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Abstract

Null alleles and Wahlund effects are well known causes of heterozygote deficits in empirical 

population genetics studies as compared to Hardy–Weinberg genotypic expectations. Some 

authors have theoretically studied the relationship of Wright’s F
IS
 computed from subsamples 

displaying a Wahlund effect and F
ST

 before the Wahlund effect, as can occasionally be obtained 

from populations of long-lived organisms. In the 2 subsample case, a positive relationship between 

these 2 parameters across loci would represent a signature of Wahlund effects. Nevertheless, for 

most organisms, getting 2 independent subsamples of the same cohort and population, one with 

a Wahlund effect and the other without, is almost never achieved and most of the time, empirical 

population geneticists only collect a single sample, with or without a Wahlund effect, or with or 

without null alleles. Another issue is that null allele increase F
IS
 and F

ST
 altogether and thus may 

also create such correlation. In this article, I show that, for organisms collected in a single sample, 

which corresponds to the most common situation, Wahlund effects and null alleles affect the values 

of both F
IS
 and F

ST
 though in the opposite direction. I also show that Wahlund effect produces no 

or weak positive correlation between the 2 F-statistics, while null alleles generate a strong positive 

correlation between them. Variation of these F-statistics is small and even minimized for F
ST

 under 

Wahlund effects as compared to null alleles. I finally propose a determination key to interpret data 

with heterozygote deficits.

Subject area: Population structure and phylogeography

Key words:  differentiation, F-statistics, genetic identities, inbreeding

Empirical population genetics is the study of the population biol-

ogy of natural populations through the analysis of spatio-temporal 

variation of molecular markers (e.g., allozymes, microsatellite loci, 

SNPs, etc.). Hardy–Weinberg equilibrium and its expected geno-

typic proportions are central in such studies, because any deviation 

from these expected proportions can provide clues for inferences on 

the functioning of the targeted populations (De Meeûs et al. 2007). 

Many tools are currently available but some of the most widely 

used are Wright’s (Wright 1965) F-statistics (Nagylaki 1998): F
IS
, is 

a measure of deviation from panmixia at local scales (e.g., within 

subsamples); F
ST

 is a measure of subdivision; F
IT

 is a measure of devi-

ation from panmixia at the whole sample scale and actually corre-

sponds to the combined effect of the 2 �rst ones: (1 − F
IT

) = (1 − F
IS
) 

(1 − F
ST

) (De Meeûs et al. 2007).

In a recent article, Waples (2015) reviews the different causes 

of deviations from Hardy–Weinberg genotypic expected proportions 

and linkage disequilibrium, with some attention, among other fac-

tors, to Wahlund effect and null alleles. Wahlund effect occurs when 
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genotypic proportions are computed from heterogeneous samples 

where individuals belonging to genetically differentiated entities 

are pooled. These entities can represent members of different (and 

genetically distant) subpopulations, different cohorts, or different 

cryptic species. This typically happens when the real scale at which 

population structure occurs is unknown, resulting in an inaccurate 

sampling design. Null alleles occurs when the genotyping technique 

used fails to unveil the presence of true alleles that thus appear as 

missing data if homozygous or as apparent homozygous when het-

erozygous with a visible allele. This typically arises in microsatellite 

markers when a mutation event alters one of the �anking sequences 

where primers are to attach to initiate DNA ampli�cation (PCR). If 

this mutation prevents the primer annealing to template DNA dur-

ing ampli�cation of the microsatellite locus by PCR, this results in 

a null allele. Wahlund effect and null alleles both increase F
IS
 and 

thus produce apparent heterozygote de�cits. In his article, Waples 

(2015) offered a criterion to discriminate a Wahlund effect from 

other causes as null alleles, in a 2 populations and 2 alleles context, 

which was generalized by Zhivotovsky (2015) for multiple alleles. 

In these models, the F
ST

 before Wahlund effect must be known from 

an independent sample and F
IS
 measured in another sample with 

Wahlund effect. I will label the Wahlund effect on F
IS
 as F

IS_W
. The 

main result of these works is that there is an expected positive cor-

relation between F
IS_W

 and F
ST

 across loci, which can be used as a 

criterion as opposed to null alleles where such correlation is believed 

not to happen. It was also stated that because of this correlation, 

the criterion that is often found in the literature of stability of F
IS
 

across loci under a Wahlund effect, as compared to the effect of null 

alleles, is void. It is important to specify that in these models, the 

true F
ST

 (without Wahlund effect) must be known and the regression 

undertaken between this true F
ST

 and the F
IS
 is measured after the 

Wahlund effect (F
IS_W

). Such correlation between F
ST

 and F
IS_W

 can 

also be easily (and with more generality) derived from the famous 

Wright’s equation (1 − F
IT

) = (1 − F
IS
) (1 − F

ST
) because in a sample 

with a Wahlund effect, and by de�nition of those F-statistics, what 

is measured as F
IS_W

 is necessarily strongly connected to the initial 

(i.e., “true”) F
IT

 and is equal to it when the �nal sample is a random 

collection of existing real subpopulations.

