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ABSTRACT
Level-0 (L0) caches have been proposed in the past as an
inexpensive way to improve performance and reduce energy
consumption in resource-constrained embedded processors.
This paper proposes new L0 data cache organizations using
the assumption that an L0 hit/miss determination can be
completed prior to the L1 access. This is a realistic assump-
tion for very small L0 caches that can nevertheless deliver
significant miss rate and/or energy reduction. The key issue
for such caches is how and when to move data between the
L0 and L1 caches. The first new cache, a flow cache, targets
a conflict miss reduction in a direct-mapped L1 cache. It of-
fers a simpler hardware design and uses on average 10% less
dynamic energy than the victim cache with nearly identical
performance. The second new cache, a hit cache, reduces the
dynamic energy consumption in a set-associative L1 cache
by 30% without impacting performance. A variant of this
policy reduces the dynamic energy consumption by up to
50%, with 5% performance degradation.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories

General Terms
Design, Performance

Keywords
cache design, level-0 cache, migration policy, conflict misses,
dynamic energy

1. INTRODUCTION
The use of a small cache in conjunction with a level-1 data

cache (L1 cache) has been proposed [11, 24, 13, 14, 21, 8].
They were used to reduce conflict misses in a direct-mapped
L1 cache (the Miss cache, Victim cache [13]) or reduce ac-
cesses to the L1 cache (Filter cache [14], line buffers [21, 8],
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HotSpot cache [24]. These caches are typically very small
compared to the L1 cache, often with only a few lines. With
the exception of the victim cache, these are L0 caches. Given
the small size of L0 caches, this L0/L1 cache hierarchy can
benefit from a different management policy. This paper pro-
poses two such policies and evaluates their performance and
impact on energy consumption.

Prior work mostly assumed that the L0 cache is accessed
prior to the L1, thus either increasing the L1 access time
or requiring a predictor and a recovery mechanism to access
the desired cache level directly. This papers assumes that
the L0 cache hit/miss determination is known prior to pro-
cessor access to the L1 cache. This is enabled by decoupling
the tag array and data array of the L0 cache and performing
tag comparison in the address computation stage of the pro-
cessor pipeline. This is only possible due to the very small
size of the L0 cache and relatively low clock rates.

Fig. 1 shows several possible L0 cache organizations. The
baseline L1 cache is shown in Fig. 1a. In Fig. 1b, a small fil-
ter cache is placed between the processor and the L1 cache.
In Fig. 1c, the victim cache is used to buffer lines evicted
from the L1 cache before they are written back to the L2
cache or the memory. Fig. 1d shows a general L0/L1 or-
ganization we are are exploring. Here data can be moved
between two caches and/or the L2 cache or the memory.

The L0/L1 organization introduces different opportunities
and options. The L0 cache can be used to filter accesses to
the L1 cache, as in the filter cache. Using the L0 cache, lines
can be kept longer avoiding early eviction from L1. This is
similar to the victim cache in a direct-mapped L1 cache. In
fact, both benefits can be exploited at the same time in the
new organization. The management policy needs to man-
age the different data paths and data movement between
the two caches and the memory. The number of concurrent
reads/writes in each cache, the number of read/write ports,
cache coherence, and modifications to the existing L1 cache
should all be considered in designing such policies.

This paper first systematically studies data movement be-
tween two caches and the memory. Specifically, it explores
a number of placement and migration policies, which man-
age data transfer between the L0 and L1 caches, on a hit
to either cache or a miss in both. The policies decide in
which cache to insert a line on a miss or where a line is
moved (“promoted”) on a hit. In particular, we investigate
4 insertion policies and 4 promotion policies. As the hit and
miss events are independent, their combination results in 16
different policies. However, not all of them are meaning-
ful or useful. The selected policies are empirically analyzed
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Figure 1: Different cache organizations.
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and compared to prior policies. While prior designs are ef-
fective, they can be further optimized to reduce the energy
consumption.

Two new policies/organizations are proposed in this pa-
per. A flow cache reduces conflict misses for a direct-mapped
L1 cache. Compared to the modified victim cache it uses
simpler hardware and less energy. A hit cache, is effective
in filtering accesses to a set-associative L1 cache.

This paper makes the following contributions:

1. It studies possible migration policies between the L0
and L1 caches.

2. It proposes two new migration policies to enhance op-
erations of the L0/L1 hierarchy.

3. It describes a practical design to support these policies.

The rest of the paper is organized as follows. In Sec. 2, by
using distributions of reuse distances, we show design oppor-
tunities of a small L0 cache. Our exploration of migration
policies is presented in Sec. 3. We also analyze potential ap-
plications of each design in this section. Evaluation frame-
work is described in Sec. 4. Sec. 5 includes hardware designs
and analysis of selected configurations. Sec. 6 differentiates
our study to prior work, and finally Sec. 7 concludes.

