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Abstract

Few-shot learning in image classification aims to learn

a classifier to classify images when only few training

examples are available for each class. Recent work has

achieved promising classification performance, where

an image-level feature based measure is usually used.

In this paper, we argue that a measure at such a level

may not be effective enough in light of the scarcity of

examples in few-shot learning. Instead, we think a local

descriptor based image-to-class measure should be taken,

inspired by its surprising success in the heydays of local

invariant features. Specifically, building upon the recent

episodic training mechanism, we propose a Deep Nearest

Neighbor Neural Network (DN4 in short) and train it in an

end-to-end manner. Its key difference from the literature is

the replacement of the image-level feature based measure

in the final layer by a local descriptor based image-to-class

measure. This measure is conducted online via a k-nearest

neighbor search over the deep local descriptors of convo-

lutional feature maps. The proposed DN4 not only learns

the optimal deep local descriptors for the image-to-class

measure, but also utilizes the higher efficiency of such

a measure in the case of example scarcity, thanks to the

exchangeability of visual patterns across the images in

the same class. Our work leads to a simple, effective,

and computationally efficient framework for few-shot

learning. Experimental study on benchmark datasets

consistently shows its superiority over the related state-

of-the-art, with the largest absolute improvement of 17%
over the next best. The source code can be available from

https://github.com/WenbinLee/DN4.git.

1. Introduction

Few-shot learning aims to learn a model with good gen-

eralization capability such that it can be readily adapted to

new unseen classes (concepts) by accessing only one or few

examples. However, the extremely limited number of ex-

amples per class can hardly represent the class distribution

effectively, making this task truly challenging.

To tackle the few-shot learning task, a variety of meth-

ods have been proposed, which can be roughly divided into

two types, i.e., meta-learning based [16, 14, 13] and metric-

learning based [9, 17, 25]. The former type introduces

a meta-learning paradigm [18, 21] to learn an across-task

meta-learner for generalizing to new unseen tasks. They

usually resort to recurrent neural networks or long short

term memory networks to learn a memory network [24, 12]

to store knowledge. The latter type adopts a relatively sim-

pler architecture to learn a deep embedding space to transfer

representation (knowledge). This type of methods usually

relies on the metric learning and episodic training mecha-

nism [22]. Both types of methods have greatly advanced

the development of few-shot learning.

These existing methods mainly focus on making knowl-

edge transfer [22, 2], concept representation [17, 4] or re-

lation measure [25], but have not paid sufficient attention

to the way of the final classification. They generally take

the common practice, i.e., using the image-level pooled fea-

tures or fully connected layers designed for large-scale im-

age classification, for the few-shot case. Considering the

unique characteristic of few-shot learning (i.e., the scarcity

of examples for each training class), such a common prac-

tice may not be appropriate anymore.

In this paper, we revisit the Naive-Bayes Nearest-

Neighbor (NBNN) approach [1] published a decade ago,

and investigate its effectiveness in the context of the latest

few-shot learning research. The NBNN approach demon-

strated a surprising success when the bag-of-features model

with local invariant features (i.e., SIFT) was popular. That

work provides two key insights. First, summarizing the lo-

cal features of an image into a compact image-level rep-

resentation could lose considerable discriminative informa-

tion. It will not be recoverable when the number of training

examples is small. Second, in this case, directly using these

local features for classification will not work if an image-to-

image measure is used. Instead, an image-to-class measure
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should be taken, by exploiting the fact that a new image can

be roughly “composed” using the pieces of other images in

the same class. The above two insights inspire us to review

the way of the final classification in the existing methods

for few-shot learning and reconsider the NBNN approach

for this task with deep learning.

Specifically, we develop a novel Deep Nearest Neighbor

Neural Network (DN4 in short) for few-shot learning. It

follows the recent episodic training mechanism and is fully

end-to-end trainable. Its key difference from the related ex-

isting methods lies in that it replaces the image-level fea-

ture based measure in the final layer with a local descriptor

based image-to-class measure. Similar to NBNN [1], this

measure is computed via a k-nearest neighbor search over

local descriptors, with the difference that these descriptors

are now trained deeply via convolutional neural networks.

Once trained, applying the proposed network to new few-

shot learning tasks is straightforward, consisting of local de-

scriptor extraction and then a nearest neighbor search. Inter-

estingly, in terms of computation, the scarcity of examples

per class now turns out to be an “advantage” making NBNN

more appealing for few-shot learning. It mitigates the com-

putation of searching for the nearest neighbors from a huge

set of local descriptors, which is one factor of the lower

popularity of NBNN in large-scale image classification.

