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Abstract: Recently, the research community has been exploring fractional calculus to address prob-
lems related to cosmology; in this approach, the gravitational action integral is altered, leading to a
modified Friedmann equation, then the resulting theory is compared against observational data. In
this context, dynamical systems can be used along with an analysis the phase spaces for different
values of the fractional order of the derivative and their different matter contents. The equilibrium
points are classified, providing a range for the order of the fractional derivative in order to investi-
gate whether the cosmological history can be reconstructed and a late-time accelerating power-law
solution obtained for the scale factor. In this paper, we discuss the physical interpretation of the
corresponding cosmological solutions with particular emphasis on the influence of the fractional
order of the derivative in a theory of gravity that includes a scalar field minimally coupled to gravity.
The presented results improve and extend those obtained previously, further demonstrating that
fractional calculus can play a relevant role in cosmology.

Keywords: fractional calculus; dynamical systems; cosmology

1. Introduction

In contemporary cosmology, the matter of the universe is made up of baryonic matter,
photons, neutrinos, dark matter, and dark energy. In particular, in ΛCDM Cosmology, the
dark energy component is a cosmological constant (Λ) and cold dark matter (CDM) is
present. ΛCDM describes the late-time acceleration of the universe observed from type
Ia supernovae (SnIa) [1] and confirmed by the Cosmic Microwave Background Radiation
(CMBR) [2]. It describes the structural formation of the universe and has excellent agree-
ment with observations. However, the model suffers from the well-known cosmological
constant problem [3,4], and the origin of the late-time acceleration of the universe remains
to be discovered [5]. More recently, this was coined the H0-tension problem, which states
that the value of the Hubble constant as measured by local SH0ES observations [6] is in
tension with the value estimated from the Planck [2] observations. A possible alternative
that could resolve this tension is to consider extensions of ΛCDM [7]. Common approaches
fall into two main categories: (i) assuming a dark energy fluid which affects the acceleration
of the universe or (ii) modifying General Relativity to obtain cosmic acceleration without
adding dark energy. Noncommutative theories, quantum cosmology, quantum deforma-
tion, deformed phase space, Brans–Dicke theory, and noncommutative minisuperspace are
among the alternatives to the cosmological constant that have been proposed; for detailed
examples, see [8–14] and references therein. Scalar field theories of particular interest
include [15–68].
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This paper focuses on the second approach under the formalism known as fractional
calculus. This consists of a generalization of classical integer order calculus to a form
with derivatives and integrals of arbitrary (real or complex) order [69]. This formalism
has drawn increasing attention in the study of so-called “anomalous” social and physical
behaviours, in which the scaling power law of fractional order appears universal as an
empirical description of such complex phenomena. The standard mathematical models of
integer-order derivatives, including nonlinear models, need to be revised in many cases
where the power law is observed. In order to accurately reflect the nonlocal frequency-
and history-dependent properties of power law phenomena, alternative modelling tools
such as fractional calculus have to be introduced. Research into fractional differentiation is
inherently multi-disciplinary, has applications across various disciplines, and in general is
an excellent research activity. Relevant texts on this topic include [70–77]. Specific areas of
interest include fractional quantum mechanics and gravity for fractional spacetime [78,79]
and fractional quantum field theory at positive temperature [80,81]. Other applications of
Quantum Cosmology can be found in [82–85]. In addition, fractional calculus has recently
been explored to address problems related to cosmology in [86–116].

Modified cosmological equations of fractional cosmology were tested against data
from cosmic chronometers and observations of type Ia supernovae in [116]. A joint analysis
allowed the range to be narrowed to the fractional order of the derivative. Furthermore, a
dynamical system was presented and a stability analysis was carried out by introducing di-
mensionless variables and solving the Friedmann constraint locally around the equilibrium
points. Finally, a range of the fractional order of the derivative was arranged in order to
obtain a late-term accelerating power-law solution for the scale factor. Finally, the physical
interpretation of the corresponding cosmological solution was discussed.

The natural generalization of this model was studied in [116] with the intention of
investigating the influence of the fractional order of the derivative in a fractional theory
of gravity including a scalar field minimally coupled to gravity. Below, we review known
results and discuss new results in the context of cosmologies with a scalar field used in
the fractional formulation of gravity. According to our research, it is possible to obtain
relevant information on the properties of the flow associated with autonomous systems
of ordinary differential equations from the cosmological context through the use of quali-
tative techniques of the theory of dynamical systems. In particular, combining local and
global variables allows cosmologies with a scalar field to be qualitatively described in the
context of fractional calculus. In addition, it is possible to provide precise schemes for
finding analytical approximations of the solutions and exact solutions by choosing various
approaches. Finally, we consider corrections of the Friedmann equation based on fractional
calculus formalism, which describes inflationary cosmologies with a scalar field using the
Friedmann–Lemaître–Robertson–Walker and Bianchi I metrics. Bianchi I spacetime is the
simplest homogeneous and anisotropic model. The limit of isotropization is reduced to
the FLRW metric. Another essential characteristic of the Bianchi I Universe is that the
Kasner Universe is recovered in the case of the vacuum in GR. The latter describes the
evolution of the Mixmaster Universe near the cosmological singularity. While our universe
is isotropic, anisotropies played an important role in its very early history; hence, studying
the evolution of anisotropies in fractional calculus is particularly interesting.

The primary approach uses dynamical systems to determine states and asymptotic
solutions [117]. This study consists of several steps: determining equilibrium points,
linearization in their neighbourhood, finding the eigenvalues of the associated Jacobian
matrix, checking the stability conditions in the neighbourhood of the equilibrium points,
finding the sets of stability and instability and determining the basin of attraction, etc.
Lyapunov’s stability theorem is the most general result for determining the asymptotic
stability of an equilibrium point. As far as we know, few works have used the Lyapunov
method in cosmology [118–122]. The Lyapunov stability method requires the use of the
strict Lyapunov function, the construction of which is laborious, though not impossible.
The Hartman–Grobman theorem (Theorem 19.12.6 in [123] p. 350) can be used to investigate
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the stability of hyperbolic equilibrium points of nonlinear autonomous vector fields from
the linearized system near the equilibrium point. For isolated non-hyperbolic equilibrium
points, the normal forms theorem (Theorem 2.3.1 in [124]) can be used, which contains
the Hartman–Grobman theorem as a particular case. The normal forms of the dynamical
system can have periodic solutions for a broad set of initial conditions, implying that an
initially expanding closed isotropic universe can exhibit oscillatory behaviour [125,126].
On the other hand, the invariant manifold theorem (Theorem 3.2.1 in [123]) affirms the
existence of stable and unstable local manifolds under suitable conditions for the vector
field. However, it only allows partial information about the stability of equilibrium points
to be obtained, and does not provide a method for determining the stability or instability
of manifolds.

For investigation of the asymptotic states of the system, the appropriate concepts are
the α and ω-limit sets of x ∈ Rn, that is, the past and future attractors of x, respectively (see
Definition 8.1.2 in [123] p. 105). To characterize these invariant sets, the LaSalle Invariance
Principle ([127]; Theorem 8.3.1 [123], p. 111) or Monotonicity Principle ([117], p. 103; [128]
p. 536) can be used. When applying the Monotonicity Principle a monotonic function is
required; in certain cases, this is suggested by the Hamiltonian formulation of the field
equations [129]. Furthermore, the Poincaré-Bendixson [130] theorem can be used in R2. Its
corollary can distinguish between all of the possible ω-limit sets of the plane. Then, any
compact asymptotic set is one of the following: (1) an equilibrium point, (2) a periodic
orbit, or (3) the union of equilibrium points and heteroclinic or homoclinic orbits. If a
closed orbit (i.e., periodic, heteroclinic, or homoclinic) can be ruled out, all asymptotic
behaviour corresponds to an equilibrium point. For this purpose, Dulac’s criteria can be
used (Theorem 3 [131] p. 6, [117], p. 94, and [130]) based on the construction of a Dulac
function. Dynamical systems tools and observational tests have been explored and applied
in various cosmological contexts [116,132–135]. These methods have proven to be a robust
scheme for investigating the physical behaviour of cosmological models, and can be used
in new contexts such as in this paper.

There are currently several definitions of the fractional derivative, including the
Riemann-Liouville and Caputo derivatives, among others [136]. The Caputo left derivative
is defined by

CDµ
t f (t) =

1
Γ(n− µ)

∫ t

c

dn

dθn f (θ)
(t− θ)µ−n+1 dθ, where n =

{
[µ] + 1 µ /∈ N

µ µ ∈ N , (1)

where Γ(·) is the Gamma function.
The following relation for second-order derivatives generalizes the rule of successive

derivatives [136]:

Dµ
t

[
Dβ

t f (t)
]
= Dµ+β

t f (t)−
n

∑
j=1

Dβ−j
t f (c+)

(t− c)−µ−j

Γ(1− µ− j)
. (2)

Additionally, Leibniz’s rule [136] is written as

Dµ
t [ f (t)g(t)] =

∞

∑
k=0

Γ(µ + 1)
k!Γ(µ− k + 1)

Dµ−k
t f (t)Dk

t g(t), (3)

recovering the usual rule when µ = n ∈ N.
This remainder of this work is organized as follows. An analytical solution to the

fractional Friedmann equation is discussed in Section 2.2. In Section 2.3, an alternative
study is presented that uses Riccati’s Equation (17), assuming that the matter components
have the equation of state pi = wiρi, where wi 6= −1 are constants. In Section 2.4, the
Bianchi I Cosmology is examined in phase space. In Section 2.4.1, an alternative study is
carried out for the Bianchi I metric using the Riccati Equation (17), where it is assumed
that the equation of state of the matter components is pi = wiρi, with wi 6= −1 being
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constants. Section 3 presents the fractional formulation of a cosmology with a scalar field
and an additional matter source. Here, we generalize the results from Section 2.1. Section 4
summarizes the most relevant results, and our conclusions are presented in Section 5.

