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Abstract. The identification of biomarkers or predictive features

that are indicative of a specific biological or disease state is a ma-

jor research topic in biomedical applications. Several feature selec-

tion(FS) methods ranging from simple univariate methods to recent

deep-learning methods have been proposed to select a minimal set of

the most predictive features. However, there still lacks the answer to

the question of “which method to use when”. In this paper, we study

the performance of feature selection methods with respect to the un-

derlying datasets’ statistics and their data complexity measures. We

perform a comparative study of 11 feature selection methods over 27

publicly available datasets evaluated over a range of number of se-

lected features using classification as the downstream task. We take

the first step towards understanding the FS method’s performance

from the viewpoint of data complexity. Specifically, we (empirically)

show that as regard to classification, the performance of all stud-

ied feature selection methods is highly correlated with the error rate

of a nearest neighbor based classifier. We also argue about the non-

suitability of studied complexity measures to determine the optimal

number of relevant features. While looking closely at several other

aspects, we also provide recommendations for choosing a particular

FS method for a given dataset.

1 Introduction

One of the core issues in applying machine learning and data mining

techniques to biomedical domain is the so called curse of dimension-

ality. This refers to the phenomena largely observed in biomedical

data: small number of instances with high dimensionality (features),

leading to high sparsity in data, which adversely affects algorithms

designed for low-dimensional space. In addition, with a large number

of features, learning models tend to overfit hence leading to a drop in

performance on unseen data. Consider for example, gene micro-array

analysis, where data might contain thousands of variables in which

many of them could be exceedingly correlated. Generally, for a pair

of perfectly correlated features, keeping one is sufficient to retain the

descriptive power of the pair. These redundant but relevant features

can contribute significantly to the over-fitting of a model. In addi-

tion, there could exist some noisy features (e.g, the ones having no

correlation to the class) leading to erroneous class separation. In such

cases, feature selection, as a dimensionality reduction technique, has

proven to be effective in preparing the data or selecting the most

relevant features for performing downstream machine learning tasks

such as classification. In addition, it plays a critical role in biomarker

discovery for diagnosis and treatment of complex diseases.

Feature selection (FS) has been widely applied in bioinformat-

ics [11, 38, 39, 22] and can be broadly classified into filter, wrap-

per and embedded methods. While filter methods evaluate the rele-
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vance of features by considering only the intrinsic properties of the

data, the wrapper method selects a feature subset by iteratively se-

lecting features based on the classifier performance. The embedded

methods combines feature selection and classifier construction using

an integrated model building process. Feature selection has attracted

strong research interest in the past several decades and a huge num-

ber of methods have been proposed. Nevertheless, the main question

of which FS method to use when remains unanswered. In this work

we study the above problem from the perspective of data complexity

and instead ask if data complexity measures[4] can be leveraged to

prefer a particular method.

We conduct a comprehensive empirical comparative study using

11 FS methods, including representatives of (i) filter, (ii) wrapper,

(iii) embedded (iv) and recently proposed deep learning approaches

on 27 biological datasets with varying properties. Table 1 presents

a summary of those 11 selected techniques. In particular we relate

the performance difference of various methods to the dataset prop-

erties determined by several data complexity [39, 4, 25] measures as

explained in Section 2. To the best of our knowledge, this is the first

work which applies data complexity measures to understand the suit-

ability of FS methods. Our results show that the difficulty of finding

the most relevant features for all methods is correlated with a very

easy to compute data complexity measure which corresponds to the

estimated error rate of a nearest neighbor based classifier. While this

might seem very unsurprising, we also find methods which are more

affected by it than others. Intuitively, the high correlation with such

an error rate also implies that the FS method was not able to extract

relevant features using which samples sharing the same class could

be put closer.

One of the issues in evaluating FS methods is that, in most of the

cases, the optimal size of important or non-redundant features is not

known. In particular, an FS method returns either a subset of fea-

tures or a list of ranked/weighted features. For ranking methods, the

higher the weight/rank, the more important the feature is. For meth-

ods which return a subset of features, all features in the returned list

are considered important. Most of the previous works merely cover

a small range of pre-specified selected features when evaluating the

suitability of a method. Yet it could also happen that a given method

reaches its peak performance with a significantly smaller number

of features. For example, peak performance might be reached with

1% of the top ranked/weighted features. Adding additional features

could degrade its performance considerably. This reveals an issue

in ranking, where noisy features are erroneously ranked higher. In

this work, we experimented using a wider range of selected features.