2. BACKGROUND
When designing a cache, we can use reuse distance and

its distribution as a guide to select the best cache organiza-
tion [17, 6]. It can predict the hit rate of a cache with LRU
replacement algorithm. In this paper, the reuse distance to
a cache line is defined as the number of references to the
same cache set since its insertion or promotion until it is
accessed again. We study the distributions for 2 different
cache configurations: a fully associative cache and a 256-set

cache to fully consider the effects of different cache mapping
functions. The first configuration reflects the behavior of
a fully associative L0 cache and the second corresponds to
a direct-mapped or set-associative L1 cache. Using a sim-
ulator modeling a simple processor with the D-cache and
I-cache, we collected memory traces of different benchmarks
for each cache configuration for the D-cache. To simplify the
calculation of reuse distance, we use a very large cache with
very high associativity, so that no cache line will be evicted
after its insertion. Distribution histograms are computed
from the traces.

Fig. 2 shows the average distributions for different bench-
marks using the methodology described in Sec. 4. As we
can see, 96% of the accesses to a 256-set cache are imme-
diate reuses. This implies high locality of accesses at the
first level cache. L1 access latency is critical to processor
performance, and a small increase in the miss rate can im-
pact performance significantly. Therefore, a new L1 design
should not increase the miss rate at this level.

Now let us consider the reuse distribution of the fully-
associative cache. About 29% of the accesses are immediate
reuses, while 41% and 57% of the accesses reuses lines that
are 2 and 4 accesses ahead of time respectively. This means
a small fully-associative L0 cache with 2 or 4 blocks would
be beneficial if we store cache lines with small reuse distance
in it. The benefits include filtering accesses to the L1 cache
and keeping cache lines longer.

3. MIGRATION POLICY
As shown in Fig. 1d, the introduction of the L0 cache cre-

ates a non-trivial design space. There are several dimensions
of this space as data can be moved among caches and/or the
memory. Examples include which lines should be moved,
when and how. This section explores this design space. Re-
call that a migration policy manages cache line movements
between the L0 and the L1 cache. We focus on two indepen-
dent events which happen during accesses from the proces-
sor: a miss in both caches or a hit in either cache. The miss
results in an eviction and an insertion while the hit results
in a promotion of the hit line. We first explore different
individual migration policies during these two events. We
do not aim to list all possibilities, but the potential policies
only. We also leave the discussion of hardware design and
optimizations to a later section. The only big constraint in
this section is the L1 cache is set-associative, while the L0
cache is a fully-associative one. This implies that a line from
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Figure 3: Individual migration policies.

the L1 cache can go to anywhere in the L0 cache, while an
L0 line can be updated into a fixed set of the L1 cache only.
Later in the section, we analyze selected combinations of
policies and quantitatively compare them for their potential
applications.

3.1 Migration During an Insertion
Fig. 3a shows 4 different migration policies due to a miss.

During this event, the missed line is inserted into a cache and
replaces another line, and the victim can be either written
back to the other cache or other levels. The first two policies,
I0 and I1, only insert the missed line into either the L0 or
L1 cache, respectively. There is no migration between two
caches. Because the missed lines are less likely to be reused
than the reused lines [18, 12], by inserting them into a cache
only, pollution of the other cache is reduced. In the other
two policies, I10 and I01, after the missed line is inserted
into one cache, the victim is written to the other cache, and
victimizes a line from that cache. In contrast to the two
former policies, the purpose of these two policies is to keep
lines longer in the cache1.

3.2 Migration During a Promotion
Fig. 3b shows different promotion policies. We classify

them into 3 categories based on how the hit line is promoted
and which cache should have higher priority.

Separated. The first and simplest policy is the separated
promotion policy, PS in Fig. 3b. Upon a hit to each cache,
the hit line is not promoted to the other cache, only state of
the corresponding cache is updated.

L0 → L1. In this category, the L1 cache has a higher
priority than the L0 cache, where a hit to a line in the L0

1Another possibility is inserting a missed line into both
caches, as in the miss cache [13]. That work showed that
the miss cache is less effective than the victim cache.

cache brings it to the L1 cache and swaps with a line there,
while there is no data movement during a hit to the L1
cache. It is the P01 policy in Fig. 3b. The victim cache,
which employs the L0 cache as a backup for victims from
the L1 cache, uses this mechanism.

L1 → L0. This category emphasizes on the L0 cache,
where the hit line in the L1 cache is copied to the L0 cache
and replaces a line there2. A raising question at this point
is how the evicted L0 line is treated. A simple solution, the
P10 policy in Fig. 4d, is to write it back to other cache levels
or the main memory. However, as the contents of lines in L0
may be modified by write hits, this policy must invalidate
hit lines in the L1 cache once they are copied to the L0 cache
to guarantee correctness.

While this policy is simple, as the L0 cache is very small,
replacements happen frequently. Moreover, lines in L0 have
short reuse distances as they are reused lines promoted from
the L1 cache. This leads to degradation due to the eviction
of reused lines in the L0 cache. The policy P101 in Fig. 4b
is investigated as a solution for this issue. In this policy, an
evicted line from the L0 cache is “saved” by writing back to
the L1 cache. The closest study to this approach may be the
filter cache [14] and the line buffers [21]. Later the multi-line
buffer work [8] uses the L0 cache as a write-through cache,
avoids this problem by writing back lines to the L1 cache
which are modified during a write hit to the L0 cache.