2. Cosmological Model in Fractional Formulation

The variational approach with fractional action was developed by, e.g., [112,137–141].
With the following fractional action integral:

S =
1

Γ(µ)

∫ t

0
L(θ, qi(θ), q̇i(θ), q̈i(θ))(t− θ)µ−1dθ, (4)

where Γ(µ) is the Gamma function, L is the Lagrangian, µ is the constant fractional
parameter, and t and θ are the physical and intrinsic time, respectively, variation of (4) with
respect to qi leads to the Euler–Poisson equations [141]:

∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂qi
− d

dθ

∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂q̇i
+

d2

dθ2
∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂q̈i

=
1− µ

t− θ

(
∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂q̇i
− 2

d
dθ

∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂q̈i

)
− (1− µ)(2− µ)

(t− θ)2
∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂q̈i
. (5)

2.1. Flat FLRW Fractional Model

In cosmology, it is assumed that the geometry of spacetime is provided by the flat
Friedmann–Lemaître–Robertson–Walker (FLRW) metric:

ds2 = −N2(t)dt2 + a2(t)(dx2 + dy2 + dz2), (6)

where a(t) denotes the scale factor. This result is based on Planck’s observations [2]. The
effective fractional action used in [116] is

Seff =
1

Γ(µ)

∫ t

0

[
3

8πG

(
a2(θ)ä(θ)

N2(θ)
+

a(θ)ȧ2(θ)

N2(θ)
− a2(θ)ȧ(θ)Ṅ(θ)

N3(θ)

)
+ a3(θ)Lm

]
(t− θ)µ−1N(θ)dθ, (7)

where Γ(µ) is the Gamma function, Lm is the matter Lagrangian, µ is the constant fractional
parameter, and t and θ are the physical and intrinsic time, respectively [86]. The Euler–Poisson
Equations (5) obtained after varying the action (7) for qi ∈ {N, a} lead to the field equations(

ȧ(θ)
a(θ)

)2

+
(1− µ)

(t− θ)

ȧ(θ)
a(θ)

=
8πG

3
ρ(θ), (8)

ä(θ)
a(θ)

+
1
2

(
ȧ(θ)
a(θ)

)2

+
(1− µ)

(t− θ)

ȧ(θ)
a(θ)

+
(µ− 2)(µ− 1)

2(t− θ)2 = −4πGp(θ), (9)

where ρ(θ) and p(θ) are the total energy density and the isotropic pressure of the matter
fields; here, we have substituted the lapse function N = 1 after the variation. To designate
the temporary independent variables, the rule t− θ 7→ t, θ 7→ t [86] is used, where the dots
denote these derivatives. Furthermore, the Hubble parameter is defined as H ≡ ȧ/a.

Including all matter sources in Equations (8) and (9), after performing algebra the
following Raychaudhuri equation (with N(t) = 1) is obtained:

Ḣ +
(µ− 1)H

2t
+

(µ− 2)(µ− 1)
2t2 = −4πG ∑

i
(pi + ρi), (10)

along with the Friedmann equation

H2 +
(1− µ)

t
H =

8πG
3 ∑

i
ρi. (11)
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Furthermore, the continuity equation leads to

∑
i

[
ρ̇i + 3

(
H +

1− µ

3t

)
(ρi + pi)

]
= 0, (12)

where ρi and pi are the density and pressure of the ith matter component and the sum
is over all species, e.g., matter, radiation, etc. Note that when µ = 1 in Formula (11) and
Formula (12), the standard cosmology without Λ is recovered, which by itself does not
produce an accelerated expanding universe.

Using the equation of state pi = wiρi, where wi 6= −1 are constants, we have

∑
i
(1 + wi)ρi

[
ρ̇i

(1 + wi)ρi
+ 3

ȧ
a
+

1− µ

t

]
= ∑

i
(1 + wi)ρi

d
dt

[
ln
(

ρi
1/(1+wi)a3t1−µ

)]
. (13)

Assuming separate conservation equations for each species and integrating for each
ρi, we have the following solution:

ρi(t) = ρ0ia(t)−3(1+wi)(t/tU)
(µ−1)(1+wi), (14)

where a(tU) = 1, tU is the age of the universe and ρ0i is the current value of the energy
density of the ith species. Therefore, by substituting (14) into (11), we have

H2 +
(1− µ)

t
H =

8πG
3 ∑

i
ρ0ia−3(1+wi)(t/tU)

(µ−1)(1+wi). (15)

2.2. Analytic Solution for the Fractional Friedmann Equation

Note that for µ 6= 1, the modified continuity Equation (12) provides the condition

8πG
3 ∑

i
pi =

2(µ− 3)H
t

+ H2 − (µ− 2)(µ− 1)
t2 . (16)

Combining these results with (10) and (11), we have the Riccati equation

Ḣ +
2(µ− 4)H

t
+ 3H2 − (µ− 2)(µ− 1)

t2 = 0. (17)

The analytical solution of (17) (see an analogous case in [87] Equation (36)) is as follows:

H(t) =
9− 2µ + r

6t
− rc1

3t(tr + c1)
, (18)

where

c1 =
tr
U(−6H0tU − 2µ + r + 9)

6H0tU + 2µ + r− 9
, r =

√
8µ(2µ− 9) + 105. (19)

Here, c1 is an integration constant depending on µ, the value H0, and the age of the
universe tU .

The relation between the redshift z and cosmic time t is through the scale factor,

a(z) := (1 + z)−1 =

[
tr + c1

tr
U + c1

] 1
3
[

t
tU

] 1
6 (−2µ−r+9)

. (20)

Then, for large t, the asymptotic scale factor can be expressed as

a(t) ' t
1
6 (−2µ+r+9). (21)

Therefore, for large t we need to have q < 0, in which case we have late-time accelera-
tion without adding dark energy.
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Alternative expressions for E and the deceleration parameter that make use of the
exact solution of (17) provided by (18) include

E(t) =
1

H0

[
9− 2µ + r

6t
− rc1

3t(tr + c1)

]
, (22)

and

q(t) = −1 +
−6c1

2(2µ + r− 9)
((−2µ + r + 9)tr + c1(2µ + r− 9))2

+
6(−2µ + r + 9)t2r

((−2µ + r + 9)tr + c1(2µ + r− 9))2

+
−24c1(µ(8µ− 35) + 48)tr

((−2µ + r + 9)tr + c1(2µ + r− 9))2 (23)

where c1 is defined by (21), the relation between t and z is obtained by inverting (20), and
r =

√
8µ(2µ− 9) + 105.

2.3. Dynamical Systems and Stability Analysis

In reference [116], a coupled system dX/dτ = F(X) subject to a constraint G(X) = 0 (X
being the reduced phase space variables) was studied. The equilibrium points, determined
by the equations F(X) = 0, G(X) = 0, are of central importance for this investigation.
Calculating the gradient ∇G(X), if ∇G(X)|P 6= 0 then the constraint G(X) = 0 is solved
locally, obtaining a lower-dimensional system following [142–144].

Instead of continuing the discussion in reference [116], an alternative study is pre-
sented here that uses the Riccati Equation (17), assuming that the matter components have
the equation of state pi = wiρi, where wi 6= −1 are constants.

It can be observed that Equations (11) and (16) impose restrictions on the type of
matter components in the universe, say,

H2 +
(1− µ)

t
H =

8πG
3 ∑

i
ρi, (24)

2(µ− 3)H
t

+ H2 − (µ− 2)(µ− 1)
t2 =

8πG
3 ∑

i
wiρi. (25)

The second condition is obtained by imposing separated conservation equations for
each matter component in the case µ 6= 1. In the rest of this paper, we assume µ /∈ {1, 2}.

Then, defining the dimensionless variables

Ωi =
8πGρi

3H2 , A = tH, (26)

we have the constraints

1 +
(1− µ)

A
= ∑

i
Ωi, (27)

1 +
2(µ− 3)

A
− (µ− 2)(µ− 1)

A2 = ∑
i

wiΩi. (28)

With the new derivative f ′ = ḟ /H, we obtain the following for µ 6= 1:

Ω′i = Ωi

[
(2q− 3wi − 1) + (wi + 1)

(
1−∑

i
Ωi

)]
, (29)

A′ = 1− A(1 + q), (30)
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where the deceleration parameter can be obtained from Equation (17):

q := −1− Ḣ
H2 = 2 +

2(µ− 4)
A

− (µ− 2)(µ− 1)
A2 . (31)

Here, restriction (27) is used to remove the (1− µ)A−1 := (1−∑i Ωi) term originally
appearing in (29).

For comparison with the Standard Model, it is assumed that the components of the
universe are CDM (ρ1 = ρm, w1 = wm = 0) and radiation (ρ2 = ρr, w2 = wr = 1/3);
furthermore, we have the constraints

1 +
(1− µ)

A
= Ωm + Ωr, (32)

1 +
2(µ− 3)

A
− (µ− 2)(µ− 1)

A2 =
1
3

Ωr. (33)

Dimensionless energy densities evolve according to

Ω′m = Ωm(2q−Ωm −Ωr), (34)

Ω′r =
2
3

Ωr(3q− 2Ωm − 2Ωr − 1), (35)

and the age parameter evolves according to (30), where q is provided by (31).
Scaling the time variable by the factor A2, that is,

d f
dτ

= A2 d f
d ln a

, (36)

the following dynamical system is obtained:

dΩm

dτ
= Ωm

(
5Aµ + A(3A− 17)− 2µ2 + 6µ− 4

)
, (37)

dΩr

dτ
=

2
3

Ωr

(
8Aµ + A(3A− 26)− 3µ2 + 9µ− 6

)
, (38)

dA
dτ

= A
(
−2Aµ− 3(A− 3)A + µ2 − 3µ + 2

)
, (39)

with the relation (1−∑i Ωi) = (1− µ)A−1 used to obtain decoupled equations.
The expression (32) is trivially a first integral of the system (37)–(39). However, expres-

sion (33) is a first integral of the system (37)–(39) only if

A
(

3A3 + A2(5µ− 17) + A(µ(13µ− 64) + 81)− (µ− 2)(µ− 1)(5µ− 8)
)
= 0. (40)

Table 1 shows the equilibrium points/sets of the system (37)–(39) that satisfy the
compatibility conditions (33) and (40). Based on physical considerations, we do not examine
the points with A = 0, corresponding to tH → 0.