Experiments are conducted on multiple benchmark

datasets to compare the proposed DN4 with the original

NBNN and the related state-of-the-art methods for the task

of few-shot learning. The proposed method again demon-

strates a surprising success. It improves the 1-shot and 5-

shot accuracy on miniImageNet from 50.44% to 51.24%
and from 66.53% to 71.02%, respectively. Particularly, on

fine-grained datasets, it achieves the largest absolute im-

provement over the next best method by 17%.

2. Related Work

Among the recent literature of few-shot learning, the

transfer learning based methods are most relevant to the

proposed method. Therefore, we briefly review two main

branches of this kind of methods as follows.

Meta-learning based methods. As shown by the rep-

resentative work [16, 14, 3, 2, 5], the meta-learning based

methods train a meta-learner with the meta-learning or the

learning-to-learn paradigm [18, 19, 21] for few-shot learn-

ing. This is beneficial for identifying how to update the

parameters of the learner’s model. For instance, Santoro et

al. [16] trained an LSTM as a controller to interact with an

external memory module. And the work [14] adopted an

LSTM-based meta-learner as an optimizer to train another

classifier as well as learning a task-common initialization

for this classifier. The work of MM-Net [2] constructed a

contextual learner to predict the parameters of an embed-

ding network for unlabeled images by using memory slots.

Although the meta-learning based methods can achieve

excellent results for few-shot classification, it is diffi-

cult to train their complicated memory-addressing architec-

ture because of the temporally-linear hidden state depen-

dency [13]. Compared with the methods in this branch,

the proposed framework DN4 can be trained more easily

in an end-to-end manner from scratch, e.g., by only using a

common single convolutional neural networks (CNN), and

could provide quite competitive results.

Metric-learning based methods. The metric-learning

based methods mainly depend on learning an informative

similarity metric, as demonstrated by the representative

work [9, 22, 20, 17, 4, 25, 11]. Specifically, to introduce

the metric-based method into few-shot learning, Koch et

al. [9] originally utilized a Siamese Neural Network to learn

powerful discriminative representations and then general-

ized them to unseen classes. And then, Vinyals et al. [22]

introduced the episodic training mechanism into few-shot

learning and proposed the Matching Nets by combining at-

tention and memory together. In [17], a Prototypical Net-

work was proposed by taking the mean of each class as

its corresponding prototype representation to learn a met-

ric space. Recently, Sung et al. considered the relation

between query images and class images, and presented a

Relation Network [25] to learn a deep non-linear measure.

The proposed framework DN4 belongs to metric-

learning based methods. However, a key difference from

them is that the above methods mainly adopt the image-

level features for classification, while the proposed DN4 ex-

ploits deep local descriptors and the image-to-class measure

for classification, as inspired by the NBNN approach [1].

As will be shown in the experimental part, the proposed

DN4 can clearly outperform the several state-of-the-art

metric-learning based methods.

3. The Proposed Method

3.1. Problem Formulation

Let S denote a support set, which contains C different

image classes and K labeled samples per class. Given a

query set Q, few-shot learning aims to classify each unla-

beled sample in Q according to the set S . This setting is also

called C-way K-shot classification. Unfortunately, when S
only has few samples per class, it will be hard to effectively

learn a model to classify the samples in Q. Usually, the

literature resorts to an auxiliary set A to learn transferable

knowledge to improve the classification on Q. Note that

the set A can contain a large number of classes and labeled

samples, but it has a disjoint class label space with respect

to the set S .

The episodic training mechanism [22] has been demon-

strated in the literature as an effective approach to learn-

ing the transferable knowledge from A, and it will also
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Figure 1. Illustration of the proposed Deep Nearest Neighbor Neural Network (DN4 in short) for a few-shot learning task in the 5-way

and 1-shot setting. As shown, this framework consists of a CNN-based embedding module Ψ(·) for learning deep local descriptors and an

image-to-class module Φ(·) for measuring the similarity between a given query image X and each of the classes, ci (i = 1, 2, · · · , 5).

be adopted in this work. Specifically, at each iteration, an

episode is constructed to train the classification model by

simulating a few-shot learning task. The episode consists

of a support set AS and a query set AQ that are randomly

sampled from the auxiliary set A. Generally, AS has the

same numbers of ways (i.e., classes) and shots as S . In

other words, there are exactly C classes and K samples per

class in AS . During training, tens of thousands of episodes

will be constructed to train the classification model, namely

the episodic training. In the test stage, with the support set

S , the learned model can be directly used to classify each

image in Q.