We found out that the optimal number of features vary for differ-

ent methods and cannot be predicted by using any of the presented

data complexity measures. Moreover there is no monotonic trend ob-

served with increasing number of selected features and performance

which calls into question the goodness of an FS method whose per-
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formance might have only be evaluated using only a specific number

of features. In particular, we also did not find a correlation between

the optimal number of features predicted by performing PCA (while

preserving a high percentage of data variability) and the actual num-

ber of features for which a particular method obtains its maximum

performance (on classification task).

Summarizing our findings, we provide a priority list to choose one

method over the other based on the dataset characteristics and prop-

erties of the method.

1.1 Related Work

In this section we provide a brief overview of related reviews and

comparative studies and their differences to the present work. We

also point to various works which have studied data complexity mea-

sures either to quantify difficulty in classification or deciding cut-off

thresholds for feature selection methods.

Degenhardt et al. [11] studied and compared various Random For-

est based methods on two high dimensional real word biological

datasets with respect to classification performance, stability and run

time. But their focus is limited to a particular type of methods. More-

over, the number of datasets considered is also quite small to be able

to generalize the results.

Taking a broader perspective, Neto et al. [26] construct a large

scale study on simulated data to investigate the effects of sample

size, number of features, true model sparsity, signal-to-noise ratio,

and feature correlation on predictive performance of ridge regres-

sion, ELASTIC NET and LASSO methods. Through diverse, carefully

designed experiments, they focus on the strengths and weaknesses of

only those three methods under very particular conditions.

Urbanowicz et al. [38] evaluated 13 existing and their proposed

3 Relief-Based algorithms for a genetic simulation study. They run

experiments on 2280 simulated datasets cover a wide range of prob-

lems and types. Nevertheless, the question of whether the findings

can be applied to the real-world datasets is still left open.

Wang and Barbu [39] try to answer the questions of (i) whether

filter methods help improve classification model and (ii) how existing

filter methods are different from each other in terms of predictive

capabilities. They construct experiments on five regression and five

classification datasets. They measure the classification performance

of FS methods on 40 different runs with 30 different numbers of

selected features. In addition to limitation to filter methods, the focus

is also not primarily on biological datasets. The survey conducted

by Li et al. [22] seems to be the most comprehensive one, which

presented a general summary of existing works on FS methods from

different data type perspectives. Nevertheless, deep learning methods

are not included in their study.

Data complexity measures for feature overlap are used in [30] to

choose the feature cut-off threshold for ensemble FS methods. We

argue that their problem statement is different from ours as (1) their

work is focus solely on ensemble FS methods, (2) the complexity

measures were used to guide the aggregation of multiple feature sub-

sets returned by multiple FS methods, not the number of selected

features for individual method and (3) they only experimented with

6 DNA binary microarray datasets which is too small to derive any

conclusion. In [18], complexity measures were used to quantify the

difficulty of classification on two different gene expression datasets.

Another work [10] relates complexity measurements to the classifi-

cation performance of Support Vector Machines on cancer gene ex-

pression data.

We conclude that previous works are either (i) too narrow, focus-

ing on a particular class of FS methods or/and using only simulated

datasets, or are (ii) too broad, meaning that their comparisons are not

focused solely on biological data. In addition, none of these works

compare deep learning methods. From the data complexity perspec-

tive, none of the works study our proposed problem, i.e., whether

one can use a set of complexity measures to guide the choice of a

particular feature selection method.

In the next sections, we present details about the complexity mea-

sures used and FS methods respectively in sections 2 and 3. Finally,

we present our experimental set-up and results followed by conclu-

sion and a priority list on the choice of feature selection methods.

