, a max-pooling layer is employed to further gather the
local information and enlarge the corresponding local receptive
fields. Compared to the existing multi-scale feature extraction
modules in [10], [37], our hybrid pooling-atrous module (HPA)
is able to encode more representative multi-scale contextual
information with stronger local information and better spatial
consistency.

In multi-modality feature fusion, we design a Comple-
mentary Weighting (CW) module to effectively fuse comple-
mentary information from multi-modality features. Inspired
by the existing works that use attention mechanisms [10],
[40] to weigh and select features when fusing features at
different levels, the proposed CW module applies the attention
mechanism to adaptively fuse multi-modality features. The
attention mechanism is implemented by a series of stan-
dard convolutional layers with learnable parameters, which
makes our entire system end-to-end trainable. Compared to
the aforementioned multi-modality feature fusion strategy, the
proposed CW module can adaptively fuse those important
multi-modality information by learning the content-dependent
weight vectors.

Having obtained the fused multi-modality features in dif-
ferent levels, the next step is to progressively combine the
low-level RGB-T features with the high-level RGB-T semantic
features to generate saliency maps with accurate semantics and
fine boundaries. To this end, we design a Semantic Guidance
(SG) module to screen the superfluous information in low-level
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features, which is implemented by using the global semantic
features from the deepest network layer to gate the forward
flow of the low-level features so that the useful informa-
tion is transmitted and superfluous information is abandoned.
Then, the proposed RGB-T salient object detection model can
achieve accurate saliency detection from those multi-modality
complementary information.

In summary, this work has the following three-fold main
contributions:

• By revisiting three informative feature fusion strategies
in DCNN model, we propose a novel deep learning
framework for RGB-T salient object detection.

• Novel network modules, i.e, the HPA module, CW
module and SG module are proposed to learn rich
contextual, complementary and semantic-aware features,
respectively.

• Comprehensive experiments on the RGB-T saliency de-
tection benchmark are conducted to demonstrate the
superior capacity of our approach.

The rest of the paper is organized as follows. Section II
briefly reviews some related works and Section III illustrates
the proposed multi-modality salient object detection model
in detail. Experimental results and conclusions are given in
Section IV and Section V, respectively.

II. RELATED WORK

A. RGB-based Salient Object Detection

Early RGB-based salient object detection methods are
mainly designed on low-level hand-crafted features, which
generally adopted the heuristic saliency priors for saliency de-
tection, such as color contrast [41], [42], boundary priors [18],
[43] and center priors [19]. Although these empirical saliency
priors can improve saliency results for many images, they may
fail when a salient object is similar to the background region in
color distribution, off-center or significantly overlapped with
the image boundaries.

Recently, many deep learning models with various con-
volutional neural network structures have been presented for
saliency detection, which generally achieve better performance
than the traditional hand-crafted features based methods. Wang
et al. [9] proposed to utilize two branches of convolutional
networks to combine local superpixel estimation and global
proposal search for salient object detection. Li et al. [8]
calculated the saliency value of each superpixel by learning
its CNN contextual features. Although these models have
achieved a good performance, the fully connected layers in
these models decrease the computational efficiency and discard
the spatial details. To address this issue, FCN based saliency
detection models have become the mainstream because they
may provide a pixel-wise prediction. Li et al. [44] proposed a
multi-task deep saliency model based on the FCN with a global
input and a global output. Some other salient object detection
models [45]–[48] demonstrate that end-to-end deep networks
are more effective in capturing local and global contextual
information than image region-based models.

In addition, multi-scale features are another important factor
in salient object detection tasks, because a diverse range

of contextual information is conducive to enhance spatial
consistency and accurately segment the salient region. The
Pyramid Pooling Module (PPM) [49] and Atrous Spatial
Pyramid Pooling (ASPP) [50] in the task of semantic seg-
mentation adopted parallel pooling layers and atrous convo-
lutional layers to obtain corresponding multi-scale features
with various receptive field sizes, which have achieved great
performance. In salient object detection methods, Lu et al. [10]
employed several parallel atrous convolutional layers to extract
multi-scale information at different levels. Hou et al. [11]
utilized skip connections to combine high-level side-output
and shallower side-output so as to obtain multi-scale feature
maps at each level. Wang et al. [37] employed a pyramid
pooling module for gathering multi-scale global contextual
information.

Furthermore, there is an intrinsic problem in deep learning
saliency detectors that low-level details will be lost with
multiple levels of convolutional and pooling layers, leading
to a coarse saliency map with blurry boundary. To tackle
this problem, Zhang et al. [12] progressively combined high-
level semantic information with low-level detail information to
refine the sparse and irregular prediction maps. Alternatively,
some salient object detectors refine the boundary of saliency
maps by applying image regions [8], [9], [46] or superpixels
[8]. For instance, Wang et al. [13] applied the superpixels
generated by SLIC segmentation algorithm to refine boundary,
and these superpixels can better keep boundary information of
the salient object.

B. Multi-modality Salient Object Detection

In recent years, the multi-modal images have been applied
to the salient object detection task. For example, many RGB-
D saliency detection models have been presented, which can
be categorized as three folds according to their fusion way: 1)
input fusion; 2) feature fusion; and 3) result fusion. The input
fusion models [24], [25] simply concatenate the RGB and
depth image as a four-channel input without specific process-
ing. The result fusion models computed the saliency maps for
the RGB images and depth images separately and then adopted
different fusion strategies to combine the two saliency maps,
such as summation fusion [26], [27], multiplication fusion
[28] or other fusion rules [29]. However, these input fusion
or result fusion based RGB-D saliency detection models lack
the interaction of multi-modality features at different levels,
so they cannot effectively fuse the complementary information
from RGB and depth images.

There are also many deep feature fusion models for RGB-D
salient object detection. Chen et al. [30] leveraged two CNN
models to extract information from RGB and depth images
independently. And then multi-modality features at different
levels were combined progressively by the complementary-
aware fusion module. In addition, Zhu et al. [31] employed
the encoder-decoder architecture as a master network for pro-
cessing RGB information, and then the depth-based features
acquired by a small sub-network were incorporated into the
master network to enhance the robustness of the master net-
work. Although these RGB-D salient object detection models
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[31], [32] have achieved the state-of-the-art performance, they
might not work well for RGB-T salient object detection task,
as evidenced by the experimental results in Section IV. The
major reason lies in the natural difference between thermal
images and depth images.