3.3 Combined Migration Policies
In the previous sections we have described individually 4

insertion policies and 4 promotion policies. There are a total
of 16 combinations. However, not all of them are meaning-
ful or useful. In this section we analyze a selected number
of policies and their names, as shown in Fig. 4. In the fig-
ure, each migration policy is shown with their insertion and
promotion policies. For example, I10P01 is the policy of the
insertion policy I10 and promotion policy P01. The baseline
caches are shown in Fig. 4a. I1PS is the configuration with
the L1 cache only, and I0PS corresponds to only L0 cache.

The combined migration policies described in this section
are independent of replacement policy. A replacement policy
changes the state of lines within a set of L1 or within L0,
and is orthogonal to the migration policy. In our design,
replacement state of a line is updated based on if a line is
inserted to a cache or promoted within the cache, regardless
if it is a hit to the D-cache. For example, a hit line from L1
being promoted to L0 is treated as an inserted line whereas
it is a hit to L1. In this paper, we assume the LRU policy
for both L0 and L1 caches.

This section also compares these combined policies in terms
of hits and misses for both the D-cache using the simulation
framework described in Sec. 4. For the purpose of com-
parison, the D-cache consists of a 4-way L0 and an 8KB
direct-mapped L1 cache. Both L0 and L1 caches have line
size of 32B and use LRU replacement policy. Fig. 5 com-
pares them for two aspects. The first is the misses per kilo
instructions (MPKIs) of the D-cache normalized to the base-
line cache with L1 cache only (I1PS). The second is the hit
rates to the L0 cache of different policies, including the L0
cache only configuration (I0PS), are shown. Here the hit
rate is computed by the number of hits to L0 divided by

2Due to the difference in organizations of two caches, two
lines can not be swapped as in the previous category.
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total number of accesses to the D-cache. This is also the
bypass rate to the L1 cache.

3.3.1 The Victim Cache (VC)
Fig. 4b shows the policy I10P01 which is the configuration

of the victim cache. In this policy the L0 cache is used as
a backup cache for the L1 cache. A line evicted from L1 is
stored in L0 for a few more accesses before is really evicted.
In the case of a hit to L0, the hit line is swapped with a line
in the L1 cache.

Fig. 5 shows that the victim cache is effective in reducing
conflict misses for the direct-mapped L1 cache. Compared to
the baseline L1, the victim cache removes up to 37% misses
to the D-cache. This was also observed in the original work
of the victim cache.

3.3.2 The Flow Caches (FC)
The flow caches are shown in Fig. 4c. Caches of this type

have that name because a line inserted to the D-cache makes
its way from a cache to another cache before is evicted to
the main memory or other cache levels, hence they are kept
longer before being evicted. Similar to the victim cache, the
flow caches have potential application in a direct-mapped
L1 cache. However, hardware design of the flow caches are
simpler with no migration during a promotion. There are
two caches of this type. In the first one, I01PS, missed lines
are inserted into the L0 cache first, while in the other, I10PS,
missed lines are inserted into the L1 cache first.

Now, let us compare them to the victim cache. In Fig. 5a,
two flow caches have similar performance to the victim cache
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Figure 5: Comparing migration policies (See Fig. 4

for the abbreviations).

for the D-cache. From the figure, the difference between
their normalized MPKIs is negligible. Let us compare the
victim cache and the I10PS configuration. Recall that their
insertion policies are the same, and the difference is that
the victim cache swaps lines between caches on an L0 hit,
while the I10PS policy does not. This implies that a line
in the L0 cache can provide as many hits as the ones in
the L1 cache, and swapping them does not make much im-
pact. This also explains a similar hit rate between I10PS
and I01PS. Note that the victim cache is proposed for the
high performance domain, and a simpler design as the flow
cache can be achieved for the embedded domain without
negatively impacting performance.

Besides, the L0 cache also has potential in reducing ac-
cesses to the L1 cache in the D-cache, as seen in Fig. 5b. In
the victim cache, the L0 cache has a low hit rate, with only
1.6%. Meanwhile, these numbers for two flow caches are
24% and 10%, respectively. These numbers are the results
of the fact that in the first configuration, I01PS, missed lines
are inserted into the L0 cache first, and in the second one,
I10PS, the data evicted from the L1 to the L0 cache stay in
the L0 cache before being evicted. Because accessing the L0
cache requires less dynamic energy than the L1 cache, the
flow caches have higher potential of reducing energy con-
sumption.

As a result, a simple hardware design combined with en-
ergy saving opportunities makes the flow caches attractive
in a D-cache with a direct-mapped L1 cache. Between two
flow caches, I01PS has higher L0 hits compared to I10PS,
thus we decide to use I01PS in design a flow cache.