The knowledge of true F
ST

 is a rare situation that I only know 

of from a few studies on fairly long-lived mammal species: the 

Leadbeater’s possum in Australia (Waples 2015), and the North 

Paci�c minke whale (Waples 2011). Long-lived organisms indeed 

allow sampling the same cohort after several years or months so 

that each locus keeps the same characteristic over time between 2 

sampling campaign, one of which displays a Wahlund effect, and the 

other displays the true population subdivision. For most organisms, 

in particular small ones for which population genetics tools repre-

sent the only mean to study their population biology (De Meeûs 

et al. 2007), initial (true), F
ST

 and Wahlund F
IS_W

 resulting from in-

accurate sampling cannot be known together: either the sampling 

is accurate and F
IS
 is not affected by a Walund effect, or sampling 

is not accurate and F
IS
 and F

ST
 are both affected. Because of short 

generation times, even if 2 samples are available, one of which with 

true F
ST

 and the other with a Wahlund effect (a case that I have never 

met except for the 2 examples cited above), the correlation would 

have little chance to survive the redistribution of per locus statistics 

with genetic drift. A Wahlund effect typically occurs for organisms 

for which population subdivision is unknown, if subsamples are col-

lected at larger scales than the actual subdivision unit. In that case, 

sampling contains a Wahlund effect that affects all statistics all to-

gether. Several such examples and discussions can be found in Ravel 

et al. (2007), Bouyer et al. (2009), Kempf et al. (2010), Prugnolle and 

De Meeûs (2010), Solano et al. (2010), and Rougeron et al. (2015). It 

is also known that null alleles also increase F
ST

 (Chapuis and Estoup 

2007). A positive correlation between F
IS
 and F

ST
 can thus be pre-

dicted in that case. This thus can lead to confusion. If both F
ST

 and 

F
IS
 observed in the same sample are regressed and a positive correl-

ation found, concluding to a Wahlund effect signature, as can be seen 

in some studies (Criscione et al. 2011; Bohling et al. 2016), may be 

wrong. In “classic” (i.e., single sample) samples, it can also be sus-

pected that Wahlund effect also affects F
ST

 computations.

In this article, I analyze the most common situation where F-statistics 

are estimated from the same sample. I show that null alleles increase 

both F
IS
 and F

ST
 and that Wahlund effect increases F

IS
 but decreases F

ST
. 

Simulations show that when sampling and genotyping are accurate (no 

Wahlund effect and no null alleles), a negative correlation is expected 

between F
IS
 and F

ST
 most of the time and that a Wahlund effect will 

weakly change this tendency. I also show that a strong positive correl-

ation links F
IS
 and F

ST
 in presence of null alleles with a maximal vari-

ation of these statistics across loci in that case, while Wahlund effect 

weakly (if any) affects F
IS
 variation and minimize F

ST
 variance across 

loci. I �nally propose a determination key to interpret data with het-

erozygote de�cits. Because I am focusing on heterozygote de�cits, I will 

not discuss selective processes. The only selective process that can cause 

heterozygote de�cits is underdominance, a very unstable situation that 

should be met extremely rarely (De Meeûs et al. 2007). The only pos-

sible example could be the African butter�y Pseudacraea eurytus. But 

I could only �nd it in Wikipedia. A more convincing example corre-

sponds to the rhesus system in human populations (De Meeûs et al. 

2007; Abbey et al. 2011). Multilocus underdominance might happen 

in hybrid zones. Nevertheless, gathering different cryptic species (or 

subspecies) into single subsamples will more correspond to more or 

less extreme “classic” Wahlund effects, as treated in the present article.

Methods

Definitions

In this article, I  will use F-statistics de�nitions according to 

Cockerham (1969, 1973) and Rousset (1996, 2004) and a notation 

that I �nd easier to follow as in De Meeûs et al. (2007). In a 3 hier-

archical (i.e., nested) level of sampling structure, with individuals in 

subsamples and total sample, we can de�ne 3 identity parameters:

Q
I
  is the probability to twice sample the same allele in an 

individual;

Q
S
  is the probability to twice sample the same allele from 2 indi-

viduals from the same subsample;

Q
T
  is the probability to twice sample the same allele from 2 dif-

ferent subsamples.

From there, we can de�ne Wrights F-statistics:

 
F

Q Q

Q

F
Q Q

Q

F
Q Q

Q
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
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

1

1

1

 
(1)

Note that 1 − Q
S
 and 1 − Q

T
 are the probabilities to sample different 

alleles in one subsample or in the total sample, respectively, and are 

thus equal or close to subsample and total sample genetic diversities 

H
S
 and H

T
, respectively.
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I will use the above notation for the “true” parameters, that is, the 

ones that would be measured if the population investigated would have 

been accurately sampled (no Wahlund effect) and the marker used 

immune from genotyping errors (no null alleles, dropouts, or stuttering).

Q
I_W

, Q
S_W

, and Q
T_W

 are the probabilities of identity measured in 

subsamples with Wahlund effects and F
IS_W

, F
ST_W

, and F
IT_W

 are the 

corresponding F-statistics.

W
S
 and W

T
 parameters describe the intensity of Wahlund effect on 

Q
S
 and Q

T
, respectively. These parameters are a function of real allele 

frequencies in the different subpopulations and of the importance 

and modality of admixture of individuals from different subpopula-

tions in the actual sample. These parameters are thus functions of F
ST

.

Q
I_N

, Q
S_N

, Q
T_N

, F
IS_N

, F
ST_N

, and F
IT_N

 are the same as above but 

when the genetic marker is affected by null alleles.

Q
Ii
, Q

Si
, and F

ISi
 are the true corresponding parameter values in 

subpopulation i.

