
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Revisiting Graph Based Collaborative Filtering:
A Linear Residual Graph Convolutional Network Approach

Lei Chen,1,2 Le Wu,1,2,∗ Richang Hong,1,2 Kun Zhang,3 Meng Wang1,2

1Key Laboratory of Knowledge Engineering with Big Data, Hefei University of Technology
2School of Computer Science and Information Engineering, HeFei University of Technology

3School of Computer Science and Technology, University of Science and Technology of China
{chenlei.hfut, lewu.ustc, hongrc.hfut, eric.mengwang}@gmail.com, zhkun@mail.ustc.edu.cn

Abstract

Graph Convolutional Networks (GCNs) are state-of-the-art
graph based representation learning models by iteratively
stacking multiple layers of convolution aggregation opera-
tions and non-linear activation operations. Recently, in Col-
laborative Filtering (CF) based Recommender Systems (RS),
by treating the user-item interaction behavior as a bipar-
tite graph, some researchers model higher-layer collabora-
tive signals with GCNs. These GCN based recommender
models show superior performance compared to traditional
works. However, these models suffer from training difficulty
with non-linear activations for large user-item graphs. Be-
sides, most GCN based models could not model deeper lay-
ers due to the over smoothing effect with the graph convolu-
tion operation. In this paper, we revisit GCN based CF mod-
els from two aspects. First, we empirically show that remov-
ing non-linearities would enhance recommendation perfor-
mance, which is consistent with the theories in simple graph
convolutional networks. Second, we propose a residual net-
work structure that is specifically designed for CF with user-
item interaction modeling, which alleviates the over smooth-
ing problem in graph convolution aggregation operation with
sparse user-item interaction data. The proposed model is a
linear model and it is easy to train, scale to large datasets, and
yield better efficiency and effectiveness on two real datasets.
We publish the source code at https://github.com/newlei/LR-
GCCF.

Introduction

Recent years have witnessed the boom of GCNs, which
are efficient variants of CNNs for dealing with graph based
data (Kipf and Welling 2017; Hamilton, Ying, and Leskovec
2017). The key idea of GCNs is to stack multiple layers that
iteratively perform the following two steps at each layer:
node embedding with convolutional neighborhood aggrega-
tion; followed by a non-linear transformation of node em-
beddings parameterized by a neural network. Therefore, the
higher-order similarity of a node could be effectively cap-
tured (Xu et al. 2019b; Li, Han, and Wu 2018). These models
show competing performance for tasks such as unsupervised

∗Corresponding Author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

node (graph) representation learning (Li et al. 2016), semi-
supervised node (graph) learning (Kipf and Welling 2017;
Camps-Valls, Marsheva, and Zhou 2007), and so on.

As many real-world data show the graph structure, GCNs
have been widely applied to applications such as social
network analysis (Xu et al. 2019a), transportation net-
work (Zhao et al. 2019), and recommender systems (Berg,
Kipf, and Welling 2018). In this paper, we focus on ap-
plying GCNs to CF based recommender systems. CF pro-
vides personalized item suggestions to users by learning
user and item embeddings from their historical behavior
data (Rendle et al. 2009; He et al. 2017). In fact, by treating
the user-item historical behavior as a bipartite graph with
edges between users and items, CF can be naturally trans-
formed into the edge prediction problem in the graph. This
graph representation of user-item behavior advances previ-
ous user-item 6 interaction matrix with more higher-order
user and item correlations, and provides the possibility to
alleviate the data sparsity issue in CF with graph structure
modeling (Wang et al. 2019; Berg, Kipf, and Welling 2018;
Ying et al. 2018). Some earlier works applied personalized
random walks (Liu and Yang 2008) or relied on graph reg-
ularization models with auxiliary graph data (e.g., social
network) for recommendation (Gu, Zhou, and Ding 2010;
Huang, Chung, and Chen 2004). These models suffered
from a huge time complexity with personalized random
walk, and most of these models relied on carefully de-
signing the random walk process. Recently, plenty of re-
searchers pay more attention to apply GCNs for recom-
mendation (Wu, Liu, and Yang 2018; Wang et al. 2019;
Berg, Kipf, and Welling 2018; Ying et al. 2018). For exam-
ple, PinSage designed sampling techniques for graph con-
volution aggregation to alleviate the computational burden
in the recommendation process (Ying et al. 2018). By feed-
ing the user and item free embeddings as input, NGCF was
specially designed for GCN based CF (Wang et al. 2019).
NGCF iteratively propagates user and item embeddings in
the graph to distill the collaborative signals with graph con-
volutions. These GCN based recommender models show
better performance compared to traditional models.

Despite the relative success of GCN based recommenda-
tion, we argue that two important problems in GCN based

27

CF still remain unsolved. On one hand, for user and item
embeddings, GCNs follow the two steps of neighborhood
aggregation with graph convolutional operations and non-
linear transformations. While graph convolutional opera-
tions are effective for aggregating the neighborhood infor-
mation and modeling higher order graph structure, is the
additional complexity introduced by the non-linear feature
transformation in GCNs necessary? On the other hand, most
of the current GCN based models could only stack very
few layers (e.g., 2 layers). In fact, the graph convolution
operation is a special kind of Graph Laplacian smooth-
ing (Li, Han, and Wu 2018; Klicpera, Bojchevski, and
Günnemann 2019). With K-th layer of GCNs, the Lapla-
cian smoothing is performed to incorporate the up to K-th
neighbors. Therefore, the over-smoothing effect exists with
deep layers, as the higher layer neighbors tend to be in-
distinguishable for each node. With limited user-item in-
teraction records in the recommendation (Wu et al. 2017;
2016), this problem would become more severe since the
training records are very sparse. Intuitively, with the increas-
ing of the stacking layers, the smoothing effect could allevi-
ate the data sparsity of CF at first, but the over smoothing
effect introduced by more layers would neglect each user’s
uniqueness and degrade the recommendation performance.
How to better model the graph structure while avoiding the
over smoothing effect in this process remains pretty much
open.