3.3.3 The Hit Caches (HC)
As analyzed in Sec. 2, the L0 cache can be used to filter

accesses to the L1 cache. This is done by storing high local-
ity lines in this cache. One class of such line is the reused
lines. First, missed lines are inserted into the L1 cache and
upon a hit they are promoted to the L0 cache. For this pur-
pose, the L0 cache is called the hit cache, as illustrated in
the first two configurations, I1P10 and I1P101 in Fig. 4d.
The different between the two policies is that in I1P10, the
evicted line from the L0 cache is written back to the memory
while in I1P101, it is written back to the L1 cache. For com-
parison purpose, we also include two other policies, I01P10
and I01P101, which are similar to the described ones, except
that a missed line is inserted into the L0 cache first. Note



Cache
Migration policy Potential application

Name Insertion Promotion Target L1 cache Description

Flow cache (FC) I01PS L0 → L1 Separated Direct-mapped Reducing conflict misses
Hit cache (HC) I1P101 L1 only L1 → L0 → L1 Set-associative Reducing energy consumption

Table 1: Summary of selected migration policies.

that I01P101 is very similar to the filter cache [14] or block
buffering work [21].

Performance of different hit caches are compared at the
last 4 bars in Fig. 5 for the D-cache. Due to the fact that
I1P10 and I01P10 evict lines from the L0 cache while invali-
dating lines in the L1 cache, frequent L0 replacements result
in overall degradation. I01P10 even has higher misses than
I1P10.

This issue is not seen in the other two policies, I1P101
and I01P101. As described previously, they save the evicted
lines from L0 by writing them back to the L1 cache. In
fact, they even have less misses compared to the baseline
L1 – I1P101 removes 14% misses while I01P101 removes
16%. So, where can they be applied? Let us consider the
L0 hit rates (Fig. 5b). All 4 policies have high hit rates
to the L0 cache, with at least 60%, and are similar to the
baseline L0 cache only. This means that more than half of
the accesses to the L1 cache are filtered, and I1P101 and
I01P101 can be used to filter accesses to the L1 cache while
not impacting performance. Compared to I01P101 which is
similar to the filter cache, I1P101 will be more attractive
because it has simpler hardware design. It can be concluded
that the I1P101 policy is potential in filtering accesses to
the L1 cache in the D-cache, especially when the L1 cache
is large or has high associativities.

3.3.4 Summary
In this section, we have analyzed and compared different

migration policies, and found two configurations which have
potential enhancing L1 cache operations. Table 1 summaries
their descriptions. Depending on the migration policy, each
configuration has its own application for a specific target
cache. The flow cache targets a direct-mapped data cache
to reduce conflict misses. The hit caches are used to reduce
energy due to the accesses to the L1 cache. We will describe
in detail their designs and compare to prior designs in a later
section.

3.4 Multi-core Environment
Until this point we have described different migration poli-

cies for the L0 cache. For the migration policies which do
not have inclusiveness, this is achieved by also moving the
state of a line state during the migration. In the other case,
as in Fig. 4d, line state is also updated along with the update
of a line’s content. This helps make the design transparent
to a multi-core configuration.

4. SIMULATION FRAMEWORK
We evaluate the parallel L0 cache and migration policies

using the gem5 simulator [5]. For the purpose of comparing
hit and miss rates of an in-order embedded processor, we
model a simple single-stage in-order processor. The system
has split D-cache and I-cache. There are no other levels
of caches, but these two caches are connected directly to

Parameter Configuration

Processor (in-order)
Pipeline Depth 1
Issue Width 1 instruction/cycle
Width 32 bits

L1 cache (set-associative)
Line size 32B
Cache size 4KB, 8KB, 16KB
Associativity 1 way, 2 ways, 4 ways
Interface ports 1 read, 1 write

L0 cache (fully-associative)
Line size 32B
Associativity 2 ways, 4 ways, 8 ways
Interface ports 1 read, 1 write

Table 2: Processor configuration.

Tag Data Total

64B (2-way) 1.12 1.77 2.89
128B (4-way) 1.92 2.33 4.25
256B (8-way) 3.55 3.46 7.01

(a) L0 cache

1 way 2 ways 4 ways

4KB 4.14 7.24 12.46
8KB 5.17 10.83 19.44
16KB 7.36 18.90 27.33

(b) L1 cache

Table 3: Energy consumption (pJ) of an access to
the L0 and L1 cache.

the main memory. Various configurations are described in
Table 2.

We study our design using benchmarks from the MiBench
suite [10] (basicmath, qsort, susan, jpeg, lame, tiff, typeset,
dijkstra, patricia, ghostscript, rsynch, stringsearch, blow-
fish, sha, adpcm, CRC32, FFT), the CommBench suite [23]
(cast, drr, jpeg, reed, zip) and the MediaBench suite [15]
(adpcm, epic, g721, gsm, jpeg, mpeg2). Some benchmarks
are excluded due to compilation or runtime errors. Each
benchmark was complied using a cross compiler for Alpha
architecture and is run for 200M instructions or until com-
pletion. For each benchmark, all possible inputs are used.
The resulting total number of executions is 46. We do not
report results for individual benchmarks but their averages.