2 Data Complexity Measures

In this section, we briefly describe the data complexity measures that

we use in our analysis. Data complexity measures [4] have been tra-

ditionally used to study the intrinsic difficulty of a classification task

on a given dataset. In this work, we relate the data complexity char-

acterized by 4 such measures to the suitability of a particular FS

method. From now on, we use m to denote the number of features,

n to denote the number of samples and nc to denotes the number of

classes. The definitions of these measures have been adapted from

[25]. We use the ECoL package2 to calculate the data complexity

measures for the listed datasets.

1. Error Rate of Nearest Neighbor (NN) classifier (N3): N3 is

measured by the error rate of the 1-NN classifier using leave-one-

out cross validation. Formally, N3 =
∑

n

i=1
I(NN(xi) 6=yi)

n
, where

NN(xi) is the predicted target value for sample xi using all other

samples as the training set. High N3 scores indicate that instances

of different classes are close together.

2. Ratio of the PCA dimension to the original dimension (T4)

[24]: T4 is the ratio of the number of PCA (Principal Component

Analysis) components needed to represent 95% of data variability

on the total number of features. Higher T4 scores indicate a larger

portion of the original features set is necessary to preserve the

information of the dataset, thus, implying the need to use a larger

number of features for a given task.

3. Sparsity (T2): Sparsity is defined as T2 = m
n

. Highly sparse

datasets can be difficult for classification since learning process

can be hindered in the low density regions.

4. Class Imbalance(C2): The imbalance ratio measures the differ-

ences in the number of instances per class in the dataset and is

computed as:

C2 = 1−
1

ci
, where ci =

nc − 1

nc

nc∑

i=1

ni

n− ni

,

where ni is the number of samples in class i and nc is the number

of classes. Higher values of C2 indicate higher class imbalance.

3 Compared Feature Selection Methods

In this work, we compare representatives of a wide range of unsuper-

vised and supervised FS methods, including filter, embedded, wrap-

per and deep learning (DL) based methods. The choice of our mod-

els is based on recommendations from previous works, as well as

our own initial set of experiments that we conducted. We included a

larger number of methods from each category, from which we choose

2 https://CRAN.R-project.org/package=ECoL
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Table 1: List of evaluated FS methods with link to used implementation.

Method Name Type Link

INFO GAIN filter, supervised link

CHI-SQUARE filter, supervised link

RELIEFF filter, supervised link

MULTI-CLUSTER FEATURE SELECTION (MCFS) filter, unsupervised link

LASSO embedded, supervised link

ELASTIC NET embedded, supervised link

HSIC-LASSO embedded, supervised link

BORUTA wrapper, supervised link

MULTILAYER PERCEPTRONS (MLP) deep learning, supervised link

STACKED CONTRACTIVE AUTOENCODER (SCA) deep learning, supervised link

DEEP BELIEF NETWORK (DBN) deep learning, supervised link

Table 2: Dataset source, statistics and complexity measures with n: number of samples, nc: number of classes, m: number of features.

dataset src Type n nc m n/nc N3 T4 C2 T2

Colon Prostate [34] Microarray 355 2 10936 177.5 0.023 0.021 0.544 30.806

End Lung [34] Microarray 187 2 10936 93.5 0.043 0.013 0.216 58.481

Lung Kidney [34] Microarray 386 2 10936 193 0.039 0.022 0.215 28.332

Lung Uterus [34] Microarray 250 2 10936 125 0.096 0.016 - 43.744

Omen Ovary [34] Microarray 275 2 10936 137.5 0.291 0.018 0.324 39.767

Ovary Uterus [34] Microarray 322 2 10936 161 0.202 0.021 0.1 33.963

Carcinom [35] Continuous data w.r.t. RNA profiling 174 11 9182 15.8 0.138 0.015 0.026 52.77