3.2. Motivation from the NBNN Approach

This work is largely inspired by the Naive-Bayes

Nearest-Neighbor (NBNN) method in [1]. The two key ob-

servations of NBNN are described as follows, and we show

that they apply squarely to few-shot learning.

First, for the (then-popular) bag-of-features model in im-

age classification, local invariant features are usually quan-

tized into visual words to generate the distribution of words

(e.g., a histogram obtained by sum-pooling) in an image.

It is observed in [1] that due to quantization error, such

an image-level representation could significantly lose dis-

criminative information. If there are sufficient training sam-

ples, the subsequent learning process (e.g., via support vec-

tor machines) can somehow recover from such a loss, still

showing satisfactory classification performance. Neverthe-

less, when training samples are insufficient, this loss is un-

recoverable and leads to poor classification.

Few-shot learning is impacted more significantly by the

issue of example scarcity than NBNN. And the existing

methods usually pool the last convolutional feature maps

(e.g., via the global average pooling or fully connected

layer) to an image-level representation for the final classifi-

cation. In this case, such an information loss will also occur

and is unrecoverable.

Second, as further observed in [1], using the local invari-

ant features of two images, instead of their image-level rep-

resentations, to measure an image-to-image similarity for

classification will still incur a poor result. This is because

such an image-to-image similarity does not generalize be-

yond training samples. When the number of training sam-

ples is small, a query image could be different from any

training samples of the same class due to intra-class varia-

tion or background clutter. Instead, an image-to-class mea-

sure should be used. Specifically, the local invariant fea-

tures from all training samples in the same class are col-

lected into one pool. This measure evaluates the proximity

(e.g., via nearest-neighbor search) of the local features of a

query image to the pool of each class for classification.

Again, this observation applies to few-shot learning.

Essentially, the above image-to-class measure breaks the

boundaries of training images in the same class, and uses

their local features collectively to provide a richer and more

flexible representation for a class. As indicated in [1], this

setting can be justified by a fact that a new image can be

roughly “composed” by using the pieces of other images in

the same class (i.e., the exchangeability of visual patterns

across the images in the same class).

3.3. The Proposed DN4 Framework

The above analysis motivates us to review the way of

the final classification in few-shot learning and reconsider

the NBNN approach. This leads to the proposed framework

Deep Nearest Neighbor Neural Network (DN4 in short).

As illustrated in Figure 1, DN4 mainly consists of two

components: a deep embedding module Ψ and an image-

to-class measure module Φ. The former learns deep local

descriptors for all images. With the learned descriptors,
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the latter calculates the aforementioned image-to-class mea-

sure. Importantly, these two modules are integrated into a

unified network and trained in an end-to-end manner from

scratch. Also, note that the designed image-to-class module

can readily work with any deep embedding module.

Deep embedding module. The module Ψ routinely

learns the feature representations for query and support im-

ages. Any proper CNN can be used. Note that Ψ only con-

tains convolutional layers but has no fully connected layer,

since we just need deep local descriptors to compute the

image-to-class measure. In short, given an image X , Ψ(X)
will be an h×w×d tensor, which can be viewed as a set of

m (m=hw) d-dimensional local descriptors as

Ψ(X) = [x1, . . . ,xm] ∈ R
d×m , (1)

where xi is the i-th deep local descriptor. In our experi-

ments, given an image with a resolution of 84× 84, we can

get h = w = 21 and d = 64. It means that each image has

441 deep local descriptors in total.

Image-to-Class module. The module Φ uses the deep

local descriptors from all training images in a class to con-

struct a local descriptor space for this class. In this space,

we calculate the image-to-class similarity (or distance) be-

tween a query image and this class via k-NN, as in [1].

Specifically, through the module Ψ, a given query image

q will be embedded as Ψ(q) = [x1, . . . ,xm] ∈ R
d×m. For

each descriptor xi, we find its k-nearest neighbors x̂
j
i |
k
j=1

in a class c. Then we calculate the similarity between xi

and each x̂i, and sum the mk similarities as the image-to-

class similarity between q and the class c. Mathematically,

the image-to-class measure can be easily expressed as

Φ
(

Ψ(q), c
)

=

m
∑

i=1

k
∑

j=1

cos(xi, x̂
j
i )

cos(xi, x̂i) =
x
⊤
i x̂i

‖xi‖ · ‖x̂i‖
,

(2)

where cos(·) indicates the cosine similarity. Other similar-

ity or distance functions can certainly be employed.