Compared with the above-mentioned saliency detection
methods on RGB-D images, the saliency detection methods
on RGB-T image pairs have not received much attention.
Currently, the paired RGB-T images are mainly applied in
pedestrian detection [51]–[53] to deal with some complex
scenarios such as lack of illumination or occlusion. With the
introduction of the KAIST Multispectral Pedestrian Detection
dataset [54], there is a growing interest in multispectral pedes-
trian detection leveraging aligned RGB and thermal images.
For instance, Liu et al. [53] designed different multi-branch
fusion network architectures based on Faster R-CNN to fuse
RGB and thermal information, including low-level feature
fusion, middle-level feature fusion, high-level feature fusion
and predicted result fusion, and the middle-level feature fusion
achieved the best performance.

Some works have applied thermal images to salient object
detection task. Li et al. [55] adopted Weighted Low-rank
Decomposition (WELD) for grayscale-thermal foreground de-
tection, which adaptively pursued the cross-modality low-rank
representation. Li et al. [56] associated a weight with each
modality to describe the reliability and integrated them into a
graph-based manifold ranking algorithm to achieve adaptive
fusion of multi-modality information for RGB-T saliency
detection. These existing traditional methods are designed
on low-level hand-crafted features. When compared with
multi-level features learned from CNN, these hand-crafted
features are less discriminative. Then Tu et al. [57] posed
saliency detection to a graph learning problem and utilized
hierarchical deep features to jointly learn saliency. Ma et al.
[35] adaptively incorporated RGB and thermal saliency maps
inferred from deep convolutional neural networks. However,
these latest RGB-T approaches never make full use of rich
contextual information in DCNN, so they still cannot achieve
the state-of-the-art performance. Recently, Zhang et al. [36]
proposed the first end-to-end RGB-T salient object detection
framework. This method combined multi-modality image in-
formation through multi-level feature fusion, which can better
take advantage of the multi-modality hierarchy deep features.
However, this method still did not consider the reliability
of feature maps from each modality as well as the multi-
scale deep features. Therefore, existing RGB-T salient object
detection methods still fail to make full use of rich contextual
information in DCNN and effectively integrate multi-modality
complementary information.

III. PROPOSED RGB-T SALIENT OBJECT DETECTION
METHOD

A. Architecture Overview

As shown in Fig. 2, the proposed RGB-T salient object
detection framework is based on an encoder-decoder archi-
tecture, where the two backbone streams (i.e., RGB and
thermal streams) act as an encoder for encoding RGB images

and thermal images information and the decoder predicts
saliency maps based on the fused multi-modality information.
Meanwhile, the proposed framework mainly consists of three
feature fusion components: multi-scale contextual information
extraction, multi-modality feature combination and multi-level
feature propagation.

The encoder of the proposed network adopts the VGG-16
net [58] as the backbone architecture on both RGB and thermal
streams to extract informative features. We first make some
modifications to the VGG-16 net. Specifically, all the fully-
connected layers in the VGG-16 net are discarded as our task
focuses on pixel-wise prediction. Secondly, in order to enlarge
the spatial resolution of the predicted saliency map and prevent
the loss of spatial details, we remove the last two max-pooling
layers and replace the subsequent three convolutional layers by
the atrous convolutional layers with a dilation rate of 2. In this
way, the output saliency map is down-sampled by a factor of
8 compared to the size of the original images.

After the RGB-T image pairs are fed into two modified
VGG-16 nets, three levels of single-modality deep features
(i.e., 2-nd, 3-rd and 5-th levels, respectively) are obtained.
Here, due to the strides in the last two max-pooling layers have
been set to 1, we do not employ feature maps from the fourth
convolutional block to take part in the reasoning process. We
also discard feature maps from the first convolutional block
because of the experimental results in Section IV, which show
that it would lead to performance degradation when these
feature maps are employed to refine the final prediction maps.
Then, a proposed HPA module is applied to each level of the
obtained deep features to capture multi-scale contextual infor-
mation for each modality. Therefore, we obtain three levels
of multi-scale features

{
FRGBi |i = 2, 3, 5

}
for RGB images

and
{

FTi |i = 2, 3, 5
}

for thermal images, respectively, in this
step. Secondly, the proposed CW module is introduced to
adaptively fuse the multi-scale RGB and thermal feature maps,
i,e., FRGBi and FTi , at the same i-th level (i = 2, 3, 5). Thus,
we obtain the fused RGB-T feature maps {Fi|i = 2, 3, 5}.
Thirdly, in the phase of decoding, the proposed SG module
is employed to adaptively combine multi-level fused RGB-T
feature maps for recovering boundary details. In this way, two
sets of refined RGB-T feature maps {Fi|i = 6, 7} are further
produced. Finally, the high-level and refined RGB-T feature
maps {Fi|i = 5, 6, 7} are used to obtain three corresponding
prediction maps {Sj |j = 1, 2, 3} at the refinement stage for
stage-wise supervisions. Here , all of the prediction maps have
been resized to the same spatial resolutions as the input images
by using the bilinear interpolation. Meanwhile, S3 is taken as
the final prediction. We will discuss the proposed approach in
details in the following sections.

B. Multi-Scale Features Fusion with Hybrid Pooling-Atrous
Module

As we know, deep features from multiple scales are indis-
pensable for salient object detection as the interested object
regions may have large variations in scales. To this end,
the multi-scale contextual information is required to enhance
the prediction accuracy. To achieve this goal, Wang et al.
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Fig. 3. The proposed HPA module used for the high-level semantic features in the fifth convolutional block. Each atrous convolutional layer is based on a
3× 3 standard convolutional layer, and a max-pooling layer with a stride of 1 is added before each atrous convolutional layer except the first one.