chin [7] Microarray 118 2 22215 59 0.229 0.004 0.137 188.263

chowdary [8] Microarray 104 2 22283 52 0.048 0.002 0.071 214.26

christensen [9] Microarray 217 3 1413 72.3 0.005 0.075 0.179 6.512

CLL111 [16] Microarray 111 3 11340 37 0.387 0.008 0.143 102.162

colon [2] Microarray 62 2 2000 31 0.29 0.016 0.156 32.258

GLI 85 [13] Microarray 85 2 22283 42.5 0.118 0.003 0.262 262.153

gordon [14] Microarray 181 2 12533 90.5 0.022 0.011 0.604 69.243

gravier [15] Microarray 168 2 2905 84 0.28 0.035 0.187 17.292

LSVT [37] Dysphonia Measuremements 126 2 310 63 0.27 0.116 0.2 2.46

lung [5] Microarray 203 5 12600 40.6 0.133 0.012 0.504 62.069

Endometrium [34] Microarray 1545 2 10936 772.5 0.056 0.077 0.918 7.078

Ovary [34] Microarray 1545 2 10936 772.5 0.096 0.077 0.712 7.078

ovarian [12] real-valued Treatment, test scores 253 2 15154 126.5 0.067 0.002 0.146 59.897

pomeroy [27] Microarray 60 2 7128 30 0.417 0.007 0.165 118.8

prostate cancer [31] Microarray 102 2 12600 51 0.186 0.004 0.001 123.529

SMK187 [33] Microarray 187 2 19993 93.5 0.358 0.006 0.003 106.914

sorlie [32] Microarray 85 5 456 17 0.271 0.136 0.07 5.365

SRBCT [19] Microarray 83 4 2308 20.8 0.193 0.026 0.046 27.807

TOX 171 [3] Microarray 171 4 5748 42.8 0.123 0.022 0.002 33.614

yeoh [42] Microarray 248 6 12625 41.3 0.153 0.016 0.076 50.907

a subset of the best-performing approaches. Unlike previous evalu-

ation works, we have included recent deep learning methods in our

study. A summary of the compared methods is provided in Table 1.

INFO GAIN Information gain (INFO GAIN )[29] measures the

amount of information in bits about the class prediction, assuming

that the only information available is the presence of a feature and the

corresponding class distribution. The information gain from splitting

the data set(S) using the values of the feature fi is given by

IG(S, fi) = H(S)−
∑

v

H(Sfi=v),

where the entropy H(S) = −
∑

C
p(S,C) log p(S,C). p(S,C) de-

notes the probability that a training example in S belongs to class

C. The notation H(Sfi=v) corresponds to the entropy of the dataset

after fixing the value of feature fi to v. The features can be ranked

based on the information gain scores, higher the information gain,

the more important a feature is.

CHI-SQUARE [41] CHI-SQUARE feature selection method utilizes

the test of independence to assess whether the feature is independent

of the class label. It iteratively calculates the chi-square statistics be-

tween each feature with the target class label. If these two variables

(feature and target variables) are independent then we eliminate that

feature from the feature set since it contributes nothing to the predic-

tion of the target variable. The smaller the p-value (corresponding to

chi-square test), the more is important the feature.

RELIEFF [20]. RELIEFF is based on the Relief algorithm whose

main idea is to estimate features’ importance according to how well
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their values distinguish between neighboring samples. Each feature

is weighted according to the relationship of n random samples to

their nearest neighbor(s). For a given sample, RELIEFF selects k
nearest samples (hits) from the same class and k nearest samples

(misses) from each of the other classes.

Multi-Cluster Feature Selection (MCFS ) [6]. MCFS aims to se-

lect the most informative features by selecting features, which pre-

serve the clustering structure of the data. It works in two stages.

The first stage is responsible for constructing a k-nearest neigh-

bor weighted graph from the dataset as well as learning a low-

dimensional representation (embedding) for each node (instance) by

solving the generalized eigen problem. The second stage is subjected

to extracting the importance of each feature by solving a L1 regular-

ized least squares problem, such that the clustering structure of the

data is preserved.

Least Absolute Shrinkage and Selection Operator (LASSO )[36].

LASSO allows feature selection based on the assumption of lin-

ear dependency between input features and output values and use

L1-penalty (regularization) in the final loss function. With respect

to classification, this translates to presence of linear decision sur-

face separating the two classes. For datasets with binary classes,

with input training data X ∈ R
n×m and target (class) variable

y ∈ {−1, 1}n, we seek w ∈ R
m that minimizes L1-regularized

objective function:

L(w) := f(Xw, y) + λ‖w‖1, (1)

where f : Rn×Yn → R≥0 is a loss function, and λ ∈ R≥0 is a reg-

ularization parameter,wj is the weight coefficient corresponding to

feature j. Features with non-zero weight coefficients are considered

important features by LASSO . However, for a set of correlated fea-

tures, LASSO tends to randomly pick only one feature. In this work,

we use LASSO for feature selection in datasets with two classes and

use logistic loss for classification loss function f .