We use Cacti [22] to estimate energy consumption of ac-
cesses (read or write) to the L0 and L1 caches using the 65nm
technology, as shown in Table 3. We do not use newer Cacti
versions as they are not aimed to support small caches. For
the L0 cache, because the tag and data arrays are decoupled,
when checking for L0 hit, only the tags are accessed. The
data array of the L0 cache only consumes energy during the
real accesses to it. In Table 3a, energy for three L0 sizes are
shown. Table 3b shows the energy consumption of the L1



cache with different sizes and associativities. The tag and
data arrays of the L1 cache are accessed in parallel.

We use the following model to estimate energy consump-
tion. Let us denote HC and AC as the number of hits and
accesses in the cache C, where C is L0, L1 or D (D-cache);
and EL0T , EL0D and EL1 as the energy of one access to the
L0 tag, L0 data and L1, respectively (Table 3). We have the
following observations. First, the L0 tag array is accessed
on every reference from the processor. Second, an L0 hit
does not access the L1 cache and only the L0 data array is
accessed. Third, an L0 miss results in an access to the L1
cache. Finally, let ML0 and ML1 denote the number of L0
and L1 accesses due to the migration between two caches.
Energy accessing the D-cache is computed as:

E =AD ∗ EL0T +HL0 ∗ EL0D + (AD −HL0) ∗ EL1

+ML0 ∗ (EL0T + EL0D) +ML1 ∗ EL1

Dividing by AD we have the average energy of an access:

EA =EL0T +HRL0 ∗ EL0D + (1−HRL0) ∗ EL1

+WBL0 ∗ (EL0T + EL0D) +WBL1 ∗ EL1

Where HRL0 is the L0 hit rate; WBL0 and WBL1 are the
fractions of writebacks to the destination L0 or L1 cache
from the other cache, respectively. These factors are nor-
malized to the number of D-cache accesses. In this model
we do not include energy consumption of the control logic
as it is negligible.

5. CACHE DESIGN AND APPLICATIONS
In this section we describe in detail hardware designs of

each migration policy. This includes the interface between
the processor and the caches, and the hardware design of
each migration policy.

5.1 Processor-Cache Interface
In this section, we describe hardware design for the inter-

face between the processor and the caches. This includes
the accesses from the processor and the writeback of read
data to the processor. For the first aspect, prior studies
have shown that the addition of a L0 cache in between the
L1 cache and the processor can degrade performance signif-
icantly if the hit rate at L0 is not enough to compensate
the increased distance between L1 and the processor [14].
Various solutions were proposed to avoid such negative im-
pact. In [24], mechanism to decide access to L0 or L1 at
the instruction cache is integrated into the BTB. The block
buffering work [21] implemented a write-through L0 cache,
and decision to access L0 or L1 is known after the set IDs
are decoded. In [16], the decision of which way to access is
done in parallel with the access to the LSQ.

Our design is based on three observations. First, the num-
ber of L0 line tags to compare is very small and they are
known early. Second, we target embedded domain, where
the high-end processors are clocked at around 1GHz. And
third, we observe that the address generation unit (AGU) is
often assigned a stage as in ARM processors [1]. This stage
takes place after the register read and before the memory
access3. The AGU is just shift/addition of a base address
with an offset, and is fast. The data cache organization with
L0 and L1 caches is shown in Fig. 6.

3In ARM Cortex-M3 [2], while the AGU does not take a
whole stage, its clock speed is low, around 100MHz [20]).
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In this figure, the target architecture is the ARM11 pro-
cessor [1]. Note that the cache access takes one or more
cycles depending on the implementation. All memory in-
structions such as coprocessor load/store or load/store in-
structions use this AGU logic. In our design, the output of
generated address is compared with all tags stored in L0 tag
memory. The AGU was modeled using Verilog-HDL and
synthesized using the TSMC 65nm TC library. The max-
imum clock speed for this block is 1GHz with 13% timing
margin for place and route. This can be further reduced by
overlapping the AGU and the tag comparison.

The outputs from the L0 and L1 caches are multiplexed
with other sources, such as from coprocessors, at the write-
back stage.

5.2 The Flow Cache – Reducing Conflict Misses

5.2.1 Hardware Design
Recall that the flow cache inserts a missed line into the

L0 cache first, and upon eviction the line is migrated into
the L1 cache. On a hit to either cache, no data movement
happens, but the state of the cache which is hit is updated.
In a conventional design, upon a miss to the L1 cache, a line
is evicted and the missed line is inserted through the refill
path. This can happen in one or more cycles depending on
line size and bus width. With the introduction of the L0
cache, victim selection at the L0 and L1 cache are done in
parallel, and the migration from L0 to L1 happens in parallel
with the refill to L0 and writeback from L1. This implies
that the L0 cache does not create any extra latency due to
data migration, and the simplicity of hardware design makes
it suitable in a low-end embedded processor.

5.2.2 Analysis
Fig. 7 compares different techniques to reduce conflict

misses in different direct-mapped L1 caches. The techniques
include increasing associativity, using modified victim caches
and using flow caches. In the figure, three metrics are com-
pared: misses per kilo instruction (MPKI) of the D-cache,
the L0 hit rate of the victim caches and the flow caches, and
energy consumption. The first and the last metrics are nor-
malized to the baseline direct-mapped L1 cache. The second
is the real hit rate computed by the number of L0 hits di-
vided by the number of D-cache accesses. Note that this is
also the L1 bypass rate.
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Figure 7: Comparing techniques to reduce conflict misses (VC – victim cache, FC – flow cache).