[37] exploited the pyramid pooling before the final prediction
layer to extract multi-scale features for saliency detection.
However, the large scale of pooling may cause the loss of the
detailed spatial information. In the semantic segmentation task,
Chen et al. [50] proposed an Atrous Spatial Pyramid Pooling
(ASPP) module to capture multi-scale contextual information
by placing multiple atrous convolutional layers in parallel.
Based on [50], Zhang et al. [10] exploited four parallel atrous
convolutional layers with the same convolutional kernel size
but different dilation rates to encode rich context information.

Usually, max-pooling layers are employed in DCNN to
reduce the number of parameters and the amount of com-
putation by gathering the local information into more salient
cues. It can simultaneously obtain a larger receptive field and
yield low-resolution feature maps. Using atrous convolutional
layers to solve the problem of spatial resolution reduction
is incurred by the repeated combination of max-pooling and
down-sampling (striding) layers. It works by inserting zeros
between kernel weights. Although the receptive field of the
kernel increases, the number of filter parameters stays con-
stant, which allows us to easily control the spatial resolution
of feature maps.

However, there is a ‘gridding’ issue [39] in the atrous
convolution-based frameworks. Specifically, to enlarge the
receptive fields of a convolutional kernel, zeros are padded
between two adjacent weights in the kernel. This means that
only pixels corresponding to non-zero weights can be sampled
during the calculation. So atrous convolutional operation may
lose some useful neighboring information and destroy the
informative spatial consistency. This issue gets worse with the
increase of the dilation rate. The convolutional kernel is too
sparse to cover any relative neighboring information for the
sampled pixels. Although a larger receptive field is obtained,
the sampled pixels cannot represent their relative local areas,
which hurts the representative capacity of the deep features
extracted at various scales.

To address this problem, we propose the HPA module
to learn more representative multi-scale RGB and thermal
contextual information. The HPA module contains a series
of cascaded atrous convolutional layers for denser pixel sam-
pling, and a max-pooling layer is added before each atrous
convolutional layer, except the first one, to further gather local
information around pixels with non-zero weights. In this way,

the HPA module can enhance its representation capacity and
enlarge the local receptive fields without introducing extra
network parameters.

Specifically, the proposed HPA module consists of four
atrous convolutional layers and three max-pooling layers. The
kernel sizes of the three max-pooling layers are set as the same
as the dilation rates of their next adjacent atrous convolutional
layers. As a result, the next adjacent atrous convolutional
layers can just cover a full local region even if zero weights
are involved. For the high-level (i.e., the 5-th level) semantic
features, this module consists of four 3×3 atrous convolutional
layers with the dilation rates of 2, 5, 9, 15, respectively, to
capture global semantic features. When learning multi-scale
low-level (i.e, the 2-nd and 3-rd levels) features, the dilation
rates of the four atrous convolutional layers are set to 1,
3, 5, 7, respectively, since there is no need to seek global
semantic information anymore. By applying the proposed HPA
module on deep features at these levels, multi-scale RGB
features

{
FRGBi |i = 2, 3, 5

}
and multi-scale thermal features{

FTi |i = 2, 3, 5
}

are acquired.
The concrete architecture of the proposed HPA module used

for the high-level semantic features in the fifth convolutional
block is illustrated in Fig. 3. The four atrous convolutional
layers in HPA module produce various scales of feature maps.
These feature maps are further integrated by skip connec-
tion and 1 × 1 convolutional operation. To avoid large-scale
parameters, the size of output dimensionality in each atrous
convolutional layer is set to 128, and the channel number of
the final output feature maps of HPA module is also reduced
to 128 by a 1× 1 convolutional layer.

By cascading several atrous convolutional layers and max-
pooling layers, the proposed HPA module can capture rep-
resentative multi-scale contextual information with lager re-
ceptive fields and stronger local information. An example is
seen in Fig. 4. Let RK,d denotes the receptive field of a layer
with kernel size K and dilation rate d, and RK denotes the
receptive field of a max-pooling layer with kernel size K. R
denotes the total receptive filed. As shown in Fig. 4 (a), in
a two-dimension case, only 9 pixels are explored when using
a layer with a dilation rate of 5. The corresponding receptive
filed is:

R = R3,5. (1)
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(a) (b) (c)

Fig. 4. Pixels sampling results with different atrous convolutional layer settings. (a) Only an atrous convolutional layer with a dilation rate of 5 is used. (b)
Stacking an atrous convolutional layer with a dilation rate of 2 before the atrous layer with a dilation rate of 5. (c) Stacking an atrous convolutional layer
with a dilation rate of 2 and a 5× 5 max-pooling layer with a stride of 1 before the atrous convolutional layer with a dilation rate of 5. The blue and golden
grids denote the pixels that contribute to the final calculation of the center pixel (marked in red).

(a)      (b) (c)

Fig. 5. Feature maps obtained by different atrous convolutional layer settings.
(a) Only an atrous convolutional layer with a dilation rate of 5 is used. (b)
Stacking an atrous convolutional layer with a dilation rate of 2 before the
atrous layer with a dilation rate of 5. (c) Stacking an atrous convolutional
layer with a dilation rate of 2 and a 5× 5 max-pooling layer with a stride of
1 before the atrous convolutional layer with a dilation rate of 5.

However, when an atrous convolutional layer with a dilation
rate of 2 is employed before the layer with the dilation rate of
5, 81 pixels will contribute to the final calculation as shown
in Fig. 4 (b), and the corresponding receptive filed is [38]:

R = R3,5 + R3,2 − 1. (2)

As a result, these cascaded atrous convolutional layers can
sample pixels in a much denser way, thus increasing the
correlation of pixels with non-zero weight, and reducing the
loss of local information to some extent. If a max-pooling
layer with a stride of 1 is further added between the two
atrous convolutional layers, as illustrated in Fig. 4 (c), a larger
receptive field would be obtained:

R = R3,5 + R3,2 + R5 − 2. (3)

These sampled pixels (dark blue grids) are more representative
for they are selected from a full local area when a 5 × 5

max-pooling layer is added. With the dilation rate becoming
lager, the receptive field of atrous convolutional kernel can
still cover a full local region for each non-zero weights. Fig.
5 shows feature maps that are obtained by the HPA module
under different settings. It can be observed that both the
cascading operation for the atrous convolutional layers and the
introduction of max-pooling layers contribute to the alleviation
of the ‘gridding’ problem. Compared with the classic PPM
[49] and ASPP [50], the proposed HPA module can also
encode more representative multi-scale contextual information
with stronger local information and better spatial consistency,
which will be further verified in the experimental part.