ELASTIC NET [43]. ELASTIC NET addresses the drawback of

LASSO , by incorporating both the L1 and L2 regularization penal-

ties. Like LASSO , Elastic Net simultaneously produces a model and

performs automatic variable selection via shrinkage; however, it is

also able to account for subsets of correlated features by using ad-

ditionally the L2 regularization term (λ2‖w‖2) in its optimization

function. We apply ELASTIC NET for feature selection in datasets

with 2 classes with logistic regression for determining the classifica-

tion loss.

HSIC-LASSO [40]. HSIC-LASSO extends LASSO by finding non-

linear feature dependencies. In particular, it finds non-redundant fea-

tures with strong statistical dependence on the output classes using

kernel-based independence measures such as the Hilbert-Schmidt in-

dependence criterion (HSIC). The optimization function for HSIC-

LASSO is obtained from (1) by using particular forms of universal

reproducing kernels[40] for feature and target variable transforma-

tions. Like LASSO it also employs L1-regularization.

BORUTA[21]. The key idea behind this approach is to compare the

importance of every feature with those of random or shadow vari-

ables using statistical testing and several runs of Random Forest. A

shadow variable is created for every feature by permuting its original

value. After that, a Random Forest classifier model is trained on the

extended dataset, while the importance scores/weights of all of the

attributes, including the shadow variables, are calculated at the same

time. Since the shadow variables are designed to be random, their

weights are expected to be close to zero. Boruta uses the highest im-

portance score of all shadow variables as a threshold to determine

whether a feature is truly important or redundant.

Deep Feature Selection (DFS) Model [23]. Li et al.[23] constructs

a DFS model from an multilayer perceptron (MLP) by adding a

sparse one-to-one linear layer between its input layer and the first

hidden layer. The weights of this one-to one layer are considered as

the importance of the corresponding features. The model parame-

ters (including those of the one-to-one layer) are trained using the

negative log likelihood loss function (cross entropy for multi-class

classification), along with an ELASTIC NET based regularization

for the feature importance weights as well as other parameters of the

network. In addition, the authors also experiment by replacing MLP

with stacked contractive autoencoders(SCA) and Deep Belief Net-

works(DBN) which we also include in our experiments.

• STACKED CONTRACTIVE AUTOENCODER (SCA) SCA fun-

damental building block is a stack of contractive auto-encoders. A

contractive auto-encoder [28] is a type of auto-encoder with the

addition of Frobenious norm over the parameters in its loss func-

tion. The Frobenious norm is believed to help make the model

more robust to small changes in the input. As in [23] we experi-

ment by replacing MLP with SCA in the DFS model.

• DEEP BELIEF NETWORK (DBN) [17] DBN basically employs

the same architecture as MLP but instead of densely connected

hidden layers, DBN uses a stack of Restricted Boltzmann Ma-

chines (RBMs). Again, as in [23] we experiment by replacing

MLP with DBN in the DFS model.

4 Evaluation Set Up

A summary of the compared FS methods is given in Table 1 and

the datasets with their statistics are summarized in Table 2. For each

dataset, we fill the missing values (if any) with the nearest neighbor

values, then we use z-score3 to normalize the feature values. After

that, we run 6 times five-fold cross validation on the dataset with dif-

ferent random states. We collect results from 30 runs to get a close

and trustworthy estimate of each method performance. We choose

the number of selected features from 20 to 200 with a step of 20.

There are several reasons for investigating over a wider range of se-

lected features. First, for different number of selected features, FS

methods show a varying performance. We also observed that perfor-

mance does not always show a monotonic relation with the number of

selected features. As we do not know apriori what is the optimal/best

number of selected features and different users might choose differ-

ent number of selected features for their datasets. Thus, we argue that

constructing and comparing the results over a range of selected fea-

tures is more meaningful than just a fixed number of selected feature.