In the bi-allelic case, p
i
 and q

i
 are the “true” allele frequencies of 

the 2 visible alleles of the genetic marker in subpopulation i and p
Ni

 

is the frequency of null alleles in subpopulation i.

The bar above a parameter will mean the average value across 

all subsamples: for instance, the average null allele frequency across 

n subsamples will be:

 p
n

p ii

n

N N
=

=∑1

1
 (2)

Two population structure models, with n subpopulations of size N 

and immigration rate m were explored: the Island model, where each 

subpopulation, at each generation, is composed of (1 − m)N resi-

dents and mN immigrants coming from any of the n − 1 other sub-

populations (no spatial structure); the 2 dimensional stepping stone 

model, where immigrants come from direct neighbors (4 neighbors 

in central subpopulations, 2 in corner subpopulations, and 3 for 

other marginal subpopulations). Stepping stone models thus result 

into isolation by distance (spatial population structure).

Different sampling errors lead to a Wahlund effect. A  Wahlund 

effect can be spatial and/or temporal. Spatial Wahlund effect can itself 

result from several kinds of sampling errors, some of which are illus-

trated in Figure 1. Each kind gathers individuals that belong to differ-

ent subpopulations (with different allele frequencies). For the unshared 

Wahlund effect, each subsample contains individuals from several sub-

populations that are not shared with other subsamples (Figure 1D). 

For the shared Wahlund effect, each subsample shares common ori-

gins with other subsamples with respect to subpopulations that are 

pooled (Figure 1B,F). A third sampling gathers heterogeneous admix-

tures (unbalanced Wahlund effect, Figure 1E). Wahlund effects arise 

from a lack of knowledge of the true structure of a population. Hence, 

“shared” and/or “unbalanced” samples are probably the most frequent 

causes of Wahlund effects. For populations with isolation-by-distance 

migration models (2-dimensional stepping stone models), the closest 

subpopulations are genetically the most similar. For Island models of 

migration with no spatial structure of genetic information, genetic dif-

ferentiation is uncorrelated with subpopulation position.

Temporal effects occur when members of different cohorts are 

pooled in the same subsamples. This is a classical cause of biased 

Figure 1. Different sampling designs that can lead to a Wahlund effect for simulations with 25 (A, B, D, E) or 64 subpopulations (C, F). Subsamples are represented in 

dark grey. Correct sampling (A, C) illustrates how subpopulations were initially sampled. For unshared Wahlund effect (D), subsamples gather individuals from different 

subpopulations but each subsample does not share individuals from the same subpopulation with other subsamples. In shared Wahlund effect (B, F), subsamples 

gather individuals from different subpopulations that are also shared between subsamples. For this case, subsamples 1 and 9 contain unbalanced representation of 2 

subpopulations. In unbalanced Wahlund effect (E), the variance of representation of each initial subpopulation is maximized as compared to shared Wahlund effect (B, F).
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parameter estimates and statistics in microorganisms for which 

strains from different years are often pooled, most of the time to 

increase subsample sizes. Nevertheless, the gain in size is made at 

the expense of accuracy and power. Interested readers can �nd some 

more speci�c comments about population genetics of Leishmania 

parasites in Rougeron et al. (2015). I will only treat temporal effects 

in the discussion in the light of spatial Wahlund effects results.

Simulations

To check for analytical and simpli�cation accuracy, I have undertaken 

several simulations. All simulations were undertaken with Easypop 

2.0.1 (Balloux 2001) and analyzed with Fstat 2.9.4, updated from 

Goudet (1995). All simulations consisted of 25 or 64 subpopulations 

of 200 or 100 individuals with balanced sex ratio in Island or 2-di-

mensional stepping stone models with migration rates of m = 0.01, 

0.05, 0.2, or 0.5, for 10 000 discrete generations, 20 loci with a KAM 

mutation rate of u = 10−4 and K = 99 possible alleles. In some instances, 

I also simulated heterogeneous loci with various mutation rates and 

K: Loci 1–5, u = 10−9, K = 2; Loci 6–10, u = 10−6, K = 10; Loci 11–15, 

u = 10−5, K = 20; Loci 16–20, u = 10−4, K = 40. Hermaphrodites with 

a sel�ng rate of s = 0.5 were also simulated for several parameter sets, 

some of which (the most signi�cant ones) are presented in the Results 

section. Each parameter set was replicated 10 times. For each repli-

cate, I sampled 20 individuals in 10 subpopulations (Figure 1).

Null alleles were generated as in Séré et  al. (2014, 2017). For 

each locus, alleles 1–10 (10% of null alleles), 1–20 (20%), and 1–50 

(50%) were recoded as null alleles. Hence, individuals harboring 

one of these alleles were recoded as homozygous for the other allele 

harbored, individuals harboring 2 of these alleles were recoded as 

missing data and individuals harboring none of these alleles were 

not recoded. At the end of each simulation, some alleles are lost 

by drift. This way, the same process (mutation and drift) affects all 

alleles (that are all present at generation 1) at all loci homogeneously, 

resulting in (approximately) 10%, 20%, or 50% of null allelic states 

among the K possible ones. All alleles (including null alleles) are then 

submitted to genetic drift and mutation like any other locus. This 

produces a large variation in null allele frequencies across loci and 

replicates (absence, weak, medium, or substantial frequency) as it is 

expected in real data with null alleles (De Meeûs et al. 2007; Séré 

et al. 2014, 2017). These proportions of null alleles (10%, 20%, and 

50%) actually correspond to the proportions of allelic states that are 

null and not the actual real null allele frequencies which vary consid-

erably across subpopulations and across replicates. For the sake of 

simpli�cation, I will call these “proportion of null alleles.”