Note that in terms of computational efficiency, the

image-to-class measure seems more suitable for few-shot

classification than the generic image classification focused

in [1]. The major computational issue in NBNN caused by

searching for k-nearest neighbors from a huge pool of lo-

cal descriptors has now been substantially weakened due to

the much smaller number of training samples in the few-

shot setting. This makes the proposed framework compu-

tationally efficient. Furthermore, compared with NBNN, it

will be more promising, by benefiting from the deep fea-

ture representations that are much more powerful than the

hand-crafted features used in NBNN.

Finally, it is worth mentioning that the image-to-class

module in DN4 is non-parametric. So the entire classifi-

cation model is non-parametric if not considering the em-

bedding module Ψ. Since a non-parametric model does not

involve parameter learning, the over-fitting issue in para-

metric few-shot learning methods (e.g., learning a fully con-

nected layer over image-level representation) can also be

mitigated to some extent.

3.4. Network Architecture

For a fair comparison with the state-of-the-art methods,

we take a commonly used four-layer convolutional neural

network as the embedding module. It contains four convo-

lutional blocks, each of which consists of a convolutional

layer, a batch normalization layer and a Leaky ReLU layer.

Besides, for the first two convolutional blocks, an additional

2×2 max-pooling layer is also appended, respectively. This

embedding network is named Conv-64F, since there are 64
filters of size 3 × 3 in each convolutional layer. As for the

image-to-class module, the only hyper-parameter is the pa-

rameter k, which will be discussed in the experiment.

At each iteration of the episodic training, we feed a sup-

port set S and a query image q into our model. Through the

embedding module Ψ, we obtain all the deep local repre-

sentations for all these images. Then via the module Φ, we

calculate the image-to-class similarity between q and each

class by Eq. (2). For a C-way K-shot task, we can get a

similarity vector z ∈ R
C . The class corresponding to the

largest component of z will be the prediction for q.

4. Experimental Results

The main goal of this section is to investigate two inter-

esting questions: (1) How does the pre-trained deep features

based NBNN without episodic training perform on the few-

shot learning? (2) How does our proposed DN4 framework,

i.e., a CNN based NBNN in an end-to-end episodic training

manner, perform on the few-shot learning?

4.1. Datasets

We conduct all the experiments on four benchmark

datasets as follows.

miniImageNet. As a mini-version of ImageNet [15],

this dataset [22] contains 100 classes with 600 images per

class, and has a resolution of 84 × 84 for each image. Fol-

lowing the splits used in [14], we take 64, 16 and 20 classes

for training (auxiliary), validation and test, respectively.

Stanford Dogs. This dataset [7] is originally used for

the task of fine-grained image classification, including 120
breeds (classes) of dogs with a total number of 20, 580 im-

ages. Here, we conduct fine-grained few-shot classification

task on this dataset and take 70, 20 and 30 classes for train-

ing (auxiliary), validation and test, respectively.

Stanford Cars. This dataset [10] is also a benchmark

dataset for fine-grained classification task, which consists of
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196 classes of cars with a total number of 16, 185 images.

Similarly, 130, 17 and 49 classes in this dataset are split for

training (auxiliary), validation and test.

CUB-200. This dataset [23] contains 6033 images from

200 bird species. In a similar way, we select 130, 20 and 50
classes for training (auxiliary), validation and test.

For the last three fine-grained datasets, all the images in

these datasets are resized to 84× 84 as miniImageNet.

4.2. Experimental Setting

All experiments are conducted around the C-way K-shot

classification task on the above datasets. To be specific,

5-way 1-shot and 5-shot classification tasks will be con-

ducted on all these datasets. During training, we randomly

sample and construct 300, 000 episodes to train all of our

models by employing the episodic training mechanism. In

each episode, besides the K support images (shots) in each

class, 15 and 10 query images will also be selected from

each class for the 1-shot and 5-shot settings, respectively.

In other words, for a 5-way 1-shot task, there will be 5 sup-

port images and 75 query images in one training episode.

To train our model, we adopt Adam algorithm [8] with an

initial learning rate of 1×10−3 and reduce it by half of every

100, 000 episodes.

During test, we randomly sample 600 episodes from the

test set, and take the top-1 mean accuracy as the evaluation

criterion. This process will be repeated five times, and the

final mean accuracy will be reported. Moreover, the 95%
confidence intervals are also reported. Notably, all of our

models are trained from scratch in an end-to-end manner

and do not need fine-tuning in the test stage.