C. Multi-Modality Feature Fusion with Complementary
Weighting Module

To fuse multi-modality features from the RGB and ther-
mal images, the most straightforward way is using element-
wise summation operation. However, element-wise summation
lacks cross-modal interactions and cannot leverage multi-
modality complementary information efficiently. In recently
published RGB-T and RGB-D salient detection methods [30],
[32], [36], the multi-modality features fusion can also be
implemented by the concatenation operation. However, this
strategy still fails to consider the reliability of the features from
different modalities. Furthermore, neither of the above two
fusion strategies takes the content dependency of the multi-
modality data into consideration. In this work, we propose a
novel CW module to effectively fuse multi-modality features
for integrating the RGB-T complementarities in a more effec-
tive manner.

For the i-th level, as shown in Fig. 6(c), the proposed CW
module concatenates the integrated multi-scale feature maps
from RGB branch

(
FRGBi

)
and thermal branch

(
FTi
)

as input
maps. It consists of two convolutional layers and a softmax
layer. The first convolutional layer has 128 filters with kernel
sizes 3 × 3 and the second convolutional layer has 2 filters
with the same kernel sizes to get two feature maps. The two
convolutional layers provide a chance for cross-modal feature
interaction, and then we obtain two-channel weight maps Zi:

Zi = Conv
(
Cat
(
FRGBi ,FTi

)
; θ
)
, (4)



JOURNAL OF IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 7

W
T

WRGB 

RGB features

Thermal features

Element-wise multiplication Element-wise summation

C  S  

S  Softmax3×3 convolution

Fused features

RGB features

Thermal features

RGB features

Thermal features

C  

Fused features
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C  Concatenation

Fig. 6. Existing multi-modality feature fusion methods and the proposed multi-modality feature fusion module. (a) Multi-modality feature fusion by element-
wise summation operation. (b) Multi-modality feature fusion by concatenation operation. (c) The proposed CW module. The CW module (blue dotted box)
takes the multi-scale feature maps from HPA module as input and produces a multi-modality image content-dependent weight map that has the same spatial
size as the input feature maps for each modality. The weight maps are able to weigh the importance of feature maps from RGB and thermal encoding branches
and then adaptively fuse them.

where Conv
(
∗; θ
)

denotes two convolutional layers, and θ
denotes the parameters of the two convolutional layers. Then,
a softmax layer is used to regularize the values of different
locations in the feature maps to [0, 1]. Finally, the two-channel
weight maps are split into two weight maps, i.e., one weight
map (denoted as WRGB

i ) from the first channel of Zi for
selecting the features extracted from RGB images and another
weight map (denoted as WT

i ) from the second channel of
Zi for selecting the features extracted from thermal images.
Finally, by virtue of the generated weight maps WRGB

i and
WT
i , the fused RGB-T feature maps (Fi) are calculated by:

Fi = Ŵ
RGB

i ⊗ FRGBi + Ŵ
T

i ⊗ FTi , (5)

where ⊗ is element-wise multiplication. The attention weight
for the RGB features at the location (x, y) is computed by:

Ŵ
RGB

i (x, y) =
eWRGB

i (x,y)

eWRGB
i (x,y) + eWT

i (x,y)
, (6)

where WRGB
i (x, y) and WT

i (x, y) are the corresponding
weights for RGB feature maps and thermal feature maps,
respectively. The attention weight for thermal feature at the
location (x, y) is then obtained by:

Ŵ
T

i (x, y) = 1−WRGB
i (x, y). (7)

By applying the proposed CW module on these integrated
multi-scale RGB and thermal feature maps at the 2-nd, 3-rd
and 5-th levels, respectively, multi-level fused RGB-T feature
maps {Fi|i = 2, 3, 5} are thus acquired.

We further visualize some weight maps produced by the
proposed CW module in Fig. 7, which clearly shows that our
proposed CW module is able to learn some reliable weight
maps for fusing the complementary information from different
modalities. In this way, the weight maps can decide how
much attention to pay to features from different modalities
and different locations in a global view. Thus, the CW module
can produce multi-modality image content-dependent weight
maps for adaptively fusing multi-modality features.

RGB

T

Input Input Weight maps Weight maps

Fig. 7. Weights maps produced by CW module for multi-modality feature
maps in the fifth level. The first image pairs show a situation of insufficient
illumination, and the weight map for the thermal image has stronger values
in the saliency region. For the second image pairs, when the thermal image
cannot provide discriminative visual information, the weight map for RGB
image shows higher reliability in the foreground location.

It should also be noted that the proposed CW module is a
weighted averaging based one. The traditional element-wise
summation and concatenation fusion strategies can be seen as
two special cases of our proposed CW module. Specifically,
element-wise summation can be seen as a weighted-averaging
fusion strategy with weights that are all 1s. Concatenation
followed by convolution operations can be seen as a weighted-
averaging fusion strategy with weights that have been pre-
trained and keep fixed during the subsequent fusion. While
the weights in our proposed fusion strategy are dependent on
the image contents.

D. Multi-Level Feature Fusion with Semantic Guidance Mod-
ule

In the DCNN based models, the features extracted from
deeper layers typically carry more global contextual infor-
mation and are more likely to locate the salient object ac-
curately, while the features extracted from shallower layers
contain more spatial details, but may be less discrimination. So
it’s necessary to achieve saliency detection with hierarchical
features. Some existing salient object detection methods [11],
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Fig. 8. The structure of the proposed SG module in the first stage of the
refinement network. The fused high-level RGB-T semantic feature maps F5

act as a guidance for the pass of the fused low-level RGB-T feature map
F3. After that, F5 is reused to filter out ambiguous information in F2.
{Fi|i = 2, 3, 5} are fused RGB-T feature maps acquired by fusing output
feature maps from the HPA module in RGB branch and thermal branch.