To tackle the above two issues, we revisit the graph based
CF models with a linear residual graph convolutional ap-
proach. Our main contributions lie in two aspects: on one
hand, we empirically analyze the uniqueness of CF from
most graph based tasks, and show that removing the non-
linearity would enhance the recommendation performance
with less complexity, which is consistent with the recent
theories in simplifying GCNs (Wu et al. 2019a). Further-
more, to alleviate the over smoothing problem in the iter-
ative process, we propose to learn the residual user-item
preference at each layer. Thus, the user uniqueness is pre-
served at the lower layers, while the higher layers of the
GCNs could focus on learning users’ residual preferences
that could not be captured from each user’s limited histori-
cal records. Please note that this idea is inspired the ResNet
architecture in CNNs (He et al. 2016; Wu, Shen, and Van
Den Hengel 2019), and our work focuses on how to extend
the formulation of the residual part in CF with the interac-
tion prediction between users and items under GCNs. We
then show that with linear residual learning, our proposed
model degenerates to a linear model that effectively lever-
ages the user-item graph structure for recommendation. In
summary, in contrast to current GCN based recommendation
models, our proposed model is easier to train, scales to large
datasets. Finally, we perform extensive experiments on two
large real-world CF datasets, and the results clearly show the
effectiveness and efficiency of our proposed model.

Preliminaries and Related Work
Considering a graph G=<V,A >, with V is the set of nodes
and A is the adjacency matrix, in which aij denotes the edge
between node i and node j. If there is a directed edge from

node i to node j, then aij =1, otherwise it is 0. For ease of
notation, we use Si = [j|aij =1] to denote the neighbor set
of node i, i.e., the node set that i connects to. We use S =
D̃

−0.5
ÃD̃

−0.5 to denote the normalized adjacency matrix

with added self loops, with Ã = A + I is the adjacency
matrix of the graph with added self-connections, and I is the

identity matrix. D̃ is the degree matrix of Ã.

Graph Convolutional Networks

For each node i ∈ V , we use h
0
i to denote the node initial

embedding, which is usually the feature vector xi of node
i (i.e, h0 = xi). In a graph G, the key idea of GCNs is
to stack K steps in a recursive message passing or feature
propagation manner to learn node embeddings (Berg, Kipf,
and Welling 2018; Hamilton, Ying, and Leskovec 2017;
Gilmer et al. 2017). Specifically, for each node i at the step,
it is computed recursively with following two steps: feature
propagation and non-linear feature transformation.

Feature propagation. For each node i, the feature aggre-
gation step aggregates the embeddings from graph neighbors
Si and its own embedding h

k
i at previous layer k.

Earlier works focus on how to model the aggregation
functions (Hamilton, Ying, and Leskovec 2017; Gilmer et
al. 2017; Velickovic et al. 2018; Kipf and Welling 2017). As
the focus of this paper is not to design more sophisticated
feature aggregation function, we follow the widely used fea-
ture aggregation function proposed in Kipf et al. (Kipf and
Welling 2017), which is empirically effective and has been
adopted by many GCN variants (Kipf and Welling 2017;
Berg, Kipf, and Welling 2018; Wu et al. 2019a):

H̄
(k+1) = D̃

−0.5
ÃD̃

−0.5
H

k. (1)

In fact, given the features Hk at k-th layer, feature propa-

gation output H̄(k+1) layer can be regarded as the Laplacian
smoothing on the features at the previous layer (Li, Han, and
Wu 2018; Zhu, Ghahramani, and Lafferty 2003).

Nonlinear transformation. The nonlinear transforma-
tion layer is a standard Multilayer Perceptron (MLP). By
feeding the output of the feature propagation step, the non-
linear transformation produces the (k + 1)-th layer embed-
ding of each node as:

H
(k+1) = σ(H̄(k+1)

W
k), (2)

where σ(x) is a non-linear activation function.
After iteratively performing the two steps in each layer

with a defined depth K, the final embedding of each node at
depth K is hK

i . For most GCN based applications, there is a
prediction function f(.) as:

ŷ = f(hK
i |i ∈ V). (3)

As GCNs derive inspiration primarily from the CNNs
in the deep learning community, it inherits considerable
nonlinearity and complexity from the nonlinear transforma-
tions as shown in Eq.(2). Researchers exploit the possibility
of simplifying GCNs. Recently, a Simple Graph Convolu-
tion (SGC) is proposed (Wu et al. 2019a), which removes
the nonlinear transformation in Eq.(2) as:

28

H
K = SS...SH0

W
0
W

1...WK, (4)

where we can rewrite W
0
W

1...WK as a single matrix W,
and the above linear matrix multiplication turns to:

H
K = SS...SH0

W. (5)

With the formulation of SGC, GCNs reduce to the itera-
tive simple feature propagations with very few parameters.
Therefore, it is easy to tune and scales to large datasets. As
verified by researchers, SGCN corresponds to a fixed low
pass filter on graph spectral domain. Besides, the empirical
evaluations show that SGCN does not negatively impact ac-
curacy in many graph based tasks with huge time improve-
ment (Wu et al. 2019a).