4.3. Comparison Methods

Baseline methods. To illustrate the basic classification

performance on the above datasets, we implement a base-

line method k-NN (Deep global features). Particularly, we

adopt the basic embedding network Conv-64F and append

three additional FC layers to train a classification network

on the corresponding training (auxiliary) dataset. During

test, we use this pre-trained network to extract features from

the last FC layer and use a k-NN classifier to get the fi-

nal classification results. Also, to answer the first question

at the beginning of Section 4, we re-implement the NBNN

algorithm [1] by using the pre-trained Conv-64F truncated

from the above k-NN (Deep global features) method. This

new NBNN algorithm employing the deep local descriptors

instead of the hand-crafted descriptors (i.e., SIFT), is called

NBNN (Deep local features).

Metric-learning based methods. As our method be-

longs to the metric-learning branch, we mainly compare

our model with four state-of-the-art metric-learning based

models, including Matching Nets FCE [22], Prototypical

Nets [17], Relation Net [25] and Graph Neural Network

(GNN) [4]. Note that we re-run the GNN model by using

the Conv-64F as its embedding module because the origi-

nal GNN adopts a different embedding module Conv-256F,

which also has four convolutional layers but with 64, 96,

128 and 256 filters for the corresponding layers, respec-

tively. Also, we re-run the Prototypical Nets via the same

5-way training setting instead of the 20-way training setting

in the original work for a fair comparison.

Meta-learning based methods. Besides the metric-

learning based models, five state-of-the-art meta-learning

based models are also picked for reference. These models

include Meta-Learner LSTM [14], Model-agnostic Meta-

learning (MAML) [3], Simple Neural AttentIve Learner

(SNAIL) [13], MM-Net [2] and Dynamic-Net [5]. As SNAIL

adopts a much more complicated ResNet-256F (a smaller

version of ResNet [6]) as its embedding module, we will ad-

ditionally report its results based on the Conv-32F provided

in its appendix for a fair comparison. Note that Conv-32F

has the same architecture with Conv-64F, but with 32 filters

per convolutional layer, which has also been employed by

Meta-Learner LSTM and MAML to reduce over-fitting.

4.4. Few­shot Classification

The generic few-shot classification task is conducted on

miniImageNet. The results are reported in Table 1, where

the hyper-parameter k is set as 3. From Table 1, it is amaz-

ing to see that NBNN (Deep local features) can achieve

much better results than k-NN (Deep global features), and

it is even better than Matching Nets FCE, Meta-Learner

LSTM, and SNAIL (Conv-32F). This not only verifies that

the local descriptors can perform better than the image-level

features (i.e., FC layer features used by k-NN), but also

shows that the image-to-class measure is truly promising.

However, NBNN (Deep local features) still has a large per-

formance gap compared with the state-of-the-art Prototyp-

ical Nets, Relation Net and GNN. The reason is that, as a

lazy learning algorithm, NBNN (Deep local features) does

not have a training stage and also lacks the episodic training.

So far, the first question has been answered.

On the contrary, our proposed DN4 embeds the image-

to-class measure into a deep neural network, and can learn

the deep local descriptors jointly by employing the episodic

training, which indeed obtains superior results. Compared

with the metric-learning based models, our DN4 (Conv-

64F) gains 7.68%, 2.22%, 2.79% and 0.8% improvements

over Matching Nets FCE, GNN‡ (Conv-64F), Prototypi-

cal Nets‡ (i.e., via 5-way training setting) and Relation

Net on the 5-way 1-shot classification task, respectively.

On the 5-way 5-shot classification task, we can even get

15.71%, 7.52%, 4.49% and 5.7% significant improvements

over these models. The reason is that these methods usually

use image-level features whose number is too small, while

our DN4 adopts learnable deep local descriptors which are
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Table 1. The mean accuracies of the 5-way 1-shot and 5-shot tasks on the miniImageNet dataset, with 95% confidence intervals. The

second column refers to which kind of embedding module is employed, e.g., Conv-32F and Conv-64F etc. The third column denotes the

type of this method, i.e., meta-learning based or metric-learning based. ∗ Results reported by the original work. ‡ Results re-implemented

in the same setting for a fair comparison.