First, increasing the associativity is known to be effective
in reducing conflict misses. For example a 2-way 16KB L1
cache has around 40% fewer misses compared to the direct-
mapped L1 cache of the same size. However, the perfor-
mance improvement results in the increase of dynamic en-
ergy consumption. Doubling the associativity increases the
dynamic energy by 1.7 to 2.5 times, meaning that increasing
the associativity is not always a good choice.

Second, the victim caches are also effective in reducing
conflict misses. A 2-way victim cache can remove around
20% while an 8-way one around 40%. Using victim cache
requires less energy consumption compared to increasing as-
sociativity. For example, a 2-way victim cache increases the
dynamic energy by 15% to 28% compared to the baseline.
The numbers are higher for a 4- or 8-way victim cache. The
reason of low energy consumption is a small L0 cache, which
consumes much less energy compared to a large L1 cache.

While the victim cache has been more effective than in-
creasing the associativity, our results also show that using a
flow cache is a competitive choice to the two other methods
due to two reasons. The first is performance. The flow cache,
with simpler hardware design, achieves almost as much miss
reduction as the victim cache of the same size. The second
reason is dynamic energy consumption. Results show that
a flow cache consumes less energy compared to a same-size
victim cache. For a 4KB L1 cache, a 2-way L0 cache im-
plemented as a flow cache consumes 14% more energy while
20% misses are removed, while a same size victim cache con-
sumes 27% energy to remove a similar number of misses. En-
ergy reduction is even more effective when the cache size is
increased. A 2-way L0 cache increases only 6% more energy
for a 16KB L1 cache to remove 20% misses. In general, the
flow cache further optimizes energy consumption while still
achieves similar performance. Note that the benefit does not
simply come from having more data arrays. Our results (not
shown here) confirm that a 4KB direct-mapped L1 plus an
8-way L0 perform as well as a 8KB direct-mapped L1 cache,
while the size is only 53%.

To understand the effectiveness of the flow cache, let us
compare the hit rates of the L0 cache. Fig. 7 also shows the
L0 hit rates of different victim caches and flow caches. It is
shown that the L0 cache used as a victim cache has a hit
rate of less than 3% for all configurations, while for the flow
caches it is much higher, from 10% to 40%. The L0 hit rate
in the flow caches is high in a small L1 cache. By filtering
accesses to the L1 cache, energy consumption is smaller than
the victim cache.

In summary, the effectiveness in reducing conflict misses
combined with simple hardware design and low energy con-
sumption makes the flow cache attractive in enhancing oper-
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Figure 8: Migration during hit to the L1 cache in
the hit cache.

ations of a direct-mapped L1 cache, especially in a low-end
embedded processor.

5.3 The Hit Cache – Reducing Energy Con-
sumption

5.3.1 Hardware Design
As shown in the previous section, the hit cache is used to

reduce accesses to the L1 cache, hence is effective in reduc-
ing energy consumption for a set-associative cache. Unlike
the filter cache, on a miss to both caches, it inserts a missed
line into the L1 cache only. The L1 cache is bypassed on a
hit to the L0 cache. During a hit to the L1 cache, the hit
line is promoted to the L0 cache and replaces a line there.
The evicted line is written back to the L1 cache, as illus-
trated in Fig. 8. In this figure, an access results in a hit to
line B1 of a set S in the L1 cache, and victim selection finds
a victim B2 in the L0 cache. B2 is written back to the L1
cache and replaces a line B3 in a set S’ there. B1 is copied
to the L0 cache in the place of B2. Now B1 and B2 become
identical. It can be observed that if the access to B1 is a
read, then the writeback of B3 can not be happen in the
same cycle with reading B1 because we only allow 1 read
and/or 1 write at any cycle. In this section, we describe a
hardware implementation to support this policy. The hard-
ware design must satisfy that the number of accesses to the
L1 cache is minimized to save energy, while performance is
not significantly impacted.

In [21, 8] the block buffers are used to store a cache line
which are likely to be reused. This is enabled by placing the
buffers close to the data array of the L1 cache, before the
multiplexing to choose desired word. We also implement a
similar mechanism to enable fast migration between the L0
and L1 cache, by moving the L0 data array close to the L1
data array, as depicted in Fig. 6. Note that the caches are
also close to the AGEN unit, therefore while the tag and
data arrays of the L0 cache are decoupled, the distance is
short, allowing fast updates of the L0 cache. An alternative
is to use the latches for buffering lines when migrating data
between two caches. This is similar to the write buffers
which are popular in multi-cycle pipelined caches.

We investigate two hardware implementations for the hit
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cache, depending on when and how to write B2 back to the
L1 cache, the eager and the lazy mechanisms, described as
follows.