Wahlund effects were produced as in Figure 1. Merging adjacent 

subpopulations (e.g., 6 with 7, 8 with 9, etc.) resulted in 5 subsam-

ples with unshared Wahlund effect (see de�nitions and Figure 1D). 

In that case, all subsamples contain a balanced admixture of 2 sub-

populations. For Shared Wahlund effect, subsample 1 (subsample 

S1, Figure 1) is built with 20 individuals from subpopulation 6 and 

10 individuals from subpopulation 7 (for n = 25, Figure 1B) or, for 

n = 64 (Figure 1F), with 20 individuals from subpopulation 10 and 10 

individuals from subpopulation 11. Subsequent subsamples are then 

built with 10 remaining individuals from the previous subpopulation 

and the 10 �rst of the following one. The last subsample (subsample 

S9, Figure 1B,F) is �nally composed of 10 individuals from subpop-

ulation 18 (Figure  1B) or 20 (Figure  1F) and 20 individuals from 

subpopulation 19 (Figure 1B) or 21 (Figure 1F). Here, the �rst and 

last subsamples contain unbalanced admixtures of 2 subpopulations 

while others contain balanced admixtures. Finally, the unbalanced 

Wahlund effect was generated through heterogeneous admixtures in 

subsamples (Figure 1E). For stepping-stone models, Wahlund effects 

are expected weaker than for Island models since for the �rst, merged 

subpopulations are neighbors and hence are genetically relatively 

closed even if m is small. For Island model, merged subpopulations 

are genetically similar or distant, depending on m.

Spearman’s rank correlation test was undertaken with the pack-

age Rcmdr (Fox 2005, 2007) for R 3.3.2 (R Development Core 

Team 2016) and 95% con�dence intervals for different statistics 

were estimated using the variation of these statistics across replicates 

of the same simulation. When indicated, 95% con�dence intervals 

of F
IS
 and F

ST
 were computed using the standard error of jackknife 

over subsamples (for each locus) or using 5000 bootstraps over loci 

(for the average across loci). These were computed with Fstat. More 

detailed explanations on how to compute con�dence intervals can 

be found in De Meeûs et al. (2007). The correlation between F
ST

 and 

F
IS
 across loci was measured with Pearson’s correlation coef�cient.

Results

Wahlund Effects

In the case of a Wahlund effect, the total sample is composed of 

several subsamples that contain admixtures of individuals from dif-

ferent real subpopulations in proportions that are unknown and 

variable from one subsample to the other. We can write identity 

probabilities as (Equation 1):

 
Q Q

Q Q W

Q Q W

I W I

S W S S

T W T T

_

_

_

=
= −
= +









 
(3)

There is indeed no reason why a Wahlund effect would affect the 

probability of homozygosity Q
I
. On the contrary, the presence of 

new alleles from different subpopulations will tend to decrease the 

probability of identity between individuals in each subsample, and 

hence 0 ≤ W
S
 ≤ Q

S
. W

S
 will more depend on the level of differenti-

ation between gathered subsamples (F
ST

) than on sampling design 

itself. The value of W
T
 will depend more on the sampling design. In 

“unshared subsamples,” its value should be close to 0. In “shared” or 

“unbalanced” subsamples, the probability to sample the same allele 

from different subsamples should increase more, but the difference 

might be very small in fact. Hence, 0 ≤ W
T
 ≤ 1 − Q

T
. High values 

should not be frequently met in real situations.

Temporal Wahlund effects will be similar though less predictable, 

in particular, on W
T
. With very heterogeneous cohort composition 

from one site to the other, it might happen that W
T
 < 0, particularly 

so in short generation time species with small effective population 

sizes (e.g., microbes) that can experience swift divergences between 

different cohorts. This might be clearer with a caricatured example. 

If subsample 1 at site 1 is composed of cohorts 1 and 4, and sub-

sample 2 at site 2 is composed of cohorts 7 and 10, in a short lived 

species with small effective population sizes, drift will be quick and 

genetic differentiation between cohorts 4 and 7 might be bigger than 

between site 1 cohort 1 and site 2 cohort 1. Nevertheless, this last 

situation probably occurs only rarely.

Under a Wahlund effect, and combining Equation 1 and 3, F
IS
 

and F
ST

 become:

 F
Q Q W

Q W

F
Q W Q W

Q W

IS_W

I S S

S S

ST_W

S S T T

T T

=
− +

− +

=
− − −

− −










1

1

 (4)
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It can easily be shown that, whatever initial identity probabilities, 

F
IS_W

 ≥ F
IS
 and F

ST_W
 ≤ F

ST
. Please, note that, as seen above, special 

temporal Wahlund effects might end up with F
ST_W

 > F
ST

. This situ-

ation is probably exceptional because it requires that W
T
 < 0 and 

|W
T
| > |W

S
|. We can rearrange Equation 4 into:

 

F Q W Q Q W

F
Q W Q W

Q W

Q

IS_W S S I S S

ST_W

S S T T

T T

I

1

1

− +[ ] = − +

=
− − −

− −









⇔

− −−( ) + −( ) = −[ ]
=

− − −
− −






Q F Q W F

F
Q W Q W

Q W

S IS W S S IS W

ST W

S S T T

T T

_ _

_

1 1

1


⇔

=
−( ) − −( )