Second, we want to compare the performance of different methods

at different points to see how their performance change with regards

to the number of selected features? Can one observe any monotonic

trend? Do the experimented methods reach their peak perfor-

mance for the same number of optimal features? Can we infer

any thing from those peak performance points?

The returned relevant features were then used to train the clas-

sification model using the training data. The performance was then

tested on the test fold using only the returned relevant features (on

3 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zscore.html
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training set). For classification, we use a Multilayer Perceptron clas-

sifier model4. We report the average F1 scores (harmonic mean

of precision and recall) as the measurement for a feature selection

method classification performance. We use the same vanilla set up

with default parameters for all of the feature selection algorithms

and learning models to train the classifier.

We use Pearson correlation coefficient 5,6 to calculate the cor-

relation between a feature selection method performance and the

data complexity scores. We normalize complexity scores over the

datasets with z-score normalization before measuring correlations.

We only report correlation with p-value smaller or equal to 0.05 (sta-

tistical significance level of 95%). We point out that comparing the

methods based on their space and time complexities is out of scope

of this work.

5 Results

(a) Binary datasets (b) Multiclass datasets

Figure 1: Average mean F1 rank for 11 FS methods classification

performance over 19 binary and 8 multi-class classification datasets.

The smaller the value, the better.

Table 3: Statistically Significant Correlation between FS methods

performance and the datasets’ characteristics with p values p <=
0.05. Entries marked − have correspond to p values > 0.05

method others N3 C2

CHI-SQUARE - -0.72 0.42

LASSO - -0.87 -

INFO GAIN - -0.71 -

ELASTIC NET - -0.81 -

RELIEFF - -0.7 -

BORUTA - -0.69 -

DBN - -0.67 -

SCA - -0.61 -

MLP - -0.67 -

MCFS - -0.72 -

HSIC-LASSO - -0.74 -

In Table 2, we present the complexity measurements for all of the

datasets. From the table we can see a wide range of selected datasets

whose number of samples range from dozens to over more than a

thousand, the number of feature range from several hundreds to more

than twenty thousands. We also select datasets for both binary and

multi-class classification tasks. The range of average number of sam-

ples per class (n/nc) range from below twenty to over seven hun-

dreds.

4 We use MLP classifier implementation from https://scikit-learn.org/stable/
modules/generated/sklearn.neural network.MLPClassifier.html

5 https://en.wikipedia.org/wiki/Pearson correlation coefficient
6 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.

html

Figure 2: Heat plots for average classification performance of FS

methods over all datasets, sorted by N3 complexity measures. chris-

tensen has the lowest N3 value while pomeroy has the highest N3

value.

Figure 3: Heat plots for average standard deviation in classification

performance of FS methods over all datasets, sorted by N3 complex-

ity measures. christensen has the lowest N3 value while pomeroy has

the highest N3 value.

Table 4: Correlation between the standard deviation of FS methods

performance and the datasets’ characteristics with p <= 0.05

method others n N3 T2 C2 n/nc

CHI-SQUARE - -0.49 0.57 - -0.55 -0.51

LASSO - -0.57 0.77 - -0.5 -0.57

INFO GAIN - -0.39 0.64 - -0.43 -0.39

ELASTIC NET - -0.61 0.65 0.49 -0.54 -0.61

RELIEFF - - 0.65 - -0.42 -

BORUTA - -0.41 0.68 - -0.46 -0.41

DBN - -0.5 0.55 - -0.58 -0.52

SCA - -0.44 0.62 - -0.49 -0.46

MLP - -0.44 0.69 - -0.45 -0.45

MCFS - -0.5 0.64 - -0.54 -0.51

HSIC-LASSO - - 0.57 - - -
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Figure 4: Heat plots for average classification performance ranking

of FS methods over all datasets sorted by N3 complexity measures.

The lower the rank, the better.