[12], [46] proposed to combine multi-level convolutional fea-
tures to obtain saliency maps with finer boundaries. However,
these methods directly fuse multi-level features by cross-
channel concatenation operation, which ignores the issue that
the shallower features may contain superfluous information.
This may lead to performance degradation or totally wrong
prediction.

To filter out the misleading information when integrating
multi-level features, we propose a progressive refinement
network with a SG module to recover boundary details, which
employs the final global semantic feature maps as a guidance
to the fusion of the high-level and low-level RGB-T features.
As we know, the global semantic feature maps obtained from
the last network layer are more discriminative. Thus, it could
be used to weigh the channels of shallower features and
select more useful spatial details or screen the interference
information. In this way, we acquire semantic-aware low-level
features.

To implement the aforementioned network module, we
progressively combine the fused low-level RGB-T feature
maps {Fi|i = 2, 3} with the fused high-level RGB-T feature
maps F5 to recover the spatial details. The refinement process
consists of two stages. In the first stage, the fused low-level
RGB-T feature maps F3 are selectively added to the high-
level semantic RGB-T features F5 with the guidance of F5.
A set of refined RGB-T feature maps F6 are obtained. In the
second stage, the fused low-level RGB-T feature maps F2 are
adaptively combined with the refined RGB-T feature maps F6

with the guidance of F5, and then another set of refined RGB-
T feature maps F7 are obtained. This module is inspired by the
“Squeeze-and-Excitation” network (SENet) [59], which adap-
tively recalibrates channel-wise feature responses by explicitly
modeling interdependencies between channels. Different from
the SENet, our module employs global semantic feature maps
to recalibrate the local information passed on.

Fig. 8 illustrates the detailed structure of the SG module in
the first stage. Specifically, F5 is first passed through a squeeze
operation, which produces a channel descriptor by aggregating

feature maps across their spatial dimensions. This is achieved
by using global average pooling. Then a 1 × 1 convolutional
layer with C = 128 filters is employed to learn a nonlinear
interaction among channels. The output vector h is formulated
as

h = W ∗ GAP
(
F5

)
+ b, (8)

where ∗ denotes convolutional operation. GAP (·) denotes the
global average pooling function. W ∈ RC×1×1×C represents C
convolutional filters, where each of the filters with dimension
of 1 × 1 × C, and b ∈ RC is the bias parameter. Finally, a
sigmoid layer is used to regularize the corresponding channel
weights to the range of [0, 1]. The corresponding weight wk

for the k-th channel is defined as

wk =
1

1 + e−hk
, (9)

where hk is the k-th element of h and w ∈ R1×1×C is the
final guidance weight vector for the channels in low-level
feature maps. In summary, the whole process in Fig. 8 can
be formulated as:

Fk
6 = Fk

3 × wk + UP
(
Fk
5

)
2
, (10)

where k denotes the k-th feature channel, and UP (·)2 denotes
upsampling feature maps by a factor of 2. × denotes the
channel-wise production.

The weights in w are reused to combine F6, F2 and F5

in the second stage. The high-level semantic feature maps F5

are employed again through a shortcut connection to mitigate
the potential interference brought by low-level feature maps
in this stage. After all, the semantic features dominate the
refinement network. Accordingly, the refined feature maps F7

are obtained:

Fk
7 = Fk

2 × wk + UP
(
Fk
6

)
2
+ UP

(
Fk
5

)
4
. (11)

With the semantic guidance, the superfluous information in
low-level layers will be filtered out and the refinement network
can produce more accurate saliency prediction with semantic-
aware spatial details. It should also be noted that the three
feature maps {Fi|i = 5, 6, 7} have the same channel dimen-
sionality of 128.

E. Stage-wise Intermediate Supervision

To promote the training of the proposed network, deep
supervisions [60] are adopted in multiple refinement stages
{Fi|i = 5, 6, 7}. Specifically, a two-channel 3×3 convolutional
layer is applied upon the feature maps {Fi|i = 5, 6, 7} at each
refinement stage to obtain the corresponding prediction map.
As a result, three saliency maps (denoted as {Sj |j = 1, 2, 3},
respectively) are obtained, where S3 is seen as the final
prediction. Here, all of the prediction maps have been resized
to the same spatial resolutions as the input images by using
the bilinear interpolation.

Let Y(x, y) ∈ [0, 1] denote the ground-truth mask,
where (x, y) is the pixels location. The cross-entropy loss
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{lj |j = 1, 2, 3} between the prediction map Sj and the ground-
truth Y is defined as:

lj =−
∑
(x,y)

Y(x, y) logSj(x, y)

+ (1−Y(x, y)) log (1− Sj(x, y)).
(12)

Thus, the final loss function of the whole RGB-T salient object
detection network is:

Lfinal = γ1l1 + γ2l2 + γ3l3, (13)

where γ1, γ2 and γ3 denote the hyper-parameters for the three
stage-wise losses, which are all set to 1 as used in [12]
for simplicity and fair comparisons. With the SG module
and stage-wise intermediate supervisions, the low-level details
and high-level semantic information can be effectively fused,
and the boundary details of the salient object may also be
recovered accurately. As a result, we can produce a refined
prediction map with precise object boundaries and fine spatial
consistency.

IV. EXPERIMENTS

A. Datasets

We conduct our experiments on a RGB-T saliency detection
benchmark dataset [56], which contains 821 aligned RGB-
T image pairs. To enlarge the size of the labeled RGB-T
dataset, we follow [55] to select 539 aligned image pairs
with ground truth annotations from a grayscale-thermal dataset
that includes 25 small sets for moving foreground detection.
The images in both of the two datasets are with complex
backgrounds or lack of illumination. Similar to that in [55], the
whole RGB-T dataset is divided into two parts by randomly
sampling 621 and 385 RGB-T image pairs from the RGB-
T benchmark and grayscale-thermal datasets as the training
set and the remaining image pairs are for testing. We also
employed 2000 images from MSRA-B [63] when pre-training
the RGB feature encoding branch. To make the model robust,
we augment the training set by horizontal flipping, rotating,
random brightness and contrast changing.