Table 1. Equilibrium points/sets of the system (37)–(39) that satisfy the compatibility conditions (33)
and (40); NH means nonhyperbolic.

Label Ωm Ωr A µ q λ1 λ2 λ3 Stability

P1 0 0 3
2

5
2 − 1

3 − 15
2 −3 − 3

2 Sink

P2 − 2
3 0 3

2
7
2 − 1

3 − 21
2 −1 0 NH. 2D stable manifold

P3 0 − 6
5

15
8

41
8 − 7

15 − 375
16

15
16 0 Saddle

The results are listed below:
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1. P1: exists for µ = 5
2 . The deceleration parameter is q = − 1

3 . Therefore, it represents an
accelerating power-law cosmological solution. The equilibrium point is a sink.

2. P2: exists for µ = 7
2 . The deceleration parameter is q = − 1

3 . Therefore, it represents an
accelerating power-law cosmological solution. The equilibrium point is nonhyperbolic
with a two-dimensional stable manifold.

3. P3: exists for µ = 41
8 . The deceleration parameter is q = − 7

15 . Therefore, it represents
an accelerating power-law cosmological solution. The equilibrium point is a saddle.

For equilibrium points with constant A, the corresponding cosmological solution is a
power-law solution with scale factor a(t) = (t/tU)

A. Then, the solutions P1 and P2 verify

that a(t) = (t/tU)
3
2 . Finally, the solution P3 satisfies a(t) = (t/tU)

15
8 . Points P2 and P3 are

nonphysical, as they lead to Ωm < 0 and Ωr < 0, respectively.
Therefore, from the compatibility conditions of the problem and the condition µ /∈ {1, 2},

and considering that the matter sources are radiation and cold dark matter, conditions are
imposed on the parameter µ, which can take the discrete values {5/2, 7/2, 41/8} at the
equilibrium points. The system is then reduced to a one-dimensional system provided by
(39) for µ ∈ {5/2, 7/2, 41/8}.

Figure 1 shows the system’s flow for values µ = 5
2 , 7

2 , 41
8 .

Figure 1. Flow of the system (37)–(39) for the values of µ = 5/2, 7/2, 41/8.

Table 2 shows the equilibrium points of the one-dimensional system (39), where
r =

√
8µ(2µ− 9) + 105.

Table 2. Equilibrium points of the one-dimensional system (39), where r =
√

8µ(2µ− 9) + 105.

Labels A q Stability

Q1 0 Indeterminate Source

Q2
1
6 (−r− 2µ + 9) − 2(µ−4)µ+r+13

2(µ−2)(µ−1) Sink

Q3
1
6 (r− 2µ + 9) −2(µ−4)µ+r−13

2(µ−2)(µ−1) Sink

Figure 2 displays the flow of the one-dimensional system (39) for µ = 5
2 , 7

2 , 41
8 . Note

that Q2 is not a physical point, and the late-time attractors are Q2 and Q3.
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Q3Q1Q2
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dA

dτ

μ=5/2

Q3Q1Q2

-0.5 0.0 0.5 1.0 1.5
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A

dA

dτ

μ=7/2
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-2 -1 0 1

-10
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0
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A

dA
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μ=41/8

Figure 2. Flow of the one-dimensional system (39) for µ = 5
2 , 7

2 , 41
8 . Note that Q2 is not a physical

point, and the late-time attractors are Q2 and Q3.

A second alternative formulation is the following: the equation of state of one of the
matter sources is not imposed; instead, it is deduced from the compatibility conditions.
That is, it is assumed that the components of the universe are CDM and a fluid with a
constant state equation to be determined (ρ2 = ρX, w2 = wX). Then, we have the constraints

1 +
(1− µ)

A
= Ωm + ΩX, (41)

1 +
2(µ− 3)

A
− (µ− 2)(µ− 1)

A2 = wXΩX. (42)

The dimensionless energy densities are obtained according to

Ω′m = Ωm(2q−Ωm −ΩX), (43)

Ω′X = ΩX[(2q− 3wX − 1) + (wX + 1)(1−Ωm −ΩX)], (44)

and the age parameter evolves according to (30), where q is provided by (31).
Using derivative (36), the following dynamical system is obtained:

dΩm

dτ
= Ωm

(
5Aµ + A(3A− 17)− 2µ2 + 6µ− 4

)
, (45)

dΩX

dτ
= ΩX

(
Aµ(wX + 5)− A(3A(wX − 1) + wX + 17)− 2µ2 + 6µ− 4

)
, (46)

dA
dτ

= A
(
−2Aµ− 3(A− 3)A + µ2 − 3µ + 2

)
, (47)

with the relation (1−∑i Ωi) = (1− µ)A−1 used to obtain decoupled equations.
Expression (41) is trivially a first integral of the system (45)–(47). However, expression

(42) is a first integral of the system (45)–(47) only if

A
[
3A3(wX − 1) + A2(5µ− 17)(wX − 1)− A(µ(7µ− 37) + (µ− 1)(5µ− 12)wX + 50)

+ (µ− 2)(µ− 1)(3µ + (µ− 1)wX − 5)
]
= 0. (48)

Table 3 shows the equilibrium points/sets of the system (45)–(47) that satisfy the
compatibility conditions (42) and (48).
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Table 3. Equilibrium points/sets of the system (45)–(47) that satisfy the compatibility conditions (42)
and (48); NH means nonhyperbolic.

Label Ωm ΩX A µ q wX Stability

R1 0 0 3
2

5
2 − 1

3 wX Sink for
wX > −1/3

saddle for wX < −1/3.

R2 Ωm
1
3 (−3Ωm − 2) 3

2
7
2 − 1

3 0 NH. 1D Stable
manifold

R3 − 2
3 0 3

2
7
2 − 1

3 wX NH. 2D Stable
manifold for wX > 0

saddle for wX < 0

R4 0 r+5
2(µ−2)

1
6 (−2µ− r + 9) µ − 2µ2−8µ+r+13

2(µ−2)(µ−1) − r+7
4(µ−1) NH. 2 D stable

manifold
for µ < 1∨ µ > 2

Saddle for 1 < µ < 2

R5 0 − r−5
2(µ−2)

1
6 (−2µ + r + 9) µ

−2µ2+8µ+r−13
2(µ−2)(µ−1)

r−7
4(µ−1) NH. 2D stable

manifold for µ < 7
2

saddle for µ > 7
2

Table 4 presents the eigenvalues for the equilibrium points/sets of the system (45)–(47)
that satisfy the compatibility conditions (42) and (48). These equilibrium points/sets of the
system are enumerated as follows.:

1. R1:
{

A = 3
2 , µ = 5

2 , Ωm = 0, Ω X = 0
}

; q = − 1
3 , and the critical point

(a) is a sink for wX > −1/3
(b) is a saddle for wX < −1/3.

2. R2:
{

A = 3
2 , µ = 7

2 , Ωm = − 2
3 , ΩX = 0

}
; this solution is not physically viable because

Ωm < 0. The deceleration parameter is q = − 1
3 . It is nonhyperbolic with a one-

dimensional stable manifold.
3. R3:

{
A = 3

2 , wX = 0, µ = 7
2 , ΩX = −Ωm − 2

3
}

. q = − 1
3 ; this solution is not physically

viable because ΩX < 0

(a) is nonhyperbolic with a two-dimensional stable manifold for wX > 0
(b) is nonhyperbolic with a one-dimensional stable manifold and a one-dimensional

unstable manifold for wX < 0 (saddle).

4. R4:
{

A = 1
6 (−2µ− r + 9), Ωm = 0, ΩX = r+5

2(µ−2)

}
, where

r =
√

8µ(2µ− 9) + 105. The cosmological parameters are q = − 2(µ−4)µ+r+13
2(µ−2)(µ−1) and

wX = r+7
4−4µ . It is

(a) nonhyperbolic with a two-dimensional stable manifold for µ < 1, or µ > 2
(b) nonhyperbolic with a one-dimensional stable manifold for 1 < µ < 2.

The solution is not physically viable; that is, ΩX ≥ 0, A ≥ 0 is not satisfied in the
following cases:

(a) for µ > 2, we have ΩX ≥ 0 and A < 0
(b) for 1 ≤ µ < 2, we have ΩX < 0 and A ≥ 0
(c) for µ < 1, we have ΩX < 0 and A < 0.

5. R5:
{

A = 1
6 (−2µ + r + 9), Ωm = 0, ΩX = − r−5

2(µ−2)

}
, where

r =
√

8µ(2µ− 9) + 105. The cosmological parameters are q = −2(µ−4)µ+r−13
2(µ−2)(µ−1) and

wX = r−7
4(µ−1) . The equilibrium point is

(a) nonhyperbolic with a two-dimensional stable manifold for µ < 7
2

(b) is a saddle for µ > 7
2 .
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The solution is as follows.

(a) The solution satisfies wX < −1/3 for µ < 5
2

(b) The solution is accelerated (q < 0) for large t for all µ.
(c) The solution is not physically viable for µ > 5

2 .

Table 4. Eigenvalues for the equilibrium points/sets of the system (45)–(47) that satisfy compatibility
conditions (42) and (48) .