Eager update. In this design, each valid line in the
L0 cache always has a copy in the L1 cache, and a write
hit into the L0 cache also updates line content in the L1
cache. There is no need to search for the victim B3 and a
line B2 when evicted from the L0 cache is simply discarded.
Also, the miss rate of this implementation does not change
compared to the baseline L1 cache. In this design, the L0
cache operates as a write-through cache, and an eviction of
the L1 line also invalidates its L0 copy, if existing. Note that
the works in [14, 21, 8] also use this approach. Because this
policy updates the L1 copy content of B2 every write hit,
we call it the eager design.

Lazy update. An alternative design is the lazy design,
which delays the update until B2 is evicted. Compared to
the eager design, this design has more potential to reduce
accesses to the L1 cache, especially when B2 is written mul-
tiple times before it is evicted from the L0 cache. In this
design, it is not required to force B2 to have a copy. In-
stead, when the B2 line is modified, its copy in the L1 cache
is invalidated, by updating the corresponding valid bit. B2
can only be written back to the L1 cache if and only if B3
is an invalid line. We also allow the replacement of the L1
copy without invalidating the L0 line as in the write-through
cache.

To support this mechanism, each L0 cache line is instru-
mented with an extra copy bit, theC bit, to indicate whether
it has a valid copy in the L1 cache. The state transition is
shown in Fig. 9. When a line is hit in the L1 cache, it is
copied to the L0 cache, and the C bit is set. This bit is
unset if the L0 line is modified due to a write hit or the L1
copy is evicted (which does not happen frequently). Note
that in a write hit the L1 line is invalidated. The state does
not change if the access is a read hit in the L0 cache. When
the line is evicted due to a promotion from the L1 cache,
the C bit is updated for the new line and cache migration
is performed. The migration is done with the awareness of
hardware constraints. If the previous line has C set, then
it is simply discarded and the new line has a copy in both
caches (C is set). If the evicted line has C unset, a read
hit in the L1 cache does the writeback of the line to the
L1 cache, and the new line is read from the L1 cache and
written into the L0 cache. In this case, there is 1 read and 1
write happening in each cache. Otherwise, if it is a write hit
in the L1 cache, there are two writes happen in the L1 cache,
one is the write access and the other is the writeback to the
L1 cache. Due to the constraints, only the writeback to the
L1 cache is done. The hit line is read from the L1, modified
and written into the L0 cache without having a copy in the

L1 cache. In the figure, the promotion due to a write in the
L1 cache results in the unset C bit.

Algorithm 1 Promotion during a hit to B1 in L1.
Note – set(Bi): set ID in L1 of Bi, Bi.C: bit C of Bi.

1: Find victim B2 in L0
2: if B2 is invalid then
3: Copy (B1 → B2)
4: else if B2.C = true then
5: Discard B2
6: Copy (B1 → B2)
7: else if set(B1) = set(B2) then
8: Swap B1 and B2
9: else
10: Find victim B3 from set(B2)
11: if B3 is invalid then
12: Move B2 to the position of B3
13: else
14: Write back B2 to main memory
15: end if
16: Copy (B1 → B2)
17: end if

In Fig. 9 we have shown the state transition, including
a promotion from the L1 cache. Let us describe how the
migration is performed in this case. Using the notations
in Fig. 8, the algorithm is shown in Alg. 1. There are 3
possibilities after B2 is already valid. First, if B2 has an L1
copy (bit C is set), it is simply discarded and B1 is copied
to B2 (in the case of a write, data is written into both lines).
Second, if B1 and B2 are in the same set, they are simply
swapped. In these first two cases, because at most 1 read and
1 write happen to each cache, the read and write can be done
in one cycle. In the last case, because L1 has only one read
port then there is no available port to write back B3, hence
B2 is written back to L1 only if B3 is invalid, and is written
back to the main memory otherwise. This might degrade
performance because of the discarded B2. Fortunately, the
case of discarding B2 because B3 is valid is very rare.

Now, we describe hardware support for the case where B2
must be written back to the memory (other cases are similar
or simpler). With the target L1 as a set-associative cache,
then process is as follow:

Step 1 : Calculate set S of L1 to access; find victim B2
from L0.

Step 2 : Calculate way ID in S to access data (block B1);
start writing back B2 to the memory.

Step 3 : Copy hit data from B1 to B2; if the access is a
write then update the content of B1 and B2.

In the case where the L1 lines are invalidated due to differ-
ent reasons, such as due to coherence protocols, the invalid
lines can be exploited to minimize writing back B2 to the
memory. It can also be observed that this lazy mechanism
lays between two promotion policies, P10 and P101. Re-
call that P10 never saves the evicted line in L0 while P101
always does, our real design saves lines which have a copy
or can be written back to the L1 cache given the hardware
constraints.

5.3.2 Analysis
In this section we analyze and compare two design de-

scribed in the previous section. Fig. 10 shows the opera-
tions of the hit cache, including the hit rate in the L0 cache,
misses per kilo instructions (MPKI) of the D-cache, fraction
of writeback from L0 to L1, and energy consumption. The
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L0 hit rate and the writeback fraction are computed by di-
viding the number of L0 hits and writebacks by the total
number of accesses to the D-cache, respectively. MPKI and
energy consumption are normalized to the baseline L1 cache.
For each eager and lazy design, we show the results for the
L0 cache of 2, 4 and 8 ways, and the 4-way L1 cache of 4KB,
8KB, and 16KB.