Graph Convolutional based Recommendation

In a recommender system, there are two sets of entities:
a userset U with M users (|U| = M) and an itemset
V (|V| = N). As implicit feedback is the most common
form in many recommender systems, we focus on implicit
feedback based CF in this paper (Rendle et al. 2009), and
it is easy to extend the proposed model for rating predic-
tion in CF. Users show ratings to the items with a rating
matrix R ∈ R

M×N , with rai = 1 denotes user a likes
item i, otherwise it equals 0. With the rating matrix, ac-
curately learning user embedding matrix and item embed-
ding matrix is a key to the success of recommendation
performance. Earlier works focus on shallow matrix fac-
torization based models (Koren, Bell, and Volinsky 2009;
Rendle et al. 2009). Deep learning based models, e.g.,
NeuMF (He et al. 2017), and Wide&Deep (Cheng et al.
2016) modeled the interaction between users and items with
a deep neural network structure.

With the huge success of GCNs, researchers attempted
to formulate recommendation as a user-item bipartite graph,
and adapted GCNs for recommendation (Wang et al. 2019;
Monti, Bronstein, and Bresson 2017; Ying et al. 2018). Ear-
lier works on GCN based models relied on the spectral the-
ories of graphs, and are computationally costly when apply-
ing in real-world recommendations (Monti, Bronstein, and
Bresson 2017; Zheng et al. 2018). Some of recent works
on GCN based recommendation models focused on the spa-
tial domain (Wu, Liu, and Yang 2018; Wang et al. 2019;
Berg, Kipf, and Welling 2018; Ying et al. 2018). PinSage
was designed for similar item recommendation under the
content based model, with the item features xv and the item-
item correlation graph as the inputs (Ying et al. 2018) . GC-
MC (Berg, Kipf, and Welling 2018) and NGCF (Wang et al.
2019) are specifically designed under the CF setting. Given
ratings of users to items, the user-item bipartite graph is de-
noted as G=< U ∪ V,A >, with A is constructed from the
rating matrix R as:

A =

[

R 0
N×M

0
M×N

R
T

]

. (6)

Let E ∈ R
(M+N)×D denote the free embedding matrix

of users and items. By feeding the free embedding matrix E

into GCNs with bipartite graph G, i.e., ∀i ∈ U ∪ V ,h0
i = ei.

Then, GCNs iteratively perform with embedding propaga-
tion step in Eq.(1) and nonlinear transformation with Eq.(2)
and each user’s (item’s) embeddings can be updated in the
iterative process. Therefore, the final embedding H

K ex-
plicitly injects the up to K-th order collective connections
between users and items. All the parameters (including the
initial free embedding matrix E, the transformation param-
eters ([Wk]Kk=0)) can be learned in an end-to-end manner.
GC-MC could be seen a special case of NGCF with K = 1,
i.e., only the first order connectivity of the user-item bipar-
tite graph is modeled (Berg, Kipf, and Welling 2018).

Deep Network Architecture Design

Theoretically, deep neural networks could approximate
complex functions (Goodfellow, Bengio, and Courville
2016). However, many researchers found stacking deeper
layers in the network usually would not correspondingly in-
crease performance in practice. For example, in the com-
puter vision domain, directly stacking more layers in CNNs
would complex the model training process, which leads to
degradation of the image classification performance. For ex-
ample, many CNNs variants have been proposed to how to
stack more deep layers to improve image classification per-
formance. (He et al. 2016; Huang et al. 2017). Researchers
argued that the degradation of the deeper layers in CNNs
is not caused by overfitting, but the harder training process
with higher training error compared to the relatively shal-
lower models. Therefore, a deep residual learning frame-
work, i.e., ResNet, is proposed to reformulate the layers as
learning residual functions, which is easier to train com-
pared to directly learning original functions (He et al. 2016).
In CF based recommender systems, simply relying on the
deep neural networks would also not perform well due to
the sparseness of user behavior data. Therefore, many deep
learning based CF models have two parts: a shallow wide
part and a deep neural network part, such as NeuMF (He et
al. 2017) and Wide&Deep (Cheng et al. 2016). The deep ar-
chitecture design problem also exists in GCN variants. For
example, many GCN based models achieve the best perfor-
mance with layer depth of 2 (Hamilton, Ying, and Leskovec
2017; Wu et al. 2019b). As the local network structure varies
from node to node, researchers proposed to aggregate all
layer representations at the last layer (Xu et al. 2018), or
allowed the root node teleport to the later layers (Klicpera,
Bojchevski, and Günnemann 2019). In order to overcome
the limitations of GCN models with limited labeled data, co-
training and self-training approaches are proposed to train
GCNs to supplement sparse labeled data (Li, Han, and Wu
2018). We differ from these works on two aspects. First, our
model is based on a GCN with linear structure compared to
these nonlinear GCNs. Moreover, our proposed architecture
is concerned with how to better preserve the previous layer
information with a residual network structure.