5.1 Performance with regards to data complexity

Table 3 present a summary of correlation between the selected FS

methods with regards to the presented data statistic and complexity

scores. A dash (-) in the table indicates a non-significant correlation

(p > 0.05). An interesting fact that we discover is that only some

of the FS methods performance correlate with the number of average

training samples per class (n/nc). Instead, we find those FS methods

performance is highly and consistently correlated with N3 - the error

rate of the nearest neighbor classifier. It turns out that the smaller the

error rate, the better the feature selection method classification per-

formance. In terms of standard deviation, the higher N3, the higher

is the variance of FS methods performances over different runs and

set up. In the first glance this result might not look surprising. After

all, N3 denotes the error rate of a very simple classifier. But we ar-

gue that in principle the feature selection methods should have been

able to overcome this posed hardness by selecting a subset of fea-

tures such that closer neighbors have same classes. This seems to be

not the case given that the datasets with higher N3 (computed using

all features) is still correlated with classification performance over

a selected subset of more relevant features. Moreover, the absolute

correlation values are different for different methods. We can lever-

age this information to prefer one method over the other for harder

datasets which show a large error rate with a simple 1-NN classifier

(when using all the features).

5.2 Feature selection methods average
performance rank

For each dataset, we calculate the average performance of each

method over the range of selected features. Figure 2 present those

average F1 scores. There exist blanks because we only run LASSO

and ELASTIC NET for binary classification problems. From those

values, for each dataset, we sort them in descending order to get the

rank for each FS method. Figure 4 gives details about the rank of each

FS method based on average performance over the range of selected

datasets. Figure 1 presents the average performance rank for each

feature selection methods over all datasets. Looking at the plots we

can see that on average INFO GAIN ranks the highest and is also the

method with lowest variance in performance. HSIC-LASSO comes

second in terms of both for performance and variance followed by

RELIEFF and MLP .

Figure 2 and 4 present the average F1 values and ranking of all

feature selection methods over all datasets on a range of number of

features (on 30 runs for each number of selected features), respec-

tively.

Looking closely at the plots we see that the average ranking for

INFO GAIN over all dataset is smaller than 3. That is to say: most of

the time INFO GAIN is in the top 3 performing methods. It is quite

surprising that one of the simplest univariate methods tops the list.

HSIC-LASSO is the best-performing method in terms of multi-

class classification problem (with 5/8 in the leading position, 2/8 in

the second position). In addition, for datasets with small N3 values,

HSIC-LASSO is also a good option.

RELIEFF is a top-performing method with 6/27 times in the lead-

ing position. Despite that, for other datasets, it is not always in the

top 3 best performing methods. It is also one of the better perform-

ing methods for larger N3 values as compared to the other methods.

Note that in case of RELIEFF , features are scored based on whether

similar feature values are observed in neighboring pairs with the

same class labels. High N3 implies that neighboring samples have

different classes and the similar features for such pairs would be

scored lower. Quantitatively, it shows a lower absolute correlation

with N3 as compared to HSIC-LASSO and INFO GAIN .

Even though SCA has the smallest absolute correlation value with

N3, it is still on average worse performing than RELIEFF even for

datasets with smaller N3 values.

LASSO and ELASTIC NET tend to have similar performance most

of the time. However, we observe more variance in ELASTIC NET .

5.3 The returned feature subsets

We ran experiments over a range of number of selected features with

the maximum value is 200. However, BORUTA and HSIC-LASSO

sometimes returned much less number of features even after param-

eter adjustments. Given the fact that HSIC-LASSO is one of the best

performing method while returning a small subset of relevant fea-

tures, we believe that HSIC-LASSO should be given more preference

in the choice of methods, especially in biomarker discovery applica-

tions.

We also take a closer look at the set of features returned by dif-

ferent FS methods. At each run, for the number of selected feature

equal to 200, we calculate the overlapping portion of the feature sub-

sets returned by different methods. Our hypothesis was that the top-

performing method would overlap more and the more similar the

method, the larger the overlapping portion of their feature subsets.

Though, HSIC-LASSO returns the least number of selected features,

around 29% of these returned features overlap with the feature sub-

set returned by other top performing method, RELIEFF . INFO GAIN

overlap with BORUTA (around 54%) and RELIEFF (around 47%).