Label λ1 λ2 λ3

R1
15
2 − 3

2 − 3
2 (3wX + 1)

R2 − 21
2 0 0

R3 − 21
2 0 −3wX

R4 0 1
6
(
−16µ2 + 72µ− 2µr + 9r− 105

) 1
6
(
−12µ2 + 61µ− 3µr + 8r− 84

)
R5 0 1

6
(
−12µ2 + 61µ + 3µr− 8r− 84

) 1
6
(
−16µ2 + 72µ + 2µr− 9r− 105

)
Figure 3 represents the effective state equation of the effective fluid (wX) with the

deceleration parameter (q) of the equilibrium point R5 as a function of µ.

0.0 0.5 1.0 1.5 2.0 2.5

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

wX

q

-1/3

-1

Figure 3. The effective fluid equation of state (wX), with the deceleration parameter (q) of the

equilibrium point R5 in the physical region in the parameter space µ ∈
(
−∞, 5

2

]
.

2.4. Bianchi I Universe

The line element describes the local and rotationally symmetric Bianchi I spacetime:

ds2 = −N2(t)dt2 + e2α(t)
(

e2β(t)dx2 + e−β(t)
(

dy2 + dz2
))

, (49)

where α(t) is the scale factor for the three-dimensional hypersurface, β(t) is the anisotropic
parameter, and N(t) is the lapse function. The metric (49) reduces to the spatially flat FLRW
geometry in the limit β→ 0. The effective fractional action can be written as

Seff =
1

Γ(α)

∫ t

0

[
3

8πGN2(θ)

(
α̈(θ)− α̇(θ)Ṅ(θ)

N(θ)
+ 2α̇2(θ) +

1
4

β̇2(θ)

)
+ e3α(θ)Lm

]
(t− θ)µ−1N(θ)dθ. (50)
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Varying the Action (50) for qi ∈ {N, α, β} and assuming the lapse function N = 1 after
the variation, from the Euler–Poisson Equation (5) we obtain

α̇2 +
(1− µ)α̇

t
− 1

4
β̇2 =

8πG
3

ρ, (51)

α̈ +
(1− µ)α̇

t
+

3
2

α̇2 +
3
8

β̇2 +
(µ− 2)(µ− 1)

2t2 = −4πGp, (52)

β̇

(
3α̇ +

1− µ

t

)
+ β̈ = 0, (53)

where ρ = ∑i ρi and p = ∑i pi denote the total energy density and total pressure of
the matter fields, respectively, and H = α̇ and σ = β̇/2 are the respective Hubble and
anisotropy parameters. To designate the temporary independent variables, we use the rule
t− θ = T 7→ t [86], where the dots denote these derivatives.

Therefore, the field equations can be written as

H2 +
(1− µ)H

t
− σ2 =

8πG
3 ∑

i
ρi, (54)

Ḣ +
(1− µ)H

t
+

3
2

H2 +
(µ− 2)(µ− 1)

2t2 +
3
2

σ2 = −4πG ∑
i

pi, (55)

σ̇ + 3σ

(
H +

1− µ

3t

)
= 0, (56)

and we separately assume conservation equations

ρ̇i + 3
(

H +
1− µ

3t

)
(ρi + pi) = 0. (57)

For α 6= 1, (57) produces modified continuity equations only if

8πG
3 ∑

i
pi =

2(µ− 3)H
t

+ H2 − (µ− 2)(µ− 1)
t2 − σ2. (58)

Removing ∑i pi and ∑i ρi from (54), (55), and (58) results in the cancellation of the σ
terms in the Equation (55). Therefore, the master Equation (17) is obtained, which has a
solution (18) where c1 is an integration constant that depends on µ, the value of H today,
H0, and the age of the universe tU . This leads to a(t) ' t

1
6 (−2µ+r+9) for large t, whence we

acquire q < 0, resulting in late-time acceleration without dark energy.

2.4.1. Dynamical Systems and Stability Analysis

Continuing with our analysis, we assume that the matter components have the equa-
tion of state pi = wiρi, where wi 6= −1 are constants [116]. Then, using the dimensionless
variables (26) and

Σ = σ/H (59)

and with the new derivative f ′ = ḟ /H, for µ 6= 1 we obtain

Ω′j = Ωj

[
(2q− 3wj − 1) + (wj + 1)

(
1− Σ2 −∑

i
Ωi

)]
, (60)

Σ′ = Σ

[
(q− 2) +

(
1− Σ2 −∑

i
Ωi

)]
, (61)

and the age parameter evolves according to (30), where q is found based on Equation (17)
(valid for the FLRW and Bianchi I metrics) as (31).
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Instead of following [116], we present an alternative approach using the Riccati
Equation (17) while assuming that the matter components have equations of state pi = wiρi,
where wi 6= −1 are constants.

It can be observed that Equations (54) and (58) impose restrictions on the type of
matter components of the universe; using, say, the dimensionless variables (26) and (59),
we obtain

1 +
(1− µ)

A
− Σ2 = ∑

i
Ωi, (62)

1 +
2(µ− 3)

A
− (µ− 2)(µ− 1)

A2 − Σ2 = ∑
i

wiΩi. (63)

Compared with the standard model, it is assumed that the components of the Universe
are CDM and radiation. Then, we have the constraints

1 +
(1− µ)

A
− Σ2 = Ωm + Ωr, (64)

1 +
2(µ− 3)

A
− (µ− 2)(µ− 1)

A2 − Σ2 =
1
3

Ωr. (65)

The dimensionless energy densities evolve according to

Ω′m = Ωm(2q−Ωm −Ωr − Σ2), (66)

Ω′r =
2
3

Ωr(3q− 2Ωm − 2Ωr − 2Σ2 − 1), (67)

Σ′ = Σ
(

q− 1−Ωm −Ωr − Σ2
)

, (68)

and the age parameter evolves according to (30), where q is provided by Equation (31) and
f ′ = ḟ /H.

Using the derivative (36), the following dynamical system is obtained:

dΩm

dτ
= Ωm

(
5Aµ + A(3A− 17)− 2µ2 + 6µ− 4

)
, (69)

dΩr

dτ
=

2
3

Ωr

(
8Aµ + A(3A− 26)− 3µ2 + 9µ− 6

)
, (70)

dΣ
dτ

= Σ(3A(µ− 3)− (µ− 2)(µ− 1)), (71)

dA
dτ

= A
(
−2Aµ− 3(A− 3)A + µ2 − 3µ + 2

)
, (72)

with
(
1− Σ2 −∑i Ωi

)
= (1− µ)A−1 used to obtain decoupled equations.

The expression (64) is trivially a first integral of the system (69)–(72). However, the
expression (65) is a first integral of the system (69)–(72) only if

A
[
3A3

(
Σ2 − 1

)
+ A2

(
−µ
(

Σ2 + 5
)
+ Σ2 + 17

)
+ A((64− 13µ)µ− 81)

+ (µ− 2)(µ− 1)(5µ− 8)
]
= 0. (73)

The equilibrium points of the system (69)–(72) that satisfy the compatibility conditions
(64) and (73) and A 6= 0 are presented in Table 5.
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Table 5. Equilibrium points of the system (69)–(72) that satisfy the compatibility conditions (64) and
(73). λ1, λ2, λ3 and λ4 are the eigenvalues; NH means nonhyperbolic.

Label Ωm Ωr Σ A µ q λ1 λ2 λ3 λ4 Stability

S1 0 0 0 3
2

5
2 − 1

3 − 15
2 −3 −3 − 3

2 Sink

S2 − 2
3 0 0 3

2
7
2 − 1

3 − 21
2 − 3

2 −1 0 NH

S3 0 − 6
5 0 15

8
41
8 − 7

15 − 375
16 − 15

16
15
16 0 NH

The results are listed below:

1. S1:
{

A = 3
2 , Ωm = 0, Ωr = 0, Σ = 0, µ = 5

2
}

. As the deceleration parameter is q = − 1
3 ,

the solution is accelerated. It is a sink.
2. S2:

{
A = 3

2 , Ωm = − 2
3 , Ωr = 0, Σ = 0, µ = 7

2
}

. It is not physically viable because
Ωm < 0.

3. S3:
{

A = 15
8 , Σ = 0, µ = 41

8

}
. It is not physically viable because Ωr < 0.

Then, based on the compatibility conditions of the problem, considering that the
matter sources in the Bianchi I metric are radiation and cold dark matter, and assuming
µ /∈ {1, 2}, it is imposed that the parameter µ can take discrete values {5/2, 7/2, 41/8}.

A second alternative formulation is the following: the equation of state of one of the
matter sources is not imposed; instead, it is deduced from the compatibility conditions.
That is, it is assumed that the components of the universe are CDM and a fluid with a
constant state equation to be determined. Then, we have the constraints

1 +
(1− µ)

A
= Ωm + ΩX + Σ2, (74)

1 +
2(µ− 3)

A
− (µ− 2)(µ− 1)

A2 = wXΩX + Σ2. (75)

The dimensionless energy densities evolve according to

Ω′m = Ωm(2q−Ωm −ΩX − Σ2), (76)

Ω′X = ΩX

[
(2q− 3wX − 1) + (wX + 1)

(
1−Ωm −ΩX − Σ2

)]
, (77)

Σ′ = Σ
[
q− 1−Ωm −ΩX − Σ2

]
, (78)

the age parameter evolves according to (30), and f ′ = ḟ /H.
Using the derivative (36), the following dynamical system is obtained:

dΩm

dτ
= Ωm

(
5Aµ + A(3A− 17)− 2µ2 + 6µ− 4

)
, (79)

dΩX

dτ
= ΩX

[
Aµ(wX + 5)− A(3A(wX − 1) + wX + 17)− 2µ2 + 6µ− 4

]
, (80)

dΣ
dτ

= Σ(3A(µ− 3)− (µ− 2)(µ− 1)), (81)

dA
dτ

= A
(
−2Aµ− 3(A− 3)A + µ2 − 3µ + 2

)
, (82)

with the relation
(
1− Σ2 −∑i Ωi

)
= (1− µ)A−1 used to obtain decoupled equations.