29

User-Item Graph

��
�

�
�

�

��

��

��

��
�

�
�

�

Linear Embedding

Propagation

Residual Preference

Prediction

vector dot product

vector add

user

item

k=1 k=2 K

ai

����

User u

Item i

��

��
	

�
�

	

����
�

����
	

Figure 1: The overall architecture of our proposed model.

Linear Residual Graph Convolutional

Collaborative Filtering

Overall Structure of the Proposed Model

In this part, we propose Linear Residual Graph
Convolutional Collaborative Filtering (LR-GCCF) which
is a general GCN based CF model for recommendation.
The overall architecture of LR-GCCF is shown in Figure 1.
LR-GCCF advances current GCN based models with two
characteristics: (1) At each layer of the feature propagation
step, we use a simple linear embedding propagation without
any nonlinear transformations. (2) For predicting users’
preferences of items, we propose a residual based network
structure to overcome the limitations of previous works.

Linear Embedding Propagation Given the user-item bi-
partite graph as formulated in Eq.(6), let E ∈ R

(M+N)×D

denotes the free embeddings of users and items, with the first
M rows of the matrix, i.e., E[1:M] is the user embedding sub-
matrix, and E[M+1:M+N] is the item embedding submatrix.
Then, LR-GCCF takes the embedding matrix as input:

E
0 = E, (7)

which resembles the embedding based models in CF. No-
tably, different from GCN based tasks with node features
as fixed input data, the embedding matrix is unknown and
needs to be trained in LR-GCCF.

Following the theoretical elegance with graph spectral
connections and empirical competing results of SGCN (Wu
et al. 2019a), at each iteration step k + 1, we assume the

embedding matrix E
(k+1) is a linear aggregation of the em-

bedding matrix E
k at the previous layer k as:

E
k+1 = SE

k
W

k, (8)

where S = D̃
−0.5

ÃD̃
−0.5 denotes the normalized adja-

cency matrix with added self loops, Wk is the linear trans-
formation.

In fact, Eq.(8) with matrix form is equivalent to modeling
each user u’s and each item i’s updated embedding as:

[Ek+1]u = e
k+1
u = [

1

du
e
k
u +

∑

j∈Ru

1

dj × du
e
k
j]W

k (9)

[Ek+1]i = e
k+1
i = [

1

di
e
k
i +

∑

u∈Ri

1

di × du
e
k
u]W

k, (10)

which di (du) is the diagonal degree of item i (user u) in the
user-item bipartite graph G. R∗ is neighbors of node (∗) in
graph G.

Residual Preference Prediction With a predefined depth
K, the recursive linear embedding propagation would stop
at the K-th layer with output of the embedding matrix E

K .
For each user (item), eKu (eKi) captures the up to K-th or-
der bipartite graph similarity. Then, many embedding based
recommendation models would predict the preference r̂ui as
the inner product between user and item latent vectors as:

r̂ui =< e
K
u , eKi >, (11)

where <,> denotes vector inner product operation.

Depth 0 1 2 3 4

NDCG@20 0.0217 0.0224 0.0242 0.0242 0.0241

(b) Errorbar of item

embedding similarity

K K

u
se

r
 e

m
b

e
d

d
in

g
 s

im
il

a
r
it

y

it
e
m

 e
m

b
e
d

d
in

g
 s

im
il

a
r
it

y

(c) Overall performance on recommendation performance

(a) Errorbar of user

embedding similarity

gg

Figure 2: GCN based recommendation performance with
different layers K on Amazon Books dataset.

In practice, most GCN based variants, as well as GCN
based recommendation models, achieve the best perfor-
mance with K=2 (Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2017; Ying et al. 2018). The overall trend for
these GCN variants is that: the performance increases as K
increases from 0 to 1 (2), and drops quickly as K contin-
ues to increase, the performance drops quickly. We specu-
late a possible reason is that, at the k-th layer, the embed-
ding of each node is smoothed by the k-th order neighbors
in the bipartite graph. Therefore, as k increases from 0 to
K, the node embeddings at deeper layers tend to be over
smoothed, i.e., they are more similar with less distinctive
information. This problem not only exists in GCNs, but is

30

much more severe in CF with very sparse user behavior
data for model learning. To validate the over assumption,
we show the performance of GCN based recommendation
with user-item bipartite graph using the predicted function
in Eq.(11) with different depth K. When K = 0, the GCN
based recommendation model degenerates to BPR (Rendle
et al. 2009). To empirically show the over smoothing hy-
pothesis, with each value of K, we calculate the average
pair-wise user-user (item-item) embedding similarity with
cosine similarity at the K-th layer output. Specifically, for
each pair of user a and user b, their similarity is calculated

as: sim(a, b) =
<e

K

a
,eK

b
>

||eK
a
||2,||eK

b
||2

. Then, we plot the mean and

variance of the cosine similarity of all pairs in Figure 2, with
the recommendation performance is listed at the bottom. We
have two observations from this figure. First, the variance
between user (item) embeddings are smaller when K in-
creases, due to the fact of the up to K-th order smoothness
with neighborhood regularization. Second, when K=0, the
recommendation performance is rather good. As we increase
K from 0 to 2, the performance increases less than 10%.
Therefore, we empirically conclude that BPR (K=0) could
already approximate preference of user to a large extent.