B. Evaluation Metrics

We adopt the standard metrics (Precision-Recall (PR) curve,
F-measure score (Fβ) and Mean Absolute Error (MAE)) to
evaluate the proposed method. The Precision value is the ratio
of ground truth salient pixels in the predicted salient region.
And the Recall value is defined as the percentage of the
detected salient pixels and all ground truth area. The PR curve
is computed by binarizing the saliency maps under different
probability thresholds ranging from 0 to 1 and comparing to
the ground truth. The formulation of F-measure is

Fβ =

(
1 + β2

)
× precision× recall

β2 × precision + recall
, (14)

where β2 = 0.3 to emphasize precision more than recall as
suggested in [43]. We report the mean F-measure computed
from the PR curve. MAE [64] is computed as the average
pixel-wise absolute difference between the estimated saliency

map S and its corresponding ground truth Y. It can be defined
as:

MAE =
1

W× H

W∑
x=1

H∑
y=1

|S(x,y)−Y(x,y)|, (15)

where W and H are the width and height of a given image.

C. Implementation Details

We utilize the popular TensorFlow framework [65] to im-
plement the proposed network. An NVIDIA GTX 1080 Ti
GPU is used for training and testing. During training, the
weights of the first 13 convolutional layers are initialized by
the VGG-16 net [58]. For other convolutional layers, including
HPA module, CW module and SG module, we initialize the
weights randomly with a truncated normal, and the biases are
initialized to 0. The up-sampling operation is conducted by
the bilinear interpolation in the proposed model. Our training
process can be divided into two stages. In the first stage,
we train two independent feature encoding branches for RGB
and thermal images, respectively, each of which contains 13
convolutional layers and four atrous convolutional layers. The
training process of each branch takes about 3 hours for 20
epochs with the batch size of 1. In the second stage, we fine-
tune the whole encoder-decoder network on the aligned RGB-
T image pairs, which takes about 6 hours to converge after 10
epochs. The Adam optimizer [66] is used in both stages with
an initial learning rate of 10−5. The test time for each RGB-T
image pair is merely 0.056s.

D. Comparison with State-of-the-art methods

We compare the proposed multi-modality saliency detection
model with 11 state-of-the-art methods on two datasets, includ-
ing 5 deep learning based RGB saliency detection methods
(BMPM [10], DSS [11], Amulet [12], UCF [61], and CPD
[62]), 4 RGB-T saliency detection approaches (MRCMC [56],
MFSR [35], CGL [57], and FMCF 1 [36] ) and 2 latest RGB-D
salient object detection models (PDNet [31] and TSAA [32]).
To better verify the superiority of the proposed model, as
shown in Table I, these state-of-the-art methods are compared
under different settings of the input modality, i.e., only taking
RGB images, only taking thermal images and taking RGB-
T images as inputs, respectively. Specifically, those RGB
saliency detection models are modified into thermal saliency
detection models by replacing the RGB images with thermal
images as inputs. The procedure of converting the RGB
saliency detection model into an extended RGB-T model is
described as follows. First, their proposed networks are taken
as the backbones of the RGB and thermal branches, respec-
tively. Then, the output features from the last convolutional
layers of the RGB and thermal branches are concatenated.
Finally, the concatenated features are fed into the saliency
prediction layer to obtain the saliency map. Here, the saliency
prediction layer contains standard convolutional layers and
a Sigmoid activation layer. Those RGB-T saliency detection
models are modified into RGB (thermal) saliency detection

1FMCF has been re-trained in our training sets for fair comparisons.
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(a) RGB-T benchmark (b) Grayscale-thermal

Fig. 9. The quantitative comparison of the proposed method and other state-of-the-art methods on the RGB-T benchmark dataset and the Grayscale-thermal
dataset. The first row shows the PR curves. The second row shows the average precision, recall, and F-measure scores of different methods, respectively.

RGB      T MRCMCAmulet DSS BMPM     Ours GTUCF CPD CGL MFSRTSAAPDNet FMCF

Fig. 10. Visual comparisons among the saliency detection results of the state-of-the-art methods in general scenarios.

RGB T MRCMCAmulet DSS BMPMUCF CPD CGL MFSRPDNet TSAA FMCF

Fig. 11. Visual comparisons among the saliency detection results of the state-of-the-art methods in scenarios with insufficient illumination.

models by replacing the thermal (RGB) images with the RGB
(thermal) images as inputs. Similarly, those RGB-D saliency
detection models are modified into RGB (RGB-T) saliency
detection models by replacing the depth images with RGB

(thermal) images as inputs. Those RGB-D models are modified
into thermal saliency detection models by replacing both the
RGB images and depth images with thermal images. For fair
comparisons, we train these state-of-the-art methods with the
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TABLE I
QUANTITATIVE EVALUATION ON DIFFERENT SALIENCY DETECTION METHODS IN TERMS OF MEAN F-MEASURE (LARGER IS BETTER), MAE (SMALLER IS

BETTER) AND RUNTIME (IN SECONDS). THE BEST THREE RESULTS ARE SHOWN IN RED, BLUE AND GREEN.

Methods
RGB-T benchmark Grayscale-thermal

Runtime(s)
RGB T RGB-T RGB T RGB-T

Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

Amulet [12] 0.738 0.068 0.797 0.049 0.870 0.033 0.467 0.066 0.635 0.040 0.769 0.015 0.161
UCF [61] 0.741 0.059 0.700 0.066 0.794 0.047 0.465 0.056 0.514 0.046 0.626 0.031 0.334
DSS [11] 0.785 0.043 0.833 0.042 0.896 0.026 0.603 0.026 0.581 0.070 0.737 0.023 0.051

BMPM [10] 0.858 0.036 0.819 0.043 0.905 0.028 0.699 0.029 0.576 0.045 0.759 0.023 0.581
CPD [62] 0.793 0.034 0.840 0.033 0.881 0.028 0.199 0.114 0.451 0.112 0.500 0.103 0.166

PDNet [31] 0.833 0.043 0.796 0.051 0.870 0.032 0.489 0.035 0.488 0.036 0.550 0.034 0.113
TSAA [32] 0.803 0.048 0.680 0.076 0.867 0.029 0.461 0.034 0.491 0.043 0.579 0.028 0.135