The expression (74) is trivially a first integral of the system (79)–(82). However, the
expression (75) is a first integral of the system (79)–(82) only if

A
[
− 3A3

(
Σ2 − 1

)
(wX − 1) + A2(wX − 1)

(
(µ− 1)Σ2 + 5µ− 17

)
− A(µ(7µ− 37) + (µ− 1)(5µ− 12)wX + 50) + (µ− 2)(µ− 1)(3µ + (µ− 1)wX − 5)

]
= 0. (83)
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Table 6 shows the equilibrium points/sets of the system (79)–(82) that satisfy the
compatibility conditions (75) and (83). The analysis of the equilibrium points with A = 0 is
omitted here due to physical considerations.

Table 6. Equilibrium points/sets of the system (79)–(82) that satisfy the compatibility conditions (75)
and (83); NH means nonhyperbolic.

Label Ωm ΩX Σ A µ q wX Stability

R1 0 0 0 3
2

5
2 − 1

3 wX Sink for wX > − 1
3

Saddle for wX < − 1
3

R2 Ωm
1
3 (−3Ωm − 2) 0 3

2
7
2 − 1

3 0 NH
2D stable
manifold

R3 − 2
3 0 0 3

2
7
2 − 1

3 wX NH
3 D stable

manifold for wX > 0
Saddle for wX < 0

R4 0 r+5
2(µ−2) 0 1

6 (−2µ− r + 9) µ − 2µ2−8µ+r+13
2µ2−6µ+4

r+7
4−4µ NH. 3D stable

manifold
for µ < 1∨ µ > 2

Saddle for 1 < µ < 2

R5 0 − r−5
2(µ−2) 0 1

6 (−2µ + r + 9) µ
−2µ2+8µ+r−13

2(µ2−3µ+2)
r−7

4(µ−1) NH. 3D stable
manifold
for µ < 7

2
saddle for µ > 7

2

The corresponding eigenvalues are presented in Table 7. Below are the equilibrium
points/sets of the system (79)–(82) that satisfy the compatibility conditions (75) and (83)
and A 6= 0.

1. R1:
{

A = 3
2 , µ = 5

2 , Σ = 0, Ωm = 0, ΩX = 0
}

. As the deceleration parameter is q = − 1
3 ,

the solution is accelerated. It is

(a) a sink for wX > − 1
3

(b) a saddle for wX < − 1
3 .

2. R2:
{

A = 3
2 , wX = 0, µ = 7

2 , Σ = 0, ΩX = 1
3 (−3Ωm − 2)

}
. It is nonhyperbolic with

a two-dimensional stable manifold. This solution is not physically viable because
ΩX < 0.

3. R3:
{

A = 3
2 , µ = 7

2 , Σ = 0, Ωm = − 2
3 , ΩX = 0

}
. This solution is not physically viable

because Ωm < 0. As deceleration parameter is q = − 1
3 , the solution is accelerated.

It is

(a) nonhyperbolic with a three-dimensional stable manifold for wX > 0
(b) is nonhyperbolic with a two-dimensional stable manifold and a one-dimensional

unstable manifold for wX < 0 (saddle).

4. R4:
{

Ωm = 0, ΩX = r+5
2(µ−2) , Σ = 0, A = 1

6 (−2µ− r + 9)
}

. The cosmological parame-

ters are q = − 2(µ−4)µ+r+13
2(µ−2)(µ−1) and wX = r+7

4−4µ . The equilibrium point is

(a) nonhyperbolic with a three-dimensional stable manifold for µ < 1, or µ > 2
(b) a nonhyperbolic saddle for 1 < µ < 2.

The solution is not physically viable; that is, ΩX ≥ 0, A ≥ 0 is not satisfied in the
following cases:

(a) for µ > 2, we have ΩX ≥ 0 and A < 0
(b) for 1 ≤ µ < 2, we have ΩX < 0 and A ≥ 0
(c) for µ < 1, we have ΩX < 0 and A < 0.
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5. R5:
{

Ωm = 0, ΩX = − r−5
2(µ−2) , Σ = 0, A = 1

6 (−2µ + r + 9)
}

. The cosmological param-

eters are q = −2(µ−4)µ+r−13
2(µ−2)(µ−1) and wX = r−7

4(µ−1) . The equilibrium point is

(a) nonhyperbolic with a two-dimensional stable manifold for µ < 7
2

(b) is a saddle for µ > 7
2 .

The solution is as follows:

(a) the solution satisfies wX < −1/3 for µ < 5
2

(b) the solution is always accelerated (q < 0) for large t; anisotropy decays very
fast and does not influence late-time behaviour

(c) the solution is not physically viable for µ > 5
2 .

Table 7. Eigenvalues for the equilibrium points/sets of the system (79)–(82) that satisfy the compati-
bility conditions (75) and (83).

Label λ1 λ2 λ3 λ4

R1 − 15
2 −3 − 3

2 − 3
2 (3wX + 1)

R2 − 21
2 − 3

2 0 0

R3 − 21
2 − 3

2 0 −3wX

R4 0 1
2 (−µ(4µ + r− 21) + 3r− 31) 1

6 (−2µ(8µ + r− 36) + 9r− 105) 1
6 (µ(−12µ− 3r + 61) + 8r− 84)

R5 0 1
6 (µ(−12µ + 3r + 61)− 8r− 84) 1

6 (2µ(−8µ + r + 36)− 3(3r + 35)) 1
2 (µ(−4µ + r + 21)− 3r− 31)

3. Fractional Formulation of Cosmology with Scalar Field and Matter

This section discusses a fractional formulation of cosmology with scalar field and matter.

3.1. Flat FLRW Model

The fractional action can be written as

Sµ
EH =

1
Γ(µ)

∫ t

0
N
[

3
8πG

(
a2(θ)ä(θ)

N2(θ)
+

a(θ)ȧ2(θ)

N2(θ)
− a2(θ)ȧ(θ)Ṅ(θ)

N3(θ)
− Λa3(θ)

3

)
+a3(θ)

(
εφ̇2(θ)

2N2(θ)
−V(φ(θ))

)]
(t− θ)µ−1dθ, (84)

where a is the scale factor, G is Newton’s universal gravitation constant, N is a lapse
function that is equal to one after performing the action variation, Λ is the cosmological
constant, φ is the scalar field, V is the potential of the scalar field, ε is a constant that can be
±1, as we can have a scalar field with positive (quintessence) or negative (phantom) kinetic
energy, t is the cosmic time, and θ is the proper time of the system.

By varying the action (84) with respect to {φ, a, N} and making the replacement N = 1
after the variation, the following equations are obtained:

φ̈ + 3
(

H +
1− µ

3t

)
φ̇ + ε

dV(φ)

dφ
= 0, (85)

Ḣ − 1− µ

2t
H +

(1− µ)(2− µ)

2t2 = −4πG
(

εφ̇2 + ρ + p
)

, (86)

H2 +
1− µ

t
H =

8πG
3

(
ε

φ̇2

2
+ V(φ) + ρ

)
+

Λ
3

. (87)

where ρ = ∑i ρi is the energy density of all matter sources other than the scalar field and
p = ∑i pi is the corresponding pressure. To designate the temporary independent variables,
the rule t− θ = T 7→ t [86] is used, with the dots denoting these derivatives.
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Assuming that all matter sources with density ρi are separately conserved, we can
rewrite the conservation equation for the ith component as

ρ̇i + 3
(

H +
1− µ

3t

)
(ρi + pi) = 0. (88)

To ensure that Friedmann’s formula is preserved, that is, (87) is a first integral of the
system, and that (88) is satisfied, the following equations are deduced:

∑
i

ρi = −
3(µ− 1)H

8πGt
+

3H2

8πG
− Λ

8πG
−V(φ)− 1

2
εφ̇2, (89)

∑
i

pi =
3(µ− 3)H

4πGt
+

3H2

8πG
+

Λt2 − 3(µ− 2)(µ− 1)
8πGt2 + V(φ)− 1

2
εφ̇2. (90)

These equations allow an effective state equation for matter to be deduced without
imposing state equations on each matter fluid. The equations of motion for the other matter
sources are decoupled, allowing the simplified system to be investigated.

Ḣ =
2(4− µ)H

t
− 3H2 +

(µ− 2)(µ− 1)
t2 , (91)

φ̈ = −3Hφ̇ +
(µ− 1)φ̇

t
− εV′(φ). (92)

Note that for µ 6= 1, the first equation is Riccati’s ordinary differential Equation (17),
for which the analytic solution is (18), where c1 is an integration constant defined by (19)
which depends on µ, the value H0, and the age of the universe tU . As before, for large t the
asymptotic scale factor can be expressed as a(t) ' t

1
6 (−2µ+r+9), allowing the acceleration

of the late universe to be obtained. These results are independent of the matter source
and anisotropy.

3.1.1. Analysis of Dynamical Systems

In this section, it is assumed that the potential is exponential, that is,

V(φ) = V0e−4
√

3π
√

Gλφ, (93)

where we assume that λ > 0 and add only one matter source, with density ρm and
pressure pm.