We believe that the questions of whether the overlapping subsets

of different feature selection methods enclose the most informative

features or not as well as which combination of FS methods might

be beneficial to the bio-marker discovery applications are interesting

research questions that we will follow in our future work.

5.4 Optimal number of selected features

We look at the performance of different FS methods over a range

of number of selected features. We observe that FS methods perfor-
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Figure 5: Performance of FS methods over a range of number of se-

lected features for GLI 85 dataset.

mance does not follow any monotonic trend with regards to the num-

ber of selected features. They tend to fluctuate from time to time.

There is no fix point where every FS method reach their highest per-

formance. Figure 5 present an example of the FS methods perfor-

mance on the GLI 85 dataset.

We take one step further: for each FS method on a particular

dataset, we find the number of selected features at which it attains

the highest performance. The result turns out that there is no ob-

served correlation between the optimal number of selected features

for FS methods and the datasets’ characteristics. Our hypothesis was

built the value of complexity measure T4, i.e., which gives an esti-

mate of the number of features returned by performing dimensional-

ity reduction using PCA (while maintaining 95 % data variability).

We believed that all methods would obtain their highest performance

by choosing the number of features close to estimate given by T4.

Not only this hypothesis turned out to be incorrect, but also the fact

that there exists no monotonic trend between the selected number of

features and performance, the problem of determining the optimal

number of features becomes very hard.

5.5 Deep Feature Selection

Even though deep learning methods are usually not recommended

for small sample size problems, deep feature selection (DFS) model

using MLP shows a relatively good performance (see Figure 1a) and

demand further investigations.

5.6 Unsupervised Method

Though it is unfair to compare unsupervised method with supervised

methods, we included MCFS in our study as as it provided promis-

ing performance as compared to other unsupervised methods and

sometimes also supervised methods (for example in our initial exper-

iments, we considered a recent unsupervised deep learning method

Concrete Autoencoders [1]). We believe that it is a promising method

for datasets where the class information might be scarce or not avail-

able.

5.7 Summary and Recommendations

In the following we summarize our findings and provide recommen-

dations for using feature selection methods.

• For datasets with low Error Rate of Nearest Neighbor classi-

fier(N3), supervised methods INFO GAIN and HSIC-LASSO are

recommended to build predictive classification models.

• For data with both low and high N3, RELIEFF appears a competi-

tive method.

• HSIC-LASSO and BORUTA might return a very small number of

relevant features. When we are concerned about both the classi-

fication performance and the small number of selected features,

HSIC-LASSO should be the best option.

• Different FS methods perform differently with regard to the num-

ber of selected features. The points different FS methods reach

their highest performance for each dataset varies arbitrarily and

neither follow any pattern nor correlate with any of our proposed

dataset characteristics.

• In terms of performance, deep learning based methods in gen-

eral have higher variance in performance than the non-deep learn-

ing counter-parts possibly due to smaller sample sizes. Deep Fea-

ture selection methods based on MLP , on the other hand shows

promising performance and also relatively lower variance.

• The dataset TOX-171 falls out of the normal trend followed by

other datasets and despite showing a relatively lower N3 error, it

appears to be difficult for all methods.

6 Conclusion

In this work we investigated data complexity to understand the suit-

ability of a particular FS method. We conducted an extensive com-

parative study of 11 FS methods for 27 biological datasets with vary-

ing properties. As the optimal number of features is not known in

prior, we tested over a wider range where the number of selected fea-

tures were varied from 20 to 200 with a step of 20. For each number

of selected features, we evaluate each method performance 30 times

to get a reliable estimate of the method performance. We calculate

the correlation between the FS methods performance and the pre-

sented data complexity measures. Experimental results show that FS

method performance on classification is highly correlated with N3 -

a data complexity measures based on the data local neighborhood.

We compare 11 FS methods performance in term of average per-

formance, variance and ranking. Summarizing our findings, we also

build a recommendation list of various methods. In future we would

like to investigate in several directions including a thorough analy-

sis of deep learning models for feature selection, the dependency of

optimal number of relevant features on dataset properties and its in-

terplay with method properties and understanding the unusual trend

of datasets like TOX-171 .
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