−

=
−

−( ) − −

W
F Q Q Q

F

F

Q
F Q Q

S

IS_W S I S
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S

IS_W S I

1

1

1 QQ

F
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Q W

W
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S
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−
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




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





⇔

=
−( ) − −( )

1

1

1
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+
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+

−
−

×
− −

−
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F

F
Q Q W
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F Q W

F
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ST_W
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1
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1
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×
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












 F

Q

Q WIS_W

S

T T  

(5)

In most situations we expect W
T
 to be small so that we could rewrite 

Equation 5 as:

 

W
F Q Q Q

F

F
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Q Q

F
ST W

S
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−
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1
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Q

W
F Q Q Q

T
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S
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S
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−
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−
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−
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

 

(6)

If we assume local panmixia (Q
S
  =  Q

I
). In that case Equation 6 

becomes:

W
F

F
Q

F F
F

F

Q

Q

S

IS_W

IS_W

I

ST_W ST

IS_W

IS_W

I

T

=
−

−( )

≈ −
−

×
−
−









1
1

1

1

1




or

 

W
F

F
H

F F
F

F

H

H

IS

IS_W

IS_W

ST_W ST

IS_W

IS_W

I

T

=
−

≈ −
−

×











1

1
 

(7)

where H
I
 is the proportion of heterozygotes in the total sample (or 

its average across subsamples) and H
T
 is the total genetic diversity 

of the sample, which is approximately the same as in the real popu-

lation if W
T
 is small.

Equation 7 can be rearranged into:

 W
F

F
H

F F
F

F

H

H

S

IS_W

IS_W

I

ST ST_W

IS_W

IS_W

I

T

=
−

≈ +
−

×











1

1

 
(8)

which provides a rough proxy of the true F
ST

, assuming local panmixia 

and small impact of the Wahlund effects on total genetic identity. Please 

note that this proxy will be very bad if the subpopulations are not 

panmictic and the impact of the Wahlund effect on Q
T
 is substantial. 

It might seem from Equation 7 that F
IS_W

 and F
ST_W

 are negatively cor-

related but this is compensated by the fact that F
IS_W

 is more strongly 

correlated to F
ST

 (and positively so) than to F
ST_W

 (negatively so).

Null Alleles

This case is in fact more dif�cult to track analytically. I will thus 

directly assume panmixia in each subsample with 3 alleles (1, 2, and 

null). In that case the (unseen) real genotypic proportions in sub-

sample i are p
i
2, 2p

i
q

i
, q

i
2, 2p

i
p

Ni
, 2q

i
p

Ni
, and p

Ni
2 for genotypes 11, 12, 

22, 1N, 2N, and NN, respectively. We can also express Q
Ii
 and Q

Si
:

 Q Q p q pi i i i iI S

2 2

N

2= = + +  (9)

We can now compute the perceived allele frequency of allele 1 in 

subsample i, remembering that 1N and 2N individuals are errone-

ously interpreted as homozygous 11 and 22, respectively:

 

p
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i
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1 1
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
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

 

(10)

From there, the observed within individual genetic identity in sub-

sample i with null alleles can be written:

 Q
p q p p q

p
I i

i i i i i

i

_ N

N

N

=
+ + +( )

−

2 2

2

2

1
 (11)

We can rearrange Equation 11 and combine it with Equation 9:

 Q
Q p p p

p
I i

i i i i

i

_ N

S N N N

N

=
− + −( )

−

2

2

2 1

1
 (12)

To understand the possible values taken by Q
I_Ni

, it is useful to compute 

the minimum and maximum possible values for Q
S
, with a null allele fre-

quency p
Ni

. Let us call these quantities Q
Si_min/N

 and Q
Si_max/N

. Probability 

of identity between alleles 1 and 2 will be minimal when both share the 

same allele frequency (1 − P
Ni

)/2 and will be maximal when one is very 

close to 0 and the other with frequency close to 1 − p
Ni

. We can thus write:

 

Q p p

Q p p

i N i i

i i i

S min N N

S max N N N

_ /

_ /

= × −( )
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
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2
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2

2

2 2
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


⇔
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= −( ) +
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





Q p p

Q p p

i i i

i i i

S min N N N

S max N N N

_ /

_ /

1

2
1

1

2 2

2 2

 (13)
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We can use this to check the range of variation of Q
I_Ni

 for a 

given p
Ni

 combining Equations 11 and 13. Its extremum values 

are then:

 

Q
p p p p p

p

Q

i

i i i i i

i

i

I N min N

N N N N N

N
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_ _ /

_ _

=
−( ) + − + −( )

−

1

2
1 2 1

1

2 2 2

2

xx N

N N N N N

N

I N m

/

_ _

=
−( ) + − + −( )

−













⇔

1 2 1

1

2 2 2

2

p p p p p

p

Q

i i i i i

i

i iin N N

N N

N N

I N max N N

/

_ _ /

= −( )
−( ) +

−( ) +( )

= −

1

1

2
1 2

1 1

1

p
p p

p p

Q p

i

i i

i i

i i(( ) −( ) +
−( ) +( )














1 2

1 1

p p

p p

i Ni

i i

N

N N

Since p
Ni

 > 0 we can write:
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(14)

It can easily be seen that the upper term of Equation 14 is minimized 

when null allele frequencies are very small (and their effect negli-

gible) and then equals ½ (as expected for the bi-allelic case). We can 

thus write ½ ≤ Q
I_Ni

 ≤ 1.