Then, the following variables are defined:

x =

√
8πG√
6H

φ̇, y =
1
H

√
8πGV(φ)

3
, A = tH, ΩΛ =

Λ
3H2 , Ωm =

8πGρm

3H2 , (94)

satisfying the constraint

1 +
1− µ

A
= εx2 + y2 + ΩΛ + Ωm, (95)

which is used as the definition of Ωm. With the new derivative f ′ = ḟ /H, we obtain the
following dynamical system for µ 6= 1:

x′ = (q− 2)x +
(µ− 1)x

A
+ 3λy2ε, (96)

y′ = y(q− 3λx + 1), (97)

Ω′Λ = 2ΩΛ(1 + q), (98)

and (30), where q is defined by (31).
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Hence,

x′ = − (µ− 2)(µ− 1)x
A2 +

3(µ− 3)x
A

+ 3λy2ε, (99)

y′ = − (µ− 2)(µ− 1)y
A2 +

2(µ− 4)y
A

+ y(3− 3λx), (100)

A′ =
(µ− 2)(µ− 1)

A
− 3A− 2µ + 9, (101)

Ω′Λ = ΩΛ

(
−2(µ− 2)(µ− 1)

A2 +
4(µ− 4)

A
+ 6
)

. (102)

Note that Equation (102) is decoupled, thereby obtaining a reduced system for (x, y, A)
with A 6= 0. Using the time variable (36), the following dynamical system is obtained:

dx
dτ

= 3A2λy2ε + 3A(µ− 3)x− (µ− 2)(µ− 1)x, (103)

dy
dτ

= A2y(3− 3λx) + 2A(µ− 4)y− (µ− 2)(µ− 1)y, (104)

dA
dτ

= −3A3 + A2(9− 2µ) + A(µ− 2)(µ− 1), (105)

which is defined on the phase space

A(1− εx2 − y2) + (1− µ) := A(Ωm + ΩΛ) ≥ 0. (106)

Table 8 presents the equilibrium points of the dynamical system (103)–(105) with
A 6= 0, where r =

√
8µ(2µ− 9) + 105.

Table 8. Equilibrium points of the dynamical system (103)–(105) with A 6= 0, where r =
√

8µ(2µ− 9)+ 105.

Labels x y A

S f1 − 2
λ(2µ+r−9) −

√
−((4µ+r−9)µ2)−6(r+9)
3
√

2λ(µ2−3µ+2)
√

ε
1
6 (−2µ− r + 9)

S f2 − 2
λ(2µ+r−9)

√
−((4µ+r−9)µ2)−6(r+9)
3
√

2λ(µ2−3µ+2)
√

ε
1
6 (−2µ− r + 9)

S f3 0 0 1
6 (−2µ− r + 9)

S f4
2

λ(−2µ+r+9) −
√

(−4µ+r+9)µ2+6(r−9)
3
√

2λ(µ2−3µ+2)
√

ε
1
6 (−2µ + r + 9)

S f5
2

λ(−2µ+r+9)

√
(−4µ+r+9)µ2+6(r−9)
3
√

2λ(µ2−3µ+2)
√

ε
1
6 (−2µ + r + 9)

S f6 0 0 1
6 (−2µ + r + 9)

3.1.2. Stability Analysis for ε = 1

The equilibrium points of the system (103)–(105) for ε = 1 with A 6= 0 are:

1. S f1:
(
− 2

λ(2µ+r−9) ,−
√
− 1

2 µ2(4µ+r−9)−3(r+9)

3λ(µ2−3µ+2) , 1
6 (−2µ− r + 9)

)
, where

r =
√

8µ(2µ− 9) + 105. This point exists for λ 6= 0, µ /∈ {1, 2}, has eigenvalues
denoted symbolically by {δ1, δ2, δ3}, and is a saddle for

(a) 0 ≤ µ < 1, or
(b) 1 < µ < 2, or
(c) µ > 2.
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2. S f2:
(
− 2

λ(2µ+r−9) ,

√
− 1

2 µ2(4µ+r−9)−3(r+9)

3λ(µ2−3µ+2) , 1
6 (−2µ − r + 9)

)
. This point exists for

λ 6= 0, µ /∈ {1, 2}, has eigenvalues denoted symbolically by {λ1, λ2, λ3}, and is a
saddle for

(a) 0 ≤ µ < 1, or
(b) 1 < µ < 2, or
(c) µ > 2.

3. S f3: (0, 0, 1
6 (−2µ− r + 9)). This point always exists; it has eigenvalues{

1
6 (−2µ− r + 9), 1

2 (−µ(4µ + r− 21) + 3r− 31), 1
6 (−2µ(8µ + r− 36) + 9r− 105)

}
.

It is:

(a) a source for 1 < µ < 2 and
(b) a sink for 0 ≤ µ < 1 or µ > 2.

4. S f4:
( 2

λ(−2µ+r+9) ,−
√

1
2 µ2(−4µ+r+9)+3(r−9)

3λ(µ2−3µ+2) , 1
6 (−2µ+ r+ 9)

)
. This point exists for λ 6= 0,

µ /∈ {1, 2}, has eigenvalues symbolically denoted by {λ1, λ2, λ3}, and is a sink
(see Figure 4).

5. S f5:
( 2

λ(−2µ+r+9) ,

√
1
2 µ2(−4µ+r+9)+3(r−9)

3λ(µ2−3µ+2) , 1
6 (−2µ + r + 9)

)
. This point exists for λ 6= 0,

µ /∈ {1, 2}, has eigenvalues denoted symbolically by {λ1, λ2, λ3}, and is a sink
(see Figure 4).

6. S f6: (0, 0, 1
6 (−2µ + r + 9)). This point always exists; it has eigenvalues{

1
6 (−2µ + r + 9), 1

2 (µ(−4µ + r + 21)− 3r− 31), 1
6 (2µ(−8µ + r + 36)− 3(3r + 35))

}
and is a saddle for µ ≥ 0.

0 2 4 6 8 10
-60
-50
-40
-30
-20
-10
0

μ

Re(λi) Re(λ1), Re(λ1)

Re(λ2), Re(λ2)

Re(λ3), Re(λ3)

Figure 4. Real part of the eigenvalues λ1, λ1, λ2 and λ1, λ1, λ2 of S f4 and S f5 with ε = 1. Both points
are sinks.

In the previous list, the eigenvalues of the points S f1 and S f4, S f5 are presented
symbolically because the expressions are quite complicated. For example, in Figure 4, it is
verified that both points are sinks.

On the other hand, the best-fit µ-value is obtained from the reconstruction of H(z)
using Equations (19), (20), and (22). The best-fit values (µ∗, t∗U) for different priors of µ
were derived in [116], and are summarized in Table 9. These best-fit values are used in the
numerics. Hence, the general behaviour of the points is verified numerically in Table 10,
where µ∗ = 1.71 is set for ε = 1 and λ = 4.
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Table 9. The best-fit values (µ∗, t∗U) for different priors of µ derived in [116].

Prior µ∗ t∗U
0 < µ < 1 0.50 41.30 Gyrs
1 < µ < 3 1.71 27.89 Gyrs
0 < µ < 3 1.15 33.66 Gyrs

Table 10. Eigenvalues of the Jacobian matrix of the dynamical system (103)–(105) evaluated at the
equilibrium points of Table 8 for the best-fit value µ∗ = 1.71, ε = 1, λ = 4.

Labels λ1 λ2 λ3

S f1 0.201645 0.103796 −0.0436487

S f2 0.201645 0.103796 −0.0436487

S f3 0.0376622 0.0601471 0.201645

S f4 −9.75684 −3.42327− 3.63794i −3.42327 + 3.63794i

S f5 −9.75684 −3.42327− 3.63794i −3.42327 + 3.63794i

S f6 1.82234 −6.84655 −9.75684

Figure 5 shows the flow of the dynamical system (103)–(105) for the best-fit value
µ∗ = 1.71.

Figure 5. Flow of system (103)–(105) for ε = 1 and ε = −1.

3.1.3. Stability Analysis for ε = −1

The equilibrium points of the system (103)–(105) for ε = −1 with A 6= 0 are the
following:

1. S f1:
(
− 2

λ(2µ+r−9) ,−
√

1
2 µ2(4µ+r−9)+3(r+9)

3λ(µ2−3µ+2) , 1
6 (−2µ− r + 9)

)
, where

r =
√

8µ(2µ− 9) + 105. This point exists for λ 6= 0, µ /∈ {1, 2}, has eigenvalues
symbolically denoted by {λ1, λ2, λ3}, and (see Figure 6) is:

(a) a source for 1 < µ < 2
(b) a sink otherwise.
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2. S f2:
(
− 2

λ(2µ+r−9) ,

√
1
2 µ2(4µ+r−9)+3(r+9)

3λ(µ2−3µ+2) , 1
6 (−2µ− r + 9)

)
. This point exists for λ 6= 0,

µ /∈ {1, 2}, has symbolically denoted eigenvalues times {λ1, λ2, λ3}, and (see
Figure 6) is:

(a) a source for 1 < µ < 2
(b) a sink otherwise.

3. S f3 = (0, 0, 1
6 (−2µ− r + 9)): this point always exists, has eigenvalues{

1
6 (−2µ− r + 9), 1

2 (−µ(4µ + r− 21) + 3r− 31), 1
6 (−2µ(8µ + r− 36) + 9r− 105)

}
,

and is:

(a) a source for 1 < µ < 2
(b) a sink for 0 ≤ µ < 1 or µ > 2.

4. S f4:
( 2

λ(−2µ+r+9) ,−
√

2µ3− 1
2 µ2(r+9)−3(r−9)

3λ(µ2−3µ+2) , 1
6 (−2µ+ r + 9)

)
. This point exists for λ 6= 0,

µ /∈ {1, 2}, has eigenvalues denoted symbolically by {δ1, δ2, δ3}, and is a saddle
(see Figure 7).

5. S f5:
( 2

λ(−2µ+r+9) ,

√
2µ3− 1

2 µ2(r+9)−3(r−9)

3λ(µ2−3µ+2) , 1
6 (−2µ + r + 9)

)
. This point exists for λ 6= 0,

µ /∈ {1, 2}, has eigenvalues denoted symbolically by {δ1, δ2, δ3}, and is a saddle
(see Figure 7).

6. S f6: (0, 0, 1
6 (−2µ + r + 9)). This point always exists, has eigenvalues{

1
6 (−2µ + r + 9), 1

2 (µ(−4µ + r + 21)− 3r− 31), 1
6 (2µ(−8µ + r + 36)− 3(3r + 35))

}
,

and is a saddle.