Model Embedding Type
5-Way Accuracy (%)

1-shot 5-shot

k-NN (Deep global features) Conv-64F Metric 27.23±1.41 49.29±1.56

NBNN (Deep local features) Conv-64F Metric 44.10±1.17 58.84±1.10

Matching Nets FCE∗ [22] Conv-64F Metric 43.56±0.84 55.31±0.73

Prototypical Nets‡ [17] Conv-64F Metric 48.45±0.96 66.53±0.51

Prototypical Nets∗ [17] Conv-64F Metric 49.42±0.78 68.20±0.66

GNN‡ [4] Conv-64F Metric 49.02±0.98 63.50±0.84

GNN∗ [4] Conv-256F Metric 50.33±0.36 66.41±0.63

Relation Net∗ [25] Conv-64F Metric 50.44±0.82 65.32±0.70

Our DN4 (k=3) Conv-64F Metric 51.24±0.74 71.02±0.64

To take a whole picture of the-state-of-art methods

Meta-Learner LSTM∗ [14] Conv-32F Meta 43.44±0.77 60.60±0.71

SNAIL∗ [13] Conv-32F Meta 45.10 55.20
MAML∗ [3] Conv-32F Meta 48.70±1.84 63.11±0.92

MM-Net∗ [2] Conv-64F Meta 53.37±0.48 66.97±0.35

SNAIL∗ [13] ResNet-256F Meta 55.71±0.99 68.88±0.92

Dynamic-Net∗ [5] ResNet-256F Meta 55.45±0.89 70.13±0.68

Dynamic-Net∗ [5] Conv-64F Meta 56.20±0.86 72.81±0.62

Table 2. The mean accuracies of the 5-way 1-shot and 5-shot tasks on three fine-grained datasets, i.e., Stanford Dogs, Stanford Cars and

CUB-200, with 95% confidence intervals. For each setting, the best and the second best methods are highlighted.

Model Embed.

5-Way Accuracy (%)

Stanford Dogs Stanford Cars CUB-200

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

k-NN (Deep global features) Conv-64F 26.14±0.91 43.14±1.02 23.50±0.88 34.45±0.98 25.81±0.90 45.34±1.03

NBNN (Deep local features) Conv-64F 31.42±1.12 42.17±0.99 28.18±1.24 38.27±0.92 35.29±1.03 47.97±0.96

Matching Nets FCE‡ [22] Conv-64F 35.80±0.99 47.50±1.03 34.80±0.98 44.70±1.03 45.30±1.03 59.50±1.01

Prototypical Nets‡ [17] Conv-64F 37.59±1.00 48.19±1.03 40.90±1.01 52.93±1.03 37.36±1.00 45.28±1.03

GNN‡ [4] Conv-64F 46.98±0.98 62.27±0.95 55.85±0.97 71.25±0.89 51.83±0.98 63.69±0.94

Our DN4 (k=1) Conv-64F 45.41±0.76 63.51±0.62 59.84±0.80 88.65±0.44 46.84±0.81 74.92±0.64

Our DN4-DA (k=1) Conv-64F 45.73±0.76 66.33±0.66 61.51±0.85 89.60±0.44 53.15±0.84 81.90±0.60

more abundant especially in the 5-shot setting. On the other

hand, local descriptors enjoy the exchangeability character-

istic, making the distribution of each class built upon the

local descriptors more effective than the one built upon the

image-level features. Therefore, the second question can

also be answered.

To take a whole picture of the few-shot learning area, we

also report the results of the state-of-the-art meta-learning

based methods. We can see that our DN4 is still competi-

tive with these methods. Especially in the 5-way 5-shot set-

ting, our DN4 gains 15.82%, 10.42%, 7.91% and 4.05% im-

provements over SNAIL (Conv-32F), Meta-Learner LSTM,

MAML and MM-Net, respectively. As for the Dynamic-

Net, a two-stage model, it pre-trains its model with all

classes together before conducting the few-shot training,

while our DN4 does not. More importantly, our DN4 only

has one single unified network, which is much simpler than

these meta-learning based methods with additional compli-

cated memory-addressing architectures.

4.5. Fine­grained Few­shot Classification

Besides the generic few-shot classification, we also con-

duct fine-grained few-shot classification tasks on three fine-

grained datasets, i.e., Stanford Dogs, Stanford Cars and

CUB-200. Two baseline models and three state-of-the-

art models are implemented on these three datasets, i.e.,
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k-NN (Deep global features), NBNN (Deep local fea-

tures), Matching Nets FCE [22], Prototypical Nets [17] and

GNN [4]. The results are shown in Table 2. In general,

the fine-grained few-shot classification task is more chal-

lenging than the generic one due to the smaller inter-class

and larger intra-class variations of the fine-grained datasets.

It can be seen by comparing the performance of the same

methods between Tables 1 and 2. The performance of the

k-NN (Deep global features), NBNN (Deep local features)

and Prototypical Nets on the fine-grained datasets is worse

than that on miniImageNet. It can also be observed that

NBNN (Deep local features) performs consistently better

than k-NN (Deep global features).