We now need to derive equations for Q
S_Ni

. Combining Equations 

9 and 10, we obtain

 

Q
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p

q
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1 1
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1

2 2

2

2 2  
(15)

In subsample i, combining Equations 1, 12, and 15, F
IS_Ni

 will have 

the same sign as:
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(16)

This quantity is always positive (or null when Q
I_Ni

 = Q
S_Ni

 = 1, no 

polymorphism), because Q
Si
 is the sum of true homozygote frequen-

cies and hence Equation 16 can be rearranged as:

∆

∆

Q p
pq

p p

Q p
p q

i i

i i

i i

i i
i i

IS N N

N N

IS N N

_

_

=
− −( )

+( ) −( )
⇔

=
+

2
1 1 2

1 1

2
2

1

2

pp pi iN N( ) −( )1
2

As expected, this quantity is always positive or null and then F
IS_Ni

 ≥ 0.

Over the n subsamples:

 Q Q

Q Q

n

n

i
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i
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i
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1
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1

 (17)

and

 F
Q Q

Q
IS N

I N S N

S N

_

_ _

_

=
−

−1

 (20)

If some polymorphism is maintained in some of the subsamples, then 

the quantity de�ned in Equation 20 is always positive.

The real (unseen) total identity probability can be computed as:

 Q p q pT N= + +2 2 2


 (21)

The seen total genetic identity, with null alleles at frequency p
Ni

 in 

subsample i, and combining Equations 10 and 21, can be written as:
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From there some numerical explorations can lead to simple rules 

that will simplify the algebra.

Q Q
S T

≤

Q Q

Q Q

Q Q

I N I I

S_N S S

T_N T T

_
= +
= +
= +









ν
ν
ν

where 0 ≤ ν
T
 ≤ ν

S
 < ν

I
 ≤ 1 − Q

I_N
.

Indeed, the effect of null alleles will always be much greater on 

homozygosity than on identity between individuals and the effect of 

null alleles on identity between individuals will generally tend to be 

slightly higher than on identity between subsamples, especially so if 

the population is substantially subdivided. For instance if Q
T
~0, then 

the effect of null alleles will be very weak (if any) on this parameter 

(ν
T
~0), while Q

S
 = Q

T
 (no subdivision), necessarily means that ν

T
 = ν

S
.

We can thus write:

 F
Q Q

Q

F
Q Q

Q

IS N

I I S S

S S

ST N

S S T T

T T

_

_

=
+ − −

− −

=
+ − −

− −










ν ν
ν

ν ν
ν

1

1

 (22)

It is not dif�cult to show that F
IS_N

 ≥ F
IS
 and F

ST_N
 ≥ F

ST
.

Here, because both statistics are positively correlated to null 

allele frequencies, we may expect a positive correlation between F
IS_N

 

and F
ST_N

.
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For more precisions on how to compute null allele frequencies 

I encourage readers to have a look at classic papers and reference 

therein (Brook�eld 1996; Van Oosterhout et al. 2004; David et al. 

2007; Guillot et  al. 2008; Chybicki and Burczyk 2009; Robledo-

Arnuncio and Gaggiotti 2017).

Simulations

With correct sampling and unaffected genotypes (no null alleles), 

we can see from Figure 2 that there is a strong (but not systematic) 

tendency for a negative correlation between F
IS
 and F

ST
 across loci as 

measured by Pearson’s correlation coef�cient. This tendency seems 

less pronounced for substantially inbred subpopulations (s = 0.5), 

small subpopulations (N = 100) and for heterogeneous loci (variable 

K and u). This is probably connected to the level of polymorphisms 

that can be maintained in subpopulations as illustrated by a highly 

signi�cant negative correlation with H
S
 (Figure 3).

It can be seen from Figure  2 that Wahlund effects weakly 

increases the average correlation between F
IS
 and F

ST
, which stays 

below 0 most of the time, except in strongly subdivided populations. 

Even in this case, this correlation hardly exceeds 0.1 and displays an 

important variance.

As expected with null alleles, correlation between F
IS
 and F

ST
 is 

always positive (Figure 2), except in weakly subdivided populations 

with high null allele frequencies (p
N
 = 0.5) (Supplementary Figure 

S1). Nevertheless, if loci with no heterozygosity (H
I
 = 0) are removed 

from the data, all simulations with null alleles showed a strong posi-

tive correlation between the 2 statistics, especially so for strongly 

subdivided populations (Figure  2). Figure  2 presents a subset of 

all simulations undertaken with the most signi�cant results. Other 

results can be found in the Supplementary File S1.

The variation of F
IS
 and F

ST
 across loci was measured with the 

standard error of jacknife over loci as computed in Fstat (StrdErrFIS 

and StrdErrFST, respectively). The results are presented in Figure 4. 

It can be seen that F
ST

 variation across loci tends to decrease from 

correct sampling (no Wahlund) to unshared Wahlund effect and 

shared Wahlund effect while it remains low and unchanged for F
IS
 

(no effect of sampling). A higher impact can be observed with loci 

presenting heterogeneous mutation models or smaller subpopula-

tions (N = 100). For both statistics, for 10% of null alleles, the vari-

ation across loci jumps to much higher values. This is particularly 

true for F
IS
 for which the standard error obtained with null alleles 

has nothing in common with simulations without null alleles of any 

kind. When there is no Wahlund effect, it can be seen that StrdErrFIS 

≈ StrdErrFST, including simulations with sel�ng s = 0.5. In other sit-

uations, we can see that StrdErrFIS > StrdErrFST (Wahlund effects) 

or StrdErrFIS >> StrdErrFST (null alleles).