As in the previous section, the eigenvalues of the points S f1, S f2, S f4, and S f5 have
been written symbolically; however, we studied stability of these points numerically as
well. In Figure 6, it is verified that S f1 and S f2 are sources or sinks, while in Figure 7 it is
illustrated that S f4 and S f5 are saddles. On the other hand, the general behaviour of the
points is verified numerically in Table 11, where we set µ∗ = 1.71, ε = −1, and λ = 4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

μ

Re(λi) Re(λ1), Re(λ1)

Re(λ2), Re(λ2)

Re(λ3), Re(λ3)

Figure 6. Real part of the eigenvalues of S f1 and S f2 for ε = −1. Note that S f1 and S f2 are sources
for 1 < µ < 2 and sinks otherwise.
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0 2 4 6 8 10

-60

-40

-20

0

μ

Re(δi) Re(δ1), Re(δ1)

Re(δ2), Re(δ2)

Re(δ3), Re(δ3)

Figure 7. Real part of the eigenvalues of S f4 and S f5 for ε = −1. Note that S f4 and S f5 are
saddle points.

Table 11. Eigenvalues of the Jacobian matrix of the dynamical system (103)–(105) evaluated at the
equilibrium points of Table 8 for the best-fit value µ∗ = 1.71, ε = −1, λ = 4.

Labels λ1 λ2 λ3

S f1 0.201645 0.0300736 + 0.0602174i 0.0300736− 0.0602174i

S f2 0.201645 0.0300736 + 0.0602174i 0.0300736− 0.0602174i

S f3 0.0376622 0.0601471 0.201645

S f4 −9.75684 −9.47903 2.63249

S f5 −9.75684 −9.47903 2.63249

S f6 1.82234 −6.84655 −9.75684

3.2. Bianchi Metric I

The local and rotationally symmetric Bianchi I spacetime can be described by the line
element (49). Then, the effective fractional action (50) can be generalized by incorporating
a scalar field and a perfect fluid with energy density ρ and pressure p:

Seff =
1

Γ(µ)

∫ t

0

[
3

8πGN2(θ)

(
α̈(θ)− α̇(θ)Ṅ(θ)

N(θ)
+ 2α̇2(θ) +

1
4

β̇2(θ)

)

+ e3α(θ)Lm + e3α(θ)

(
εφ̇2(θ)

2N2(θ)
−V(φ(θ))

)]
(t− θ)µ−1N(θ)dθ. (107)

Proceeding with the variation of the action, we define H = α̇ and σ = β̇/2, the
Hubble parameter and the anisotropy parameter, respectively. Then, the following system
is obtained:

φ̈ + 3
(

H +
1− µ

3t

)
φ̇ + ε

dV(φ)

dφ
= 0, (108)

Ḣ − 1− µ

2t
H +

(1− µ)(2− µ)

2t2 + 3σ2 = −4πG
(

εφ̇2 + ρm + pm

)
, (109)

σ̇ + 3σ

(
H +

1− µ

3t

)
= 0, (110)

H2 +
(1− µ)H

t
− σ2 =

8πG
3

(
ε

φ̇2

2
+ V(φ) + ρm

)
+

Λ
3

, (111)
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along with the continuity equation

ρ̇m + 3
(

H +
1− µ

3t

)
(ρm + pm) = 0. (112)

To designate the temporary independent variables, the rule t− θ = T 7→ t [86] is used,
where the dots denote these derivatives. Again, dimensionless variables (94) are defined
together with (59), which satisfies the following condition defining Ωm:

1− A
(

x2ε + y2 − 1
)
− µ := A

(
Σ2 + Ωm + ΩΛ

)
≥ 0. (113)

Using the derivative f ′ = A2 ḟ /H, we obtain

x′ = 3A2λy2ε + 3A(µ− 3)x− (µ− 2)(µ− 1)x, (114)

y′ = −y
(
−2Aµ + A(3A(λx− 1) + 8) + µ2 − 3µ + 2

)
, (115)

A′ = A
(
−2Aµ− 3(A− 3)A + µ2 − 3µ + 2

)
, (116)

Ω′Λ = −2ΩΛ(A(−3A− 2µ + 8) + (µ− 2)(µ− 1)), (117)

Σ′ = Σ(3A(µ− 3)− (µ− 2)(µ− 1)). (118)

The equilibrium points of the system (114)–(118) are shown in Table 12. It can be
observed that the first three equations and the last three equations are decoupled. Thus, two
uncoupled subsystems can be studied: the state vector (x, y, A), which evolves according to
(114)–(116), and on the other hand the state vector (A, ΩΛ, Σ), which evolves according to
(116)–(118). As in the previous sections, due to physical considerations we do not examine
the points with A = 0. Moreover, we assume µ /∈ {1, 2} for the parameter space.

Table 12. Equilibrium points of the dynamical system (114)–(118), where r =
√

8µ(2µ− 9) + 105.

Labels x y A ΩΛ Σ

S f1 − 2
λ(2µ+r−9) −

√
−((4µ+r−9)µ2)−6(r+9)

3
√

2
√

λ2(µ2−3µ+2)2
ε

1
6 (−2µ− r + 9) 0 0

S f2 − 2
λ(2µ+r−9)

√
−((4µ+r−9)µ2)−6(r+9)

3
√

2
√

λ2(µ2−3µ+2)2
ε

1
6 (−2µ− r + 9) 0 0

S f3 0 0 1
6 (−2µ− r + 9) 0 0

S f4
2

λ(−2µ+r+9) −
√

(−4µ+r+9)µ2+6(r−9)

3
√

2
√

λ2(µ2−3µ+2)2
ε

1
6 (−2µ + r + 9) 0 0

S f5
2

λ(−2µ+r+9)

√
(−4µ+r+9)µ2+6(r−9)

3
√

2
√

λ2(µ2−3µ+2)2
ε

1
6 (−2µ + r + 9) 0 0

S f6 0 0 1
6 (−2µ + r + 9) 0 0

3.2.1. First Uncoupled System: Dynamics in Subspace (x, y, A)

In this case, the system turns out to be precisely the same as the system (103)–(105);
see the analysis in Section 3.1.1.

3.2.2. Second Decoupled System: Dynamics in Subspace (A , ΩΛ, Σ)

The equilibrium points of the decoupled system provided by the Equations (116)–(118)
that satisfy A 6= 0 are:

1. T1 : ( 1
6 (−2µ− r + 9), 0, 0). This point always exists and is

(a) a source for 1 < µ < 2
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(b) a sink for 0 ≤ µ < 1 or µ > 2.

2. T2 : ( 1
6 (−2µ + r + 9), 0, 0). This point always exists and is a saddle for µ ≥ 0.

Table 13 shows the equilibrium points of the uncoupled system (116)–(118) with A 6= 0,
where r =

√
8µ(2µ− 9) + 105.

Table 13. Equilibrium points of the decoupled system (116)–(118), where r =
√

8µ(2µ− 9) + 105.

Labels A ΩΛ Σ Stability

T1
1
6 (−2µ− r + 9) 0 0 Sink or source (see text).

T2
1
6 (−2µ + r + 9) 0 0 Saddle

Table 14 shows the eigenvalues of the Jacobian matrix of the dynamical system
(116)–(118) evaluated at the equilibrium points in Table 13.

Table 14. Eigenvalues of the Jacobian matrix of the dynamical system (116)–(118) evaluated at the
equilibrium points in Table 13, where r =

√
8µ(2µ− 9) + 105.

Labels λ1 λ1 λ3

T1
1
3 (−2µ− r + 9) 1

2 (−µ(4µ + r− 21) + 3r− 31) 1
6 (−2µ(8µ + r− 36) + 9r− 105)

T2
1
3 (−2µ + r + 9) 1

2 (µ(−4µ + r + 21)− 3r− 31) 1
6 (2µ(−8µ + r + 36)− 3(3r + 35))

Figure 8 shows the flow of the dynamical system (116)–(118) for µ∗ = 1.71.

Figure 8. Flow of the dynamical system (116)–(118) for µ∗ = 1.71.

4. Results

In [116], the recent proposal of fractional cosmology was studied and the theory was
found to correctly predict the acceleration of the universe, thereby providing clues about the
fundamental nature of dark energy. By writing Einstein’s field equations in the fractional
formulation, the Friedmann equations naturally contain a constant term predicting the
existence of an accelerating late universe with only matter and radiation. This is contrary
to the standard approach, in which it is necessary introduce a cosmological constant [116].

To complement the results achieved in [116], in the present investigation Section 2.3 is
dedicated to discussing an alternative study using the Riccati Equation (17) and assuming
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that the matter components have the equation of state pi = wiρi, where wi 6= −1 are
constants. For example, for the flat FLRW metric it is observed that Equations (11) and (16)
impose restrictions on the type of matter components of the universe, say,

H2 +
(1− µ)

t
H =

8πG
3 ∑

i
ρi, (119)

2(µ− 3)H
t

+ H2 − (µ− 2)(µ− 1)
t2 =

8πG
3 ∑

i
wiρi. (120)

The analysis of the second constraint was not developed in [116]. This constraint is
an immediate consequence of the Riccati Equation (17) and of considering the accepted
cosmological hypothesis that the conservation equations of the different matter components
are separately conserved. Constraints (119) and (120) are written in dimensionless form as

1 +
(1− µ)

A
= ∑

i
Ωi, (121)

1 +
2(µ− 3)

A
− (µ− 2)(µ− 1)

A2 = ∑
i

wiΩi, (122)

where A := tH is the known age parameter and Ωi represents the dimensionless densities
of the different matter components of the universe.

At this point, there are two routes that can be taken to further investigate the model
without a scalar field: (i) it is imposed that the components of the Universe are CDM
(ρ1 = ρm, w1 = wm = 0) and radiation (ρ2 = ρr, w2 = wr = 1/3); alternatively, (ii) the
equation of state of one of the matter sources is not imposed, and is rather deduced from
the compatibility conditions (121) and (122).