Due to the small inter-class variation of the fine-grained

task, we choose k = 1 for our DN4 to avoid introducing

noisy visual patterns. From Table 2, we can see that our

DN4 performs surprisingly well on these datasets under the

5-shot setting. Especially on the Stanford Cars, our DN4

gains the largest absolute improvement over the second best

method, i.e., GNN, by 17%. Under the 1-shot setting, our

DN4 does not perform as well as in the 5-shot setting. The

key reason is that our model relies on the k-nearest neighbor

algorithm, which is a lazy learning algorithm and its per-

formance depends largely on the number of samples. This

characteristic has been shown in Table 5, i.e., the perfor-

mance of DN4 gets better and better as the number of shots

increases. Another reason is that these fine-grained datasets

are not sufficiently large (e.g., CUB-200 only has 6033 im-

ages), resulting in over-fitting when training deep networks.

To avoid over-fitting, we perform data augmentation on

the training (auxiliary) sets by cropping and horizontally

flipping randomly. Then, we re-train our model, i.e., DN4-

DA, on these augmented datasets but test on the original test

sets. It can be observed that our DN4-DA can obtain nearly

the best results for both 1-shot and 5-shot tasks. The fine-

grained recognition largely relies on the subtle local visual

patterns, and they can be naturally captured by the learnable

deep local descriptors emphasized in our model.

4.6. Discussion

Ablation study. To further verify that the image-to-class

measure is more effective than the image-to-image measure,

we perform an ablation study by developing two image-to-

image (IoI for short) variants of DN4. Specifically, the first

variant named DN4-IoI-1 concatenates all local descriptors

of an image as a high-dimensional (h×w× d) feature vec-

tor and uses the image-to-image measure. As for the second

variant (DN4-IoI-2 for short), it keeps the local descriptors

like DN4 without concatenation. The only difference be-

tween DN4-IoI-2 and DN4 is that DN4-IoI-2 restricts the

search for the k-NN of a query’s local descriptor within

each individual support image, while DN4 can search from

one entire support class. Under the 1-shot setting, DN4-IoI-

Table 3. The results of the ablation study on miniImageNet.

Model
5-Way Accuracy (%)

1-shot 5-shot

DN4-IoI-1 37.39±0.82 50.47±0.66

DN4-IoI-2 51.14±0.79 69.52±0.62

DN4 51.24±0.74 71.02±0.64

Table 4. The 5-way 5-shot mean accuracy (%) of our DN4 by vary-

ing the value of k ∈ {1, 3, 5, 7} during training on miniImageNet.

Model
5-way 5-shot Accuracy (%)

k = 1 k = 3 k = 5 k = 7

DN4 71.95 71.02 70.20 68.56

2 is identical with DN4. Both variants still adopt the k-NN

search, and use k = 1 and k = 3 for 1-shot setting and

5-shot setting, respectively.

The results on miniImageNet are reported in Table 3. As

seen, DN4-IoI-1 performs clearly the worst by using the

concatenated global features with the image-to-image mea-

sure. In contrast, DN4-IoI-2 performs excellently on both

1-shot and 5-shot tasks, which verifies the importance of lo-

cal descriptors and the exchangeability (within one image).

Notably, DN4 is superior to DN4-IoI-2 on the 5-shot task,

which shows that utilizing the exchangeability of visual pat-

terns within a class indeed helps to gain performance.

Influence of backbone networks. Besides the com-

monly used Conv-64F, we also evaluate our model by us-

ing another deeper embedding module, i.e., ResNet-256F

used by SNAIL [13] and Dynamic-Net [5]. The details

of ResNet-256F can refer to SNAIL [13]. When using

ResNet-256F as the embedding module, the accuracy of

DN4 reaches 52.44 ± 0.80% for the 5-way 1-shot task

and 72.53 ± 0.62% for the 5-shot task. As seen, with a

deeper backbone network, DN4 can perform better than

the case of using the shallow Conv-64F. Moreover, when

using the same ResNet-256F as the embedding module,

our DN4 (ResNet-256F) can gain 2.4% improvements over

Dynamic-Net (ResNet-256F) (i.e., 70.13 ± 0.68%) under

the 5-shot setting (see Table 1).