MRCMC [56] 0.537 0.109 0.554 0.124 0.574 0.115 0.132 0.095 0.221 0.105 0.263 0.096 1.891
CGL [57] 0.706 0.084 0.668 0.098 0.726 0.088 0.112 0.132 0.123 0.143 0.138 0.136 2.332

MFSR [35] 0.416 0.161 0.554 0.124 0.791 0.062 0.180 0.164 0.175 0.135 0.196 0.125 0.183
FMCF [36] 0.759 0.068 0.778 0.048 0.880 0.025 0.573 0.032 0.436 0.052 0.811 0.016 0.110

Ours 0.875 0.035 0.820 0.045 0.915 0.021 0.665 0.027 0.574 0.069 0.833 0.011 0.056

RGB T MRCMCAmulet DSS BMPM     Ours GTUCF CPD CGL MFSRPDNet TSAA FMCF

Fig. 12. Visual comparisons among the saliency detection results of the state-of-the-art methods in scenarios with occluded appearances.

same two-stage strategy as that in our approach.

The quantitative comparison results are shown in Table I and
Fig. 9. From the results reported in Table I, we can observe
that all the RGB-T and extended RGB-T methods outperform
the corresponding RGB or thermal saliency detection methods.
This demonstrates the effectiveness of incorporating RGB and
thermal information. For those RGB-T saliency detection mod-
els, our method consistently outperforms other approaches on
both datasets in terms of all the metrics, which demonstrates
the effectiveness of the proposed model. From the PR curves
and F-measure scores shown in Fig. 9, we can observe that
our approach achieves better results than other state-of-the-
art RGB-T, extended RGB-T and RGB-D saliency detection
methods with a large margin on the two RGB-T datasets. This
indicates that our method can more effectively make use of
the complementary information within RGB-T images than
other models. This also indicates that directly employing RGB-
D salient object detection models for RGB-T salient object
detection is not suitable due to the differences between depth
images and thermal images. Furthermore, as indicated in Table
I, our method has the second highest computation efficiency
among these models mentioned here.

Fig. 10 provides the visual comparisons of our method
with the above-mentioned models. These images are selected
from the two testing datasets. It can be observed that our
methods can accurately detect multi-scale salient objects with

TABLE II
QUANTITATIVE COMPARISONS OF THE PROPOSED MODEL WITH AND

WITHOUT AN HPA, HA OR SOME OTHER MULTI-SCALE CONTEXTUAL
FEATURE EXTRACTION MODULES (PPM AND PAM).

Metrics baseline w/ PPM w/ PAM w/ HA w/ HPA

Fβ 0.880 0.885 0.889 0.902 0.904
MAE 0.036 0.033 0.032 0.028 0.027

Runtime(s) 0.036 0.051 0.053 0.053 0.053

stronger spatial consistency. Furthermore, many interference
information belonging to the non-salient regions could be
filtered out. Fig. 11 and Fig. 12 show the visual compar-
isons to the state-of-the-art methods in scenarios with some
insufficient illumination and occluded appearances. As can be
seen from these visual comparison results, the proposed model
can achieve superior performance in these complex scenarios
due to the fact that the multi-modality information can be
effectively fused with the help of CW module, and the detected
salient objects present clear boundaries through our refinement
network.

E. Analysis of the Proposed Method

The proposed method mainly consists of three modules,
including HPA module for multi-scale contextual features
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RGB Thermal baseline w/ HPAw/ HA GTw/ PAMw/ PPM

Fig. 13. Visual comparisons of the proposed model with and without an HPA, HA or some other multi-scale contextual feature extraction modules (PPM
and PAM).

RGB branch Thermal branch summation concatenation CW GTRGB Thermal

Fig. 14. Visual comparisons of the proposed model with different fusion approaches (CW, summation and concatenation).

TABLE III
QUANTITATIVE COMPARISONS OF DIFFERENT FUSION METHOD SETTINGS

IN OUR MODEL.

Metrics Summation Concatenation CW

Fβ 0.902 0.904 0.908
MAE 0.030 0.027 0.023

Runtime(s) 0.052 0.053 0.055

extraction, CW module for multi-modality feature fusion and
SG module for semantic-aware features. To explore the effec-
tiveness of each module, we conduct a series of experiments on
the RGB-T benchmark dataset [56]. First, to verify the validity
of the HPA module, we built a baseline model by removing
the HPA module and SG module from the proposed model
and replacing CW module with concatenation operation. Then,
we compare the proposed HPA module with some other most
commonly used multi-scale contextual feature extraction mod-
ules (i.e., Pyramid Atrous Module (PAM) [10] and Pyramid
Pooling Module (PPM) [37]) by incorporating those modules
into the baseline model. In addition, we conduct a comparison
between the HPA module and the HA module (i.e., removing
the max-pooling layers from the HPA module). From Table
II, we can observe that the proposed HPA module achieves
significant improvements over PAM and PPM. In addition,
the three modules, i.e., HPA, PAM and PPM, have almost the
same computational complexity. This may owe to the fact that
the pooling layer introduced in HPA module can strengthen
the local information without involving additional parameters.

Fig. 13 further illustrates that the proposed HPA module can
enforce the spatial consistency within the salient objects and
suppress the noise within the backgrounds, through capturing
multi-scale contextual information with stronger local infor-
mation. It also indicates that, compared with other multi-scale
feature extraction modules, the proposed HPA module shows
better robustness when the sizes of salient objects are various.
This again demonstrates that introducing max-pooling layers
between a series of cascaded atrous convolutional layers is
effective to capture the multi-scale contextual information for
salient object detections.

To highlight the CW module, we conduct comparisons with
another two multi-modality feature fusion approaches: summa-
tion and concatenation. The visualization results are shown in
Fig. 14 and the quantitative results, including mean F-measure,
MAE and average computation time for each RGB-T image
pair (runtime), are shown in Table III. From Table III and
Fig. 14, we can observe that all of the three fusion methods
can achieve good fusion results when both the input RGB and
thermal images have good visual qualities. However, when
one of the input images has poor visual quality,the summation
fusion strategy would result in incomplete segmentation of the
salient objects (e.g., the fifth column of Fig. 14). Under this
situation, the concatenation fusion strategy may also introduce
the non-salient information into the generated saliency maps
(e.g., the sixth column of Fig. 14). In contrast, the proposed
CW module can obtain better saliency detection results and
outperform these two fusion strategies to obtain high quality
saliency prediction. In addition, our fusion strategy introduces
fewer extra computational costs compared with existing fusion
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Fig. 15. Visual comparisons of the proposed model with and without SG module.