Discussion

The tendency for negative correlation across loci that links F
IS
 and 

F
ST

 under the null hypothesis (no Wahlund and no null alleles) was 

unexpected (at least by me). It probably comes from the dependency, 

in an opposite direction, of both statistics on Q
S
. Nevertheless, this 

correlation displays a strong variance around the average. There is 

thus little hope that this can often offer a useful criterion, especially 

when polymorphism is weak (H
S
<0.5). A strong negative correlation, 

more likely when H
S
 > 0.6, will however represent a strong argument 

against the presence of null alleles.

Contrary to what might be understood from the literature 

(Criscione et  al. 2011; Waples 2015; Zhivotovsky 2015; Bohling 

et al. 2016), the correlation across loci between F
IS
 and F

ST
 under a 

Wahlund effect will be very weak and most of the time even negative, 

while this correlation is always positive in the presence of null alleles, 

except in extreme situations with very high null allele frequencies, 

weak subdivision and if extreme loci displaying very low heterozy-

gote frequencies are kept.

The variation across loci for F-statistics does not tend to in-

crease with Wahlund effect but at best remains unchanged or even 

decreases. On the contrary, with null alleles, this variation signi�-

cantly increases, even for small null allele proportions (Figure 4). 

For F
IS
, variation across loci remains strictly the same under 

Wahlund effects except when the mutation model varies consider-

ably across loci or in smallest subpopulations. For F
ST

, even sel�ng 

generates more variation than Wahlund effect (Figure 4). But again, 

these variations are very modest as compared to those generated by 

null alleles.

Temporal Wahlund effect should have similar consequences as 

geographic Wahlund effect though it may affect total genetic identity 

more strongly, depending on the cohort composition of each sub-

sample and drift speed (hence population structure). In case of highly 

Figure  2. Average Pearson’s correlation coefficient [r(F
IS
, F

ST
)] between F

IS
 and F

ST
 across loci and 95% confidence intervals for simulations in Island or 

2-dimensional stepping stones models (stepping stone) with different subpopulation sizes (N), number of subpopulations (n), migration rates (m), and different 

models of mutation: K = 99 for 99 alleles and mutation rate u = 10−4 and VarK for variable K and u as defined in the text. The results obtained for correct data (no 

Wahlund effect, no null alleles) (C), for data with unshared (U), shared (S), or unbalanced (Un) Wahlund effects, as defined in the text and with 50% selfing (s), 

different null allele frequencies (0.1, 0.2, 0.5) or random mating without null alleles (all others) are presented. Note that, for the sake of comparison, Wahlund, 

null alleles, or selfing always occur alone (no combination). The straight plain line in the middle represents the 0 correlation value.

452 Journal of Heredity, 2018, Vol. 109, No. 4

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jh
e
re

d
/a

rtic
le

/1
0
9
/4

/4
4
6
/4

6
4
3
1
7
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



heterogeneous cohort compositions across subsamples, an increase 

of perceived F
ST

 might happen, but this should not be the most fre-

quent situation.

Different phenomena can affect heterozygosity all together in a 

single sample. Sel�ng and/or null alleles and/or Wahlund effect will 

then have different contribution that will be dif�cult to identify spe-

ci�cally. The classic Wright’s equation (1 − F
IT

) = (1 − F
IS
) (1 − F

ST
) 

(e.g., De Meeûs et al. 2007) gives the relationship between the dif-

ferent F-statistics. F
IT

 represents the combination of Wahlund effect 

(F
ST

) and other causes (null alleles or deviation from panmixia) (F
IS
). 

The true F
ST

 can sometimes be known as described in Waples (2011, 

2015) for long-lived mammals, in which case the true F
IS
 might be 

extrapolated easily. Most of the time, such information is not avail-

able and adjusting data for the true F
IS
 will be necessary. This can be 

made, for instance, by computing the contribution of null alleles to 

the F
IS
. A proxy can be found with the determination coef�cient of 

the regression between missing genotypes counts and per locus F
IS
 

(if the correlation is good) (e.g., Melachio et al. 2011). Cross experi-

ments can also be useful at determining possible range for sel�ng or 

sib mating rates, when such experiments are possible.

Wahlund effect results from a poor knowledge of the actual 

structure of a given population. There is thus little chance that real 

F
ST

 and F
IS
 can be known in real situations dealing with a Wahlund 

effect. As shown elsewhere (Chapuis and Estoup 2007) and in the 

present study, null alleles and Wahlund effects alter both F
IS
 and F

ST
, 

though in a different direction. Null alleles produce an increase of 

both statistics; while Wahlund effects increase F
IS
 and, in most situa-

tions, decrease F
ST

 (F
ST

 might increase with temporal Wahlund effect 

with extreme heterogeneity of cohort composition).