In the first case, from the constraints (121) and (122) and the conditions of existence of
the equilibrium points/sets of the system (37)–(39) that satisfy the compatibility conditions
(33) and (40) (which are deduced from the constraints (121) and (122)), we can obtain
the possible values of µ. To be more precise, in Section 2.3 the following novel result is
obtained: considering that the matter sources are radiation and cold dark matter and that
µ /∈ {1, 2}, this imposes conditions on the parameter µ, which can take only the discrete
values {5/2, 7/2, 41/8}. The system is then reduced to a one-dimensional system provided
by (39) for these values.

Table 1 shows the equilibrium points/sets of the system (37)–(39) that satisfy the
compatibility conditions (33) and (40). We have omitted the analysis of the points with
A = 0 because they are not physically interesting. Recall that for equilibrium points with
constant A the corresponding cosmological solution is a power-law solution with scale

factor a(t) = (t/tU)
A. Then, the solutions P1 and P2 verify that a(t) = (t/tU)

3
2 . Finally, the

solution P3 satisfies a(t) = (t/tU)
15
8 . However, points P2 and P3 are nonphysical, as they

lead to Ωm < 0 and Ωr < 0, respectively.
Following the second alternative route, the components of the universe are assumed

to be CDM (ρ1 = ρm, w1 = wm = 0) and a fluid with its constant equation of state to be
determined (ρ2 = ρX, w2 = wX). Because we have a free parameter wX, we can obtain the
values from the unspecified fluid equation of state, which provides the acceleration of the
expansion without considering the cosmological constant or a scalar field. Table 4 presents
the equilibrium points/sets of the system (45)–(47) that satisfy the compatibility conditions
(42) and (48) deduced from the constraints (121) and (122). Hence, we obtain the solution
R5 :

{
A = 1

6 (−2µ + r + 9), Ωm = 0, ΩX = − r−5
2(µ−2)

}
, where r =

√
8µ(2µ− 9) + 105.

The equation of state of the effective fluid (wX) and the deceleration parameter (q) of the
equilibrium point R5 are wX = r−7

4(µ−1) and q = −2(µ−4)µ+r−13
2(µ−2)(µ−1) , respectively. Figure 3 shows

wX and q for equilibrium point R5 as a function of µ in the physical region within the
parameter space, and wX satisfies−1 < wX < −1/3. The extra fluid mimics the equation of
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state of a quintessence scalar field. Now, we have an attractor solution that accelerates the
expansion without considering the cosmological constant or a scalar field. The equilibrium
point is:

• nonhyperbolic, with a two-dimensional stable manifold for µ < 7
2

• a saddle for µ > 7
2

• has a solution that satisfies wX < −1/3 for µ < 5
2

• the solution is accelerated (q < 0) for large t for all µ

• The solution is not physically viable for µ > 5
2 .

Another line of research is to consider a spacetime that is both homogeneous and
anisotropic, particularly the Bianchi I metric. The compatibility conditions are obtained
using the dimensionless variables (26) and (59), say,

1 +
(1− µ)

A
− Σ2 = ∑

i
Ωi, (123)

1 +
2(µ− 3)

A
− (µ− 2)(µ− 1)

A2 − Σ2 = ∑
i

wiΩi, (124)

where Σ is a dimensionless measure of the spacetime’s anisotropy. When Σ → 0, the
compatibility conditions (121) and (122) are retrieved.

As before, there are two routes in the investigation for the model without a scalar field:
(i) it is imposed that the components of the Universe are CDM and radiation; alternatively,
(ii) the equation of state of one of the matter sources is not imposed, and is instead deduced
from the compatibility conditions.

Then, considering that the matter sources are radiation and cold dark matter and that
µ /∈ {1, 2}, this imposes conditions on the parameter µ, which can take only the discrete
values {5/2, 7/2, 41/8}. In the first case, the equilibrium points/sets of the system (69)–(72)
that satisfy the compatibility conditions (64) and (73) (which are derived from (123) and
(124)) and A 6= 0 are presented in Table 5.

Following the second alternative route, Table 6 presents the equilibrium points/sets of
the system (79)–(82) that satisfy the compatibility conditions (75) and (83) that are deduced
from (123) and (124). As before, there exists a cosmological solution in the physical region
within the parameter space µ ∈

(
−∞, 5

2
]

and for which equation of state wX satisfies
−1 < wX < −1/3, that is, the extra fluid mimics the equation of state for quintessence. As
such, we have an attractor solution that accelerates the expansion without considering the
cosmological constant or a scalar field.

The solution R5:
{

Ωm = 0, ΩX = − r−5
2(µ−2) , Σ = 0, A = 1

6 (−2µ + r + 9)
}

has the cos-

mological parameters q = −2(µ−4)µ+r−13
2(µ−2)(µ−1) and wX = r−7

4(µ−1) . The equilibrium point is:

• nonhyperbolic with a two-dimensional stable manifold for µ < 7
2

• is a saddle for µ > 7
2

• has a solution that satisfies wX < −1/3 for µ < 5
2

• the solution is accelerated (q < 0) for large t and all µ

• the solution is not physically viable for µ > 5
2 .

Moreover, a more general model can be shown by incorporating a scalar field and the
cosmological constant Λ as matter sources. The scalar field φ has an exponential potential
V(φ) = V0e−4

√
3π
√

Gλφ. The kinetic energy is εφ̇2/2, where ε = ±1 depending on whether
the scalar field has positive (quintessence) or negative (phantom) kinetic energy.

This article discusses the physical interpretation of the corresponding cosmological
solutions, with particular emphasis on the influence of the order of the fractional derivative
on the theory. Our results improve and extend previous results reported in the literature.

The quintessence model in the flat FLRW metric is described by the system (103)–(105)
for ε = 1. The past and future attractors for this model are the following:
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S f3: always exists and is

(a) a source for 1 < µ < 2
(b) a sink for 0 ≤ µ < 1 or µ > 2.

S f4: exists for λ 6= 0, µ /∈ {1, 2} and is a sink (see Figure 4).
S f5: exists for λ 6= 0, µ /∈ {1, 2} and is a sink (see Figure 4).

The phantom model in the flat FLRW metric is described by the system (103)–(105) for
ε = −1. The past and future attractors for this model are the following:

S f1: exists for λ 6= 0, µ /∈ {1, 2} and (see Figure 6) is:

(a) a source for 1 < µ < 2
(b) a sink otherwise.

S f2: exists for λ 6= 0, µ /∈ {1, 2} and (see Figure 6) is:

(a) a source for 1 < µ < 2
(b) a sink otherwise.

S f3: always exists and is

(a) a source for 1 < µ < 2
(b) a sink for 0 ≤ µ < 1 or µ > 2.

Finally, we investigated the model with a scalar field with positive or negative kinetic
energy in the Bianchi I metric, as provided by the system (114)–(118). The equilibrium
points of this system are shown in Table 12. An important aspect of this model is that
the first three equations and the last three equations are decoupled. Thus, two uncoupled
subsystems can be studied: the state vector (x, y, A), which evolves according to (116),
(114), and (115), and the state vector (A, ΩΛ, Σ), which evolves according to (116), (117),
and (118). These model the system’s dynamics in different invariant sets for the flow. In the
first case, the system turns out to be the same as the system (103)–(105), and the previous
results are reproduced (see Section 3.1.1). On the other hand, the equilibrium point of
interest of the system (116)–(118) is T1 : (A, ΩΛ, Σ) = ( 1

6 (−2µ− r + 9), 0, 0). This point
always exists, and is a source for 1 < µ < 2 and a sink for 0 ≤ µ < 1 or µ > 2. It can be
confirmed that the solutions isotropize (Σ→ 0) at late times.

5. Conclusions

Fractional calculus is a generalization of classical integer order calculus in which
derivatives and integrals are of arbitrary order µ. This formalism is used to investigate
objects and systems characterized by nonlocality, long-term memory, or fractal properties
and derivatives of non-integer orders. In many cases, this approach can model real-world
phenomena in a better way than using classical calculus. For example, extensions of
the ΛCDM concordance model can be obtained by modifying General Relativity and
introducing fractional cosmology. In this theory, the Friedmann equation is modified
and the late-time cosmic acceleration is obtained without incorporating dark energy. The
modified theory has been compared in the literature against data from cosmic chronometers,
observations of type Ia supernovae, and their joint analysis, allowing the range of µ [116]
to be restricted.

On the other hand, we carried out an analysis of dynamical systems in order to
determine the model’s asymptotic states and discover the influence of the parameter µ
on the dynamics. This analysis allows for good understanding of the global structure of
the reduced phase spaces. Finally, we explored the phase space for different values of the
fractional order of the derivative as well as for different matter models. The objective of
the investigation was to classify equilibrium points and provide a range for the fractional
order of the derivative in order to obtain a late-term accelerating power-law solution for
the scale factor. With these elements as a starting point, in this paper we have continued
the previous work of [116]. In this sense, two research paths were identified for the model
without a scalar field: (i) to compare it with the standard model, it is imposed that the two
components of the universe are CDM and radiation; alternatively, (ii) the equation of state
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of one of the matter sources is not imposed, and is instead deduced from the compatibility
conditions. The analysis of this second constraint was not performed in the previous work
of [116]. This constraint is an immediate consequence of Riccati’s Equation (17) and of
considering the accepted cosmological hypothesis that the conservation equations of the
different matter components are separately conserved.

By incorporating a scalar field as a matter source, these results and previous results
from the literature are complemented and generalized by our analysis. The most rele-
vant novel results are discussed in Section 4. Our results improve upon and extend the
previous results in the literature. Consequently, we can affirm that fractional calculus is
able to play a relevant role in describing physical phenomena, particularly with respect
to theories of gravity. In this approach, traditional (non-fractional) General Relativity can
only approximate the mathematical structure that describes nature. It is worth noting
the importance of using advanced mathematical methods in theoretical cosmology, which
provides fertile ground for new formulations and more prominent tools to reach a better
and more meaningful understanding of the universe.
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