First, the L0 hit rate is very similar with different L1
sizes and designs, and is similar to that in Fig. 5, with the
difference less than 1%. For a 2-way L0 cache, the hit rate
is about 45% while in a 8-way L0 cache it is around 75%.
This confirms the importance of the L0 cache in reducing
accesses to the L1 cache. Second, the MPKI of the eager
design is the same with the baseline L1 design, while that of
the lazy design is around 5% higher. It is interesting that for
the L1 size of 4BK and 8KB, the misses decrease when the
associativity of the L0 increases, while they increase for the
16KB L1 cache. Third, let us compare the fraction of L0-L1
writebacks. In general, with the same L0 and L1 sizes, the
lazy design offers around 2 to 3 times less writebacks than
the eager design. This confirms that a line can be updated
multiple times while in the L0 cache.

For the eager design, a high L0 associativity creates more
updates to the L1 cache, while in the lazy design, it saves
more writebacks. For example, an 8-way L0 has around 20%
writebacks with eager design, while it is only 5% with the
lazy design.

Finally, let us analyze the saving of energy consumption.
It is obvious that high L0 hit rate and low writeback fraction
combined help save more energy due to less accesses to the
L1 cache, especially when the L1 access energy is high. Due
to this fact both the eager and lazy designs see the best
energy savings with a 4-way L0 cache, but not a 2-way nor
8-way one with the L1 cache of 4KB and 8KB. For the 16KB
L1 cache, the 8-way L0 cache saves more compared to the
4-way L0 cache. Compared to the eager design, the lazy
design saves more energy, with around 10% more. For the
target 16KB L1, the 8-way L0 energy saving of the eager
design is30% while that of the lazy design is up to 50%.

In summary, the eager design saves about 30% access en-
ergy without impacting performance, while the lazy design
saves 50% but with 5% more misses.

6. RELATED WORK
In the previous sections we have compared our study with

several prior studies. This section summarizes them as well
as discusses more related work. In the best or our knowledge,
our work is the first to study data migration in a system-
atic way. From the exploration we find new opportunities
to optimize the L0 cache design. Compared to the victim
cache [13], the flow cache design is simpler and uses the L0

cache to filter accesses to the L1 cache, hence achieve sim-
ilar conflict miss reduction, while requires less energy. We
achieve our goals due to the victim cache targets high per-
formance processors, while ours is the embedded processors.
The hit cache may be closest to the filter cache [14] and the
block buffering work [8, 21]. In [14], the filter cache is placed
in between the processor and the L1 cache. In fact the fil-
ter cache can be considered another version of the buffering
blocks in [21]. In these works, the L0 hit rate must be high
enough to compensate the increased latency between the
processor and the L1 cache. Later the work in [8] designs
the L0 cache as a write-through cache, and it do not im-
pact the system’s performance. In our design, we further
study the tradeoffs between performance and energy, and
from that propose two configurations addressing the trade-
offs. Note that the filter cache is proposed for the embedded
processors, and the block buffering work is proposed for high
performance ones.

Besides these designs, other designs also exploit a small
L0 cache [24, 3, 11, 4, 7, 9]. In the HotSpot cache [24] and
its variant [3], the L0 cache is used in the I-cache to store
“hot” loops which have high execution fraction, to reduce
accesses to the L1 cache. It does so by using the BTB to
identify fetch addresses which belong to the hot loops. A
similar approach [7] stores basic instruction blocks in a Tag-
less Instruction Cache. It also uses the BTB to store block
information. Another approach [11] is similar to our design
in that the L0 cache is known to be hit or missed before real
accesses from the processor. That work is targeted for the
instruction cache. The loop cache [9] focuses on designing
cache to store loops for special purposes. The Non-Temporal
Streaming cache [19] improves the direct-mapped L1 cache
by using a small cache to hold non-temporal lines and tar-
geted numerical programs. The scratchpad memory [4] was
proposed to store critical data to avoid long accesses to the
memory. In terms for access determination from the proces-
sor, the study in [16] proposes to do the set determination
in parallel with the load store queue access, hence saving
time comparing set IDs. Our study is proposed for the data
cache, where the L0 tag comparison is moved to the proces-
sor pipeline.

7. CONCLUSIONS
In this paper we show that a migration policy between an

L0 cache and an L1 data cache is crucial in optimizing cache
performance in an embedded processor. We systematically
investigated different policies during an insertion and a pro-
motion, and found two configurations which have potential
applications. The first is the flow cache, which reduces con-
flict misses in a direct-mapped L1 cache. By comparing to
the victim cache, we show that the flow cache is a suitable



choice for the embedded system domain. The second is the
hit cache, which reduces accesses to the set-associative L1
cache. Two hardware mechanisms were proposed for the
hit cache. One does not impact performance, while the
other has a slight degradation but further reduces energy
consumption.
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