Based on the above two observations, we argue that: in-
stead of directly approximating the user preference of each
user-item pair at each layer, we perform the residual prefer-
ence learning as:

r̂k+1
ui = r̂kui+ < e

k+1
u , ek+1

i > . (12)

We hypothesis that it is easier to optimize the residual
rating than to optimize the original rating, and the residual
learning could help to alleviate the over smoothing effect
with deeper layers.

Based on the residual preference prediction in above
Eq.(12), we have:

r̂ui = r̂K−1
ui + < e

K
u , eKi >

= r̂K−2
ui + < e

K−1
u , eK−1

i > + < e
K
u , eKi >

= r̂0ui+ < e
1
u, e

1
i > +...+ < e

K
u , eKi >

=< e
0
u||e1u||...||eKu , e

0
i ||e1i ||...||eKi > . (13)

The above equation is equivalent to concatenate embed-
ding of each layer to form the final embedding of each node.
This is quite reasonable as each node’s sub-graph varies, and
recording each layer’s representation to form the final em-
bedding of each node is more informative.

Model Learning By putting the linear embedding prop-
agation equation (Eq.(8)) into vector representation of the
residual prediction function (Eq.(13)), we have:

r̂ui = < e
0

u||e
1

u||...||e
K

u , e
0

v ||e
1

v ||...||e
K

v >

= < [E0]u||...||[S
K
E

0
W

0
...W

K]u,

[E0]i||...||[S
K
E

0
W

0
...W

K]i >

= < [E0]u||...||[S
K
E

0
Y

K]u, [E0]i||...||[S
K
E

0
Y

K]i >,

(14)

where YK is reparameterized as YK=W
0
W

1...WK with
linear multiplication. SK denotes the K-th power of S.

Since we focus on implicit feedbacks, we adopt the pair-
wise ranking based loss function in BPR as:

min
Θ

L(R, R̂) =

M
∑

a=1

∑

(i,j)∈Da

−ln(s(r̂ai − r̂aj)) + λ||Θ1||2,

(15)

where s(x) is a sigmoid function. Θ= [Θ1,Θ2], with Θ1 =

[E0], and Θ2 = [[Yk]
K

k=1]. λ is a regularization parameter
that controls the complexity of user and item free embedding
matrices. Da = {(i, j)|i ∈ Ra∧j ∈ V − Ra} denotes the
pairwise training data for a with Ra represents the itemset
that a positively shows feedback.

Model Discussion

Detailed Analysis of The Proposed Model. Based on the
prediction function in Eq.(14), we observe that LR-GCCF is
not a deep neural network but a wide linear model. The lin-
earization has several advantages: First, as LR-GCCF is built
on the recent progress of SGC (Wu et al. 2019a), it is theo-
retically connected as a low pass filter of graph on the spec-
tral domain. Second, with the linear embedding propagation
and residual preference learning, LR-GCCF is much easier
to train compared to nonlinear GCN based models. Last but
not least, as our model does not have any hidden layers com-
pared to deep learning based models, we do not need back
propagation training algorithms. Instead, we could resort to
the stochastic gradient descent for model learning. There-
fore, LR-GCCF is much more time efficient compared to
classical GCN based models.

Table 1: Comparisons of different graph based recommen-
dation models.

Model
Graph Structure Model Property
First Higher Linear Residual
order order Propagation Prediction

GC-MC
√ × × ×

Pinsage
√ √ × ×

NGCF
√ √ × √

LR-GCCF
√ √ √ √

Connections with Previous Works. We compare the key
characteristics of our proposed model with three closely re-
lated GCN based recommendation models: GC-MC (Berg,
Kipf, and Welling 2018), PinSage (Ying et al. 2018), and
NGCF (Wang et al. 2019). In Table 1, NGCF is one of the
first few attempts that also uses a residual prediction func-
tion by taking each user (item)’s embedding as a concatena-
tion of all layers’ embeddings. However, the authors simply
use this “trick” without any detailed explanation. We empir-
ically show the reason why taking the output of the last layer
embedding fails for CF, and shows using residual prediction
is equivalent to concatenate all the layer’s embeddings as
the final embedding of each node in the user-item bipartite
graph. For PinSage, it has lower time complexity compared
to its deep learning based counterparts (e.g., GC-MC and
NGCF) as this model designed a sampling technique in fea-
ture aggregation process.

31

Experiments

Experimental Setup

Datasets. We conduct experiments on two publicly available
datasets: Amazon Books 1 and Gowalla (Liang et al. 2016).
We summarize the statistics of two datasets in Table 2. In
data preprocessing step, we remove users (items) that have
less than 10 interaction records. After that, we randomly se-
lect 80% of the records for training, 10% for validation and
the remaining 10% for test.

Table 2: The statistics of the datasets.
Dataset Users Items Ratings Rating Density

Amazon Books 52,643 91,599 2,984,108 0.062%

Gowalla 29,859 40,981 1,027,370 0.084%

Evaluation Metrics and Baselines. Since we focus
on recommending items to users, we use two widely
adopted ranking metrics for top-N recommendation evalu-
ation: HR@N and NDCG@N (Chen et al. 2017). For each
user, we select all unrated items as the negative items and
combine them with the positive items the user likes in
the ranking process. We compare our proposed LR-GCCF
model with various state-of-the-art baselines, including the
classical model BPR (Rendle et al. 2009), three graph con-
volutional based recommendation models: GC-MC (van den
Berg, Kipf, and Welling 2017), PinSage (Ying et al. 2018),
and NGCF (Wang et al. 2019). NGCF differs from PinSage
as it adopts the residual learning process. Besides, in order
to better verify the effectiveness of the linear and the resid-
ual learning part, we design two variants of the GC-MC:
Linear-GC-MC (L-GC-MC), and Resudial-GC-MC (R-GC-
MC), with L denotes replacing the original non-linear trans-
formation with linear embedding propagation, and R denotes
the preference prediction. For the baseline of NGCF, as il-
lustrated in Table1, it adopts the residual preference learn-
ing, and when varying the non-linear embedding propaga-
tion to linear propagation, i.e., L-NGCF is the same as LR-
GCCF, so we do not design variants of NGCF. For our pro-
posed model LR-GCCF, we design a simplified version of
Linear-GCCF (L-GCCF). In L-GCCF, we remove the resid-
ual learning process.