TABLE IV
QUANTITATIVE COMPARISONS OF THE PROPOSED MODEL WITH AND

WITHOUT SG MODULE.

Metrics w/o SG SG(1,2,3) SG(2,3,4) SG(2,3)

Fβ 0.908 0.909 0.914 0.915
MAE 0.023 0.023 0.021 0.021

Runtime(s) 0.055 0.063 0.061 0.056

TABLE V
SALIENCY DETECTION RESULTS OF THE PROPOSED MODEL UNDER

DIFFERENT LOSS SETTINGS.

hyper-parameters
(γ1, γ2, γ3) Fβ MAE Training epoch of convergence

(1,1,1) 0.915 0.021 10
(1,0,0) 0.915 0.022 21
(1,0,1) 0.914 0.021 16

(1,0.5,0.5) 0.915 0.021 12

methods.
We embed SG module into the learning framework, and the

comparison results are shown in Table IV and Fig. 15. The
quantitative results verify the effectiveness of the proposed
SG module. Meanwhile, it also indicates that, compared with
w/o SG module, the proposed SG module only introduces a
few more computational costs. Fig. 15 further illustrates the
proposed SG module can effectively suppress noise introduced
by features from the shallower levels.

As shown in Table IV, we further exploit which levels of
the features should be employed in the proposed SG module
for proper refinement setting. Here, SG(1,2,3) employs the
feature maps in the first three convolutional blocks to refine the
prediction maps and SG(2,3,4) employs feature maps in the 2-
nd, 3-rd and 4-th convolutional blocks. Compared to SG(2,3),
the introduction of the feature maps in the first block leads to
performance degradation. This be due to that the feature maps
in the first convolutional blocks carry too many spatial details.
We can also see that using the feature maps in the 4-th convo-
lutional block can not further improve the saliency detection
performance. Therefore, we build the proposed module with
HPA module, CW module and SG(2,3) module to achieve the
new state-of-the-art results. Furthermore, replacing the VGG-
16 net [58] with more recent CNN models as the backbone
network may further boost the performance of the proposed

model for RGB-T saliency detection. More specifically, the
mean F-measure and MAE values are improved to (0.917,
0.021) by replacing the VGG-16 net with the VGG-19 [58] and
it can be further improved to (0.918, 0.019) when replacing
the VGG-16 net with the ResNet-50 [67].

Beside, we also perform some ablation analyses on the
final loss by setting the three hyper-parameters (γ1, γ2, γ3)
in Eq. 13 to different values. The experimental results in
Table V demonstrate that the performance of the proposed
model is insensitive to the settings of these hyper-parameters.
However, the settings of these hyper-parameters may affect
the convergence speed of the proposed model. For example,
when (γ1, γ2, γ3) are set to (1,0,0), our network needs 21
epochs to converge. Whereas when (γ1, γ2, γ3) are set to
(1,1,1), our network only needs 10 epochs to converge. This
can significantly reduce the total training time. Therefore, we
set the three hyper-parameters (γ1, γ2, γ3) to the same value
1 since the setting achieves the fastest convergence speed.

V. CONCLUSION

In this paper, we propose a novel end-to-end salient object
detection method on RGB-T image pairs by revisiting feature
fusion in the DCNN model. We first design an HPA module,
which is composed of a cascade of atrous convolutional
and max-pooling layers, to fuse more representative multi-
scale contextual features with various receptive fields and
stronger local information. Then, we propose a CW module
to effectively fuse multi-modality complementary features at
different levels, which allows us to diagnostically visualize
the importance of features from different modalities. Finally,
a multi-level feature fusion network branch is designed with
SG module to produce saliency maps with fine boundaries.
Comprehensive experiments on different datasets demonstrate
the effectiveness of the proposed RGB-T salient object detec-
tion model.
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[64] F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung, “Saliency filters:
Contrast based filtering for salient region detection,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2012, pp. 733–740.

[65] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[66] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 770–778.

Qiang Zhang received the B.S. degree in automatic
control, the M.S. degree in pattern recognition and
intelligent systems, and the Ph.D. degree in cir-
cuit and system from Xidian University, China, in
2001,2004, and 2008, respectively. He was a Visiting
Scholar with the Center for Intelligent Machines,
McGill University, Canada. He is currently a pro-
fessor with the Automatic Control Department, Xi-
dian University, China. His current research interests
include image processing, pattern recognition.

Tonglin Xiao received the B. E. degree from Xidian
University, Xi’an, China, in 2017, and the M. S. de-
gree from Xidian University, Xi’an, China, in 2020.
He is currently studying at Xidian University. His
current research interests include computer vision
and machine learning.

Nianchang Huang received the B. S. degree and
the M. S. degree from Qingdao University of Sci-
ence and Technology, Qingdao, China, in 2015 and
2018. He is currently pursuing the Ph.D. degree in
School of Mechano-Electronic Engineering, Xidian
University, China. His research interests include
deep learning and multimodal image processing in
computer vision.

Dingwen Zhang received his Ph.D. degree from
the Northwestern Polytechnical University, Xi’an,
China, in 2018. He is currently an associate profes-
sor in School of Machine-Electronical Engineering,
Xidian University. From 2015 to 2017, he was a
visiting scholar at the Robotic Institute, Carnegie
Mellon University. His research interests include
computer vision and multimedia processing, espe-
cially on saliency detection, video object segmenta-
tion, and weakly supervised learning.

Jungong Han is currently a Full Professor and Chair
in Computer Science at Aberystwyth University,
UK. His research interests span the fields of video
analysis, computer vision and applied machine learn-
ing. He has published over 180 papers, including
40+ IEEE Trans and 40+ A* conference papers.