Influence of neighbors. In the image-to-class mod-

ule, we need to find the k-nearest neighbors in one support

class for each local descriptor of a query image. Next, we

measure the image-to-class similarity between a query im-

age and a specific class. How to choose a suitable hyper-

parameter k is thus a key. For this purpose, we perform a

5-way 5-shot task on miniImageNet by varying the value of

k ∈ {1, 3, 5, 7}, and show the results in Table 4. It can be

seen that the value of k has a mild impact on performance.

Therefore, in our model, k should be selected according to

the specific task.

Influence of shots. The episodic training mechanism is
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Table 5. The 5-way K-shot mean accuracy (%) of our DN4 by

varying the number of shots (K =1, 2, 3, 4, 5) during training on

miniImageNet. For each test setting, the best result is highlighted.

Train
Test

1-shot 2-shot 3-shot 4-shot 5-shot

1-shot 51.24 58.13 62.10 64.22 66.10
2-shot 50.69 58.53 62.31 64.84 66.49
3-shot 53.22 60.74 64.95 67.52 69.35
4-shot 52.43 60.90 65.33 67.93 69.70
5-shot 53.85 61.78 66.16 68.92 71.02

popular in current few-shot learning methods. The basic

rule is the matching condition between training and test. It

means that, in the training stage, the numbers of ways and

shots should keep consistent with those adopted in the test

stage. In other words, if we want to perform a 5-way 1-shot

task, the same 5-way 1-shot setting should be maintained

in the training stage. However, in the real training stage,

we still want to know the influence of mismatching con-

ditions, i.e., under-matching condition and over-matching

condition. We find that the over-matching condition can

achieve better performance than the matching condition,

and much better than the under-matching condition.

Basically, for the under-matching condition, we use a

smaller number of shots in the training stage, and con-

versely, use a larger number of shots for the over-matching

condition. We fix the number of ways but vary the num-

ber of shots during training to learn several different mod-

els. Then we test these models under different shot settings,

where the number of shots is changed but the number of

ways is fixed. A 5-way K-shot (K = 1, 2, 3, 4, 5) task is

conducted on miniImageNet by using our DN4. The results

are presented in Table 5, where the entries on the diagonal

are the results of the matching condition. The results in the

upper triangle are the results of the under-matching con-

dition. Also, the lower triangle contains the results of the

over-matching condition. It can be seen that the results in

the lower triangle are better than those on the diagonal, and

the results on the diagonal are better than those in the upper

triangle. This exactly verifies our statement made above.

It is also worth mentioning that if we use a 5-shot trained

model and test it on the 1-shot task, we can obtain an ac-

curacy of 53.85%. This result is quite high in this task,

and much better than 51.24% obtained by the 1-shot trained

model using our DN4 under a matching condition.

Visualization. We visualize the similarity matrices

learned by NBNN (Deep local features) and our DN4 un-

der the 5-way 5-shot setting on miniImageNet. Both of

them are image-to-class measure based models. We select

20 query images from each class (i.e., 100 query images

in total), calculate the similarity between each query image

and each class, and visualize the 5×100 similarity matrices.
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Figure 2. Similarity matrices of NBNN (Deep local Features), our

DN4 and the ground truth on miniImageNet under the 5-way 5-

shot setting. Vertical axis denotes the five classes in the support

set. Horizontal axis denotes 20 query images per class. The

warmer colors indicate higher similarities.

From Figure 2, it can be seen that the results of DN4 are

much closer to the ground truth than those of NBNN, which

demonstrates that the end-to-end manner is more effective.

Runtime. Although NBNN performs successfully in the

literature [1], it did not become popular. One key reason is

the high computational complexity of the nearest-neighbor

search, especially in large-scale image classification tasks.

Fortunately, under the few-shot setting, our framework can

enjoy the excellent performance of NBNN without being

significantly affected by its computational issue. Gener-

ally, during training for a 5-way 1-shot or 5-shot task, one

episode (batch) time is 0.31s or 0.38s with 75 or 50 query

images on a single Nvidia GTX 1080Ti GPU and a single

Intel i7-3820 CPU. During test, it will be more efficient, and

only takes 0.18s for one episode. Moreover, the efficiency

of our model can be further improved with optimized paral-

lel implementation.

5. Conclusions

In this paper, we revisit the local descriptor based image-

to-class measure and propose a simple and effective Deep

Nearest Neighbor Neural Network (DN4) for few-shot

learning. We emphasize and verify the importance and

value of the learnable deep local descriptors, which are

more suitable than image-level features for the few-shot

problem and can well boost the classification performance.

We also verify that the image-to-class measure is superior to

the image-to-image measure, owing to the exchangeability

of visual patterns within a class.
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