Parameter Settings. We implement our LR-GCCF
model in Pytorch. There are two important parameters in
our proposed model: the dimension D of the user and
item embedding matrix E, and the regularization param-
eter λ in the objective function (Eq.15). The embedding
size is fixed to 64 for all models. In our proposed LR-
GCCF model, we try the regularization parameter λ in the
range [0.0001, 0.001, 0.01, 0.1], and find λ = 0.01 reaches
the best performance. We initialize the model parameters
with a Gaussian distribution of mean 0 and standard devi-
ation 0.01. There are several parameters in the baselines,
for fair comparison, all the parameters in the baselines are
also tuned to achieve the best performance. For our proposed
model, we empirically find that Y equals the identity matrix,
i.e., each parameter in Θ2 is not learned but directly set as
the identity matrix reaches the best performance.

1http://jmcauley.ucsd.edu/data/amazon/index.html

Overall Comparison

Table 3 and Table 4 report the overall performance com-
parison results on HR@N and NDCG@N. GC-MC, Pin-
Sage, and NGCF improve over BPR by leveraging the user-
item bipartite graph information. In particular, GC-MC and
PinSage show the effectiveness of modeling the informa-
tion passing of a graph. NGCF is the baseline that captures
higher-order user-item bipartite graph structure. It performs
better than most baselines. Our proposed LR-GCCF model
consistently outperforms NGCF, thus showing the effective-
ness of modeling the user preference by the residual prefer-
ence prediction and the linear embedding propagation.

In our proposed LR-GCCF, the linear embedding propa-
gation and residual preference learning are essential parts.
To gain the effectiveness of these parts, we study the perfor-
mance of the variants of baselines and our simplified model
of L-GC-MC. We first analyze the performance of the linear
embedding propagation by comparing the linear embedding
based models with the counterparts that use non-linear em-
beddings, i.e., L-GC-MC vs. GC-MC. We find L-GC-MC
outperforms GC-MC to a large margin, and similar trends
exist when comparing LR-GCCF and NGCF, empirically
showing the effectiveness of the linear embedding propaga-
tion compared to the non-linear embedding propagation for
GCN based recommendations. Next, we compare the per-
formance of residual learning by comparing the results of
R-GC-MC vs GC-MC, the results of NGCF vs. PinSage,
and the results of LR-GCCF and L-GCCF. R-GC-MC does
not show comparable performance as GC-MC, we guess a
possible reason is that GC-MC is based on the first-order
neighborhood aggregation. For the first-order neighborhood,
each neighbor has limited neighbors and the over smooth-
ing effect does not apply with first-order neighbors. With
deep layers, the over smoothing effect becomes more severe.
Thus, NGCF outperforms PinSage, and LR-GCCF outper-
forms L-GCCF when modeling higher-order graph structure
with residual learning. Last but not least, by combing the
linear propagation and the residual learning together in LR-
GCCF, the proposed model outperforms all the remaining
models, showing the effectiveness of fusing these two parts
for CF.

Instead of the nonlinear transformation of feature propa-
gation, our work differs from these works in a linearization
method to accelerate the training process at the same time.
In practice, we find that LR-GCCF is very easy to train. On
Amazon Books dataset, with the best depth K for each graph
based recommendation model, at each iteration, the average
runtime is about 30s for GC-MC (K=1), and 38s for Pin-
Sage (K=2) and NGCF (K=2), and about 20s for our pro-
posed LR-GCCF (K=4) on a Ubuntu server with a single
GTX 1080Ti. With larger K-th order graph embedding prop-
agations, LR-GCCF costs less time with the linear embed-
ding propagation. The runtime time on the Gowalla dataset
for each model is about one third of the time compared to
the time cost of the Amazon Books, and the overall trend of
the time comparison is similar as analyzed above.

32

Table 3: Performance of HR@N and NDCG@N on Amazon Books dataset.

Models
N=10 N=20 N=30 N=40 N=50

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

BPR 0.01851 0.01710 0.02853 0.02169 0.03821 0.02564 0.04737 0.02911 0.05556 0.03205

GC-MC 0.02063 0.01898 0.03196 0.02408 0.04242 0.02835 0.05226 0.03206 0.06133 0.03532

PinSage 0.02043 0.01872 0.03210 0.02404 0.04298 0.02844 0.05239 0.03199 0.06165 0.03529

NGCF 0.02071 0.01892 0.03244 0.02425 0.04343 0.02872 0.05329 0.03243 0.06263 0.03576

L-GC-MC 0.02092 0.01916 0.03248 0.02443 0.04355 0.02894 0.05394 0.03286 0.06335 0.03623

R-GC-MC 0.01962 0.01796 0.03084 0.02307 0.04153 0.02742 0.05139 0.03115 0.06032 0.03434

L-GCCF 0.02067 0.01909 0.03200 0.02424 0.04312 0.02876 0.05310 0.03254 0.06218 0.03579

LR-GCCF 0.02209 0.02040 0.03407 0.02583 0.04532 0.03039 0.05532 0.03416 0.06498 0.03761

Table 4: Performance of HR@N and NDCG@N on Gowalla dataset.