There will always be variation of F-statistics across loci, even 

under the null hypothesis, with some loci signi�cantly deviating from 

panmictic proportions by chance only [for an excellent discussion on 

this issue see Waples (2015)]. This is why only a global signi�cance 

across loci and subsamples represents the best clue that something is 

happening in the population under study (e.g., deviation from ran-

dom mating, Wahlund effect, genotyping miscoring). In case of global 

signi�cant deviation from Hardy–Weinberg proportions, excessive 

variation across loci of F-statistics represents an accurate signature 

of null alleles, or at least of locus-speci�c genotyping problems. For 

instance, it is known that allelic dropouts have similar effects as null 

alleles (Séré et al. 2014). On the contrary, Wahlund effects have no 

or very weak in�uence on this variation. Additionally, null alleles 

also produce strong positive correlations between F
IS
 and F

ST
, while 

Wahlund effects or sel�ng seldom do. To this respect, high variation 

of F-statistics across loci with a positive correlation between them 

will always represent a hallmark of locus-speci�c ampli�cation 

problems (null alleles, dropouts, and stuttering). The absolute value 

of the jacknife standard error of F
IS
 and F

ST
 may not be very useful 

as other factors as sample size and number of loci and their poly-

morphism may produce relatively high values. Nevertheless, plotting 

the variation of F
IS
 and F

ST
 as in Figures 5 and 6 is always useful. 

These �gures provide examples of what kind of variations can be 

attributed to null alleles or not (especially so for F
IS
). The presence 

of missing data (putative null homozygotes) can also helpfully add 

arguments in favor of null alleles, particularly so when the regression 

between F
IS
 across loci as a function of the number of observed miss-

ing genotypes is signi�cant (e.g., Melachio et al. 2011). Alternatively, 

relatively stable F-statistics with a correlation r(F
IS
, F

ST
) around 0 or 

just above, and of course a signi�cant positive F
IS
 should strongly 

suggest a Wahlund effect, though this pattern will sometimes be hard 

Figure  3. Relationship between r(F
IS
, F

ST
) (Pearson’s correlation between F

IS
 

and F
ST

) and local genetic diversity (H
S
) averaged across 10 replicates for each 

parameter sets with correct data (no Wahlund effect, no null alleles) as described 

in the text. Regressed 95% confidence intervals computed from variation across 

replicates are indicated as dotted lines. The regression determination coefficient 

(R2), Sperman’s rho and its corresponding P-value are also provided. The 

straight plain line in the middle represents the 0 correlation line.

Figure 4. Standard error of F
IS
 (grey) and F

ST
 (black) from jacknife over loci as computed by Fstat and 95% confidence intervals. The results presented corresponds 

to 2-dimensional stepping stone or Island models with different subpopulation sizes (N), number of subpopulations (n), migration rates (m), homogeneous 

mutation models (with 99 alleles and 10−4 mutation rate) (K  =  99), heterogeneous mutation models (VarK) and different situations: Correct sampling and 

genotyping (C), unshared (U), Shared (S), or unbalanced (U) Wahlund effects, 10% of null alleles (0.1) and 50% selfing rate (s). Note that, for the sake of 

comparison, Wahlund, null alleles, or selfing always occur alone (no combination).
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to distinguish from the effect of local deviation from panmixia (self-

ing or sib-mating). Nevertheless, under ideal conditions, StrdErrFIS 

> StrdErrFST should correspond to Wahlund effects more than to 

sel�ng or sib-mating. I thus propose the following determination key 

for data with global (across loci and subsamples) signi�cant hetero-

zygote de�cits:

• r(F
IS
, F

ST
) >> 0 when excluding loci with H

I
 ≈ 0 (if any), high vari-

ations of F
IS
 and F

ST
 across loci, StrdErrFIS >> StrdErrFST and 

occurrence of missing data that explains F
IS
 variation across loci: 

null alleles are affecting the data and the frequency of theses null 

alleles can be estimated with (for instance) MicroChecker (Van 

Oosterhout et al. 2004) and F
ST

 can be corrected with the ENA 

algorithm (Chapuis and Estoup 2007); additionally, if panmixia 

is never or rarely met for any locus, an additional phenomenon 

(Wahlund effect, sel�ng) might be invoked;

• r(F
IS
, F

ST
)~0 or even moderately positive, very small variations of 

F
ST

 across loci, moderate variations of F
IS
 across loci, StrdErrFIS 

Figure 5. Example of the variation of F
IS
 across loci, with 95% confidence intervals of jackknife over subsamples (each locus) or of bootstrap over loci (all) in 

different population models (Island or 2-dimensional stepping stone), one mutation model (K = 99, u = 10−4 for all loci), subpopulation numbers and size (n and 

N), with shared, unshared, or unbalanced Wahlund effects or with p
N
 = 0.1 (proportion of null alleles). The straight plain line in the middle represents the 0 value.
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> StrdErrFST and no or very rare missing data: Wahlund effect 

between subpopulations with an approximate F
ST

 given by 

Equation 8 (assuming local panmixia);

• r(F
IS
, F

ST
) ≈ 0, moderate variance in F

IS
 and F

ST
 across loci, 

StrdErrFIS = StrdErrFST and no or very rare missing data: sel�ng 

or sib mating might better explain the data, the rate of which can 

be estimated from F
IS
 (e.g., De Meeûs 2012 p. 42 and 309).

One additional criterion may help decision making. It uses the 

regression of per locus F
IS
 (averaged over subsamples) as a function 

of missing genotypes observed in all subsamples. A signi�cant posi-

tive relationship is a very sound indication that null alleles explain 

all or part of observed F
IS
. In that case, the determination coef�cient 

(R2) will roughly indicate how much of variance of F
IS
 across loci is 

explained by null alleles (Melachio et al. 2011).

Supplementary Material

Supplementary data are available at Journal of Heredity online.
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