Models
N=10 N=20 N=30 N=40 N=50

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

BPR 0.1041 0.1011 0.1378 0.1126 0.1664 0.1221 0.1908 0.1299 0.2122 0.1365

GC-MC 0.1042 0.1010 0.1388 0.1127 0.1701 0.1222 0.1969 0.1307 0.2213 0.1381

PinSage 0.1057 0.1042 0.1390 0.1153 0.1682 0.1250 0.1935 0.1330 0.2146 0.1395

NGCF 0.1083 0.1094 0.1403 0.1197 0.1679 0.1288 0.1931 0.1368 0.2142 0.1432

L-GC-MC 0.1045 0.1010 0.1399 0.1132 0.1701 0.1234 0.1957 0.1316 0.2184 0.1386

R-GC-MC 0.1034 0.1000 0.1391 0.1123 0.1690 0.1224 0.1941 0.1305 0.2163 0.1373

L-GCCF 0.1044 0.1007 0.1412 0.1135 0.1721 0.1240 0.1977 0.1322 0.2196 0.1390

LR-GCCF 0.1148 0.1136 0.1518 0.1259 0.1836 0.1365 0.2113 0.1453 0.2355 0.1527

Table 5: Performance of HR@20 and NDCG@20 with dif-
ferent depth K.

Depth K
Amazon Books Gowalla

HR@20 NDCG@20 HR@20 NDCG@20

K=0 0.0285 0.0217 0.1378 0.1126

K=1 0.0317 0.0242 0.1504 0.1246

K=2 0.0327 0.0248 0.1506 0.1248

K=3 0.0337 0.0255 0.1518 0.1259

K=4 0.0341 0.0258 0.1494 0.1241

K=5 0.0340 0.0257 0.1504 0.1247

Detailed Model Analysis

We would analyze the influence of the recursive label prop-
agation depth K, and a detailed analysis of the learned em-
beddings of the residual preference prediction in LR-GCCF.

Table 5 shows the results on LR-GCCF with different K
values. Particularly, the layer-wise propagation part disap-
pears when K=0, i.e., our proposed model degenerates to
BPR. As can be observed from Table 5, when K increase
from 0 to 1, the performance increases quickly on both
datasets. For Amazon Books, the best performance reaches
with four propagation depth. Meanwhile, our model reaches
the best performance when K=3 on Gowalla.

In order to better show the effect of residual preference
prediction, we design a simplified version of our proposed
model that only removes the residual structure in our pro-
posed model. We call the simplified model as L-GCCF. For
L-GCCF and LR-GCCF, with each predefined depth K, we
calculate the cosine similarity of each pair of users (items)
between their K-th layer output embedding, i.e., eK for each
node of the graph. The statistics of the mean and variance

(a) Errorbar of user

embedding similarity

(b) Errorbar of item

embedding similarity

u
se

r
 e

m
b

e
d

d
in

g
 s

im
il

a
r
it

y

it
e
m

 e
m

b
e
d

d
in

g
 s

im
il

a
r
it

y

K K

LR-GCCF
L-GCCF

e
m

b

LR-GCCF
L-GCCF

Depth 0 1 2 3 4

L-GCCF 0.0217 0.0224 0.0242 0.0242 0.0241

LR-GCCF 0.0217 0.0242 0.0248 0.0255 0.0258

(c) Overall NDCG@20 on recommendation performance

Figure 3: Comparisons with and without residual preference
prediction structure under different layers depth K on Ama-
zon Books dataset.

of user-user (item-item) embedding similarities are shown
in Figure 3. It obviously shows our proposed model has
larger variance of the user-user cosine similarity compared
to its counterparts L-GCCF that does not perform residual
learning. This empirically validates that the residual learn-
ing could partially alleviate the over smoothing issue, and
achieves better performance. Please note that, the overall
trend on the Gowalla dataset is similar, and we do not show
it due to page limit.

Conclusions

In this paper, we revisited the current GCN based recom-
mendation models, and proposed a LR-GCCF model for CF

33

based recommendation. LR-GCCF was mainly composed of
two parts: First, with the recent progress of simple GCNs,
we empirically removed the non-linear transformations in
GCNs, and replaced it with linear embedding propagations.
Second, to reduce the over smoothing effect introduced by
higher layers of graph convolutions, we designed a residual
preference prediction part with a residual preference learn-
ing process at each layer. Extensive experimental results
clearly showed the effectiveness and efficiency of our pro-
posed model. In the future, we would like to explore how to
better integrate the representations of different layers with
well defined deep neural architectures for better enhancing
CF based recommendation.

Acknowledgments. This work was supported in part by
grants from the National Key Research and Development
Program of China (2018YFB0804205), the National Nat-
ural Science Foundation of China (Grant No. 61725203,
61972125, 61602147, 61932009, 61732008, 61722204),
and Zhejiang Lab (No.2019KE0AB04).

References

Berg, R. v. d.; Kipf, T. N.; and Welling, M. 2018. Graph convolu-
tional matrix completion. In KDD Workshop.

Camps-Valls, G.; Marsheva, T. V. B.; and Zhou, D. 2007. Semi-
supervised graph-based hyperspectral image classification. TGRS
45(10):3044–3054.

Chen, J.; Zhang, H.; He, X.; Nie, L.; Liu, W.; and Chua, T.-S. 2017.
Attentive collaborative filtering: Multimedia recommendation with
item-and component-level attention. In SIGIR, 335–344.

Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Arad-
hye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; et al. 2016.
Wide & deep learning for recommender systems. In Recsys work-
shop, 7–10.

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and Dahl,
G. E. 2017. Neural message passing for quantum chemistry. In
ICML, 1263–1272.

Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep learning.
MIT press.

Gu, Q.; Zhou, J.; and Ding, C. 2010. Collaborative filtering:
Weighted nonnegative matrix factorization incorporating user and
item graphs. In SDM, 199–210.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive repre-
sentation learning on large graphs. In NIPS, 1024–1034.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In CVPR, 770–778.

He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; and Chua, T.-S. 2017.
Neural collaborative filtering. In WWW, 173–182.

Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger, K. Q.
2017. Densely connected convolutional networks. In CVPR, 4700–
4708.

Huang, Z.; Chung, W.; and Chen, H. 2004. A graph model for
e-commerce recommender systems. JASIST 55(3):259–274.

Kipf, T. N., and Welling, M. 2017. Semi-supervised classification
with graph convolutional networks. In ICLR.

Klicpera, J.; Bojchevski, A.; and Günnemann, S. 2019. Predict
then propagate: Graph neural networks meet personalized pager-
ank. ICLR.

Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factorization
techniques for recommender systems. Computer 42(8):30–37.

Li, D.; Hung, W.-C.; Huang, J.-B.; Wang, S.; Ahuja, N.; and Yang,
M.-H. 2016. Unsupervised visual representation learning by graph-
based consistent constraints. In ECCV, 678–694.

Li, Q.; Han, Z.; and Wu, X.-M. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAI.

Liang, D.; Charlin, L.; McInerney, J.; and Blei, D. M. 2016. Mod-
eling user exposure in recommendation. In WWW, 951–961.

Liu, N. N., and Yang, Q. 2008. Eigenrank: a ranking-oriented
approach to collaborative filtering. In SIGIR, 83–90.

Monti, F.; Bronstein, M.; and Bresson, X. 2017. Geometric matrix
completion with recurrent multi-graph neural networks. In NIPS,
3697–3707.

Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-Thieme, L.
2009. Bpr: Bayesian personalized ranking from implicit feedback.
In UAI, 452–461.

van den Berg, R.; Kipf, T. N.; and Welling, M. 2017. Graph con-
volutional matrix completion. KDD.

Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; and
Bengio, Y. 2018. Graph attention networks. In ICLR.

Wang, X.; He, X.; Wang, M.; Feng, F.; and Chua, T.-S. 2019. Neu-
ral graph collaborative filtering. In SIGIR.

Wu, L.; Liu, Q.; Chen, E.; Yuan, N. J.; Guo, G.; and Xie, X. 2016.
Relevance meets coverage: A unified framework to generate diver-
sified recommendations. TIST 7(3):39.

Wu, L.; Ge, Y.; Liu, Q.; Chen, E.; Hong, R.; Du, J.; and Wang, M.
2017. Modeling the evolution of users’ preferences and social links
in social networking services. TKDE 29(6):1240–1253.

Wu, F.; Zhang, T.; Souza Jr, A. H. d.; Fifty, C.; Yu, T.; and Wein-
berger, K. Q. 2019a. Simplifying graph convolutional networks.
In ICML, 6861–6871.

Wu, L.; Sun, P.; Fu, Y.; Hong, R.; Wang, X.; and Wang, M. 2019b.
A neural influence diffusion model for social recommendation. In
SIGIR, 235–244.

Wu, Y.; Liu, H.; and Yang, Y. 2018. Graph convolutional matrix
completion for bipartite edge prediction. In KDIR, 51–60.

Wu, Z.; Shen, C.; and Van Den Hengel, A. 2019. Wider or deeper:
Revisiting the resnet model for visual recognition. Pattern Recog-
nition 90:119–133.

Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.; and
Jegelka, S. 2018. Representation learning on graphs with jump-
ing knowledge networks. In ICML.

Xu, F.; Lian, J.; Han, Z.; Li, Y.; Xu, Y.; and Xie, X. 2019a.
Relation-aware graph convolutional networks for agent-initiated
social e-commerce recommendation. In CIKM, 529–538.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019b. How powerful
are graph neural networks? In ICLR.

Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W. L.;
and Leskovec, J. 2018. Graph convolutional neural networks for
web-scale recommender systems. In SIGKDD, 974–983.

Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.;
and Li, H. 2019. T-gcn: A temporal graph convolutional network
for traffic prediction. TITS.

Zheng, L.; Lu, C.-T.; Jiang, F.; Zhang, J.; and Yu, P. S. 2018. Spec-
tral collaborative filtering. In RecSys, 311–319.

Zhu, X.; Ghahramani, Z.; and Lafferty, J. D. 2003. Semi-
supervised learning using gaussian fields and harmonic functions.
In ICML, 912–919.

34

