Published as a conference paper at ICLR 2021

REVISITING LOCALLY SUPERVISED LEARNING:
AN ALTERNATIVE TO END-TO-END TRAINING

Yulin Wang, Zanlin Ni, Shiji Song, Le Yang & Gao Huang*
Department of Automation, BNRist, Tsinghua University, Beijing, China,
{wang-y119, nzll7, yanglel5}@mails.tsinghua.edu.cn
{shijis, gaohuang}@tsinghua.edu.cn

ABSTRACT

Due to the need to store the intermediate activations for back-propagation, end-to-
end (E2E) training of deep networks usually suffers from high GPUs memory foot-
print. This paper aims to address this problem by revisiting the locally supervised
learning, where a network is split into gradient-isolated modules and trained with
local supervision. We experimentally show that simply training local modules with
E2E loss tends to collapse task-relevant information at early layers, and hence hurts
the performance of the full model. To avoid this issue, we propose an information
propagation (InfoPro) loss, which encourages local modules to preserve as much
useful information as possible, while progressively discard task-irrelevant informa-
tion. As InfoPro loss is difficult to compute in its original form, we derive a feasible
upper bound as a surrogate optimization objective, yielding a simple but effective
algorithm. In fact, we show that the proposed method boils down to minimizing
the combination of a reconstruction loss and a normal cross-entropy/contrastive
term. Extensive empirical results on five datasets (i.e., CIFAR, SVHN, STL-10,
ImageNet and Cityscapes) validate that InfoPro is capable of achieving competitive
performance with less than 40% memory footprint compared to E2E training,
while allowing using training data with higher-resolution or larger batch sizes
under the same GPU memory constraint. Our method also enables training local
modules asynchronously for potential training acceleration. Code is available at:
https://github.com/blackfeather-wang/InfoPro-Pytorch.

1 INTRODUCTION

End-to-end (E2E) back-propagation has become a standard paradigm to train deep networks
(Krizhevsky et al} [2012; [Simonyan & Zisserman| 2014} |Szegedy et al., 2015} [He et al.l 2016}
Huang et al.,|2019). Typically, a training loss is computed at the final layer, and then the gradients are
propagated backward layer-by-layer to update the weights. Although being effective, this procedure
may suffer from memory and computation inefficiencies. First, the entire computational graph as well
as the activations of most, if not all, layers need to be stored, resulting in intensive memory consump-
tion. The GPU memory constraint is usually a bottleneck that inhibits the training of state-of-the-art
models with high-resolution inputs and sufficient batch sizes, which arises in many realistic scenarios,
such as 2D/3D semantic segmentation/object detection in autonomous driving, tissue segmentation
in medical imaging and object recognition from remote sensing data. Most existing works address
this issue via the gradient checkpointing technique (Chen et al.,[2016) or the reversible architecture
design (Gomez et al.,[2017), while they both come at the cost of significantly increased computation.
Second, E2E training is a sequential process that impedes model parallelization (Belilovsky et al.,
2020; |[Lowe et al.,|2019), as earlier layers need to wait for their successors for error signals.

As an alternative to E2E training, the locally supervised learning paradigm (Hinton et al., 2006;
Bengio et al., 2007; Ngkland & Eidnes|, |2019} [Belilovsky et al.,[2019}[2020) by design enjoys higher
memory efficiency and allows for model parallelization. In specific, it divides a deep network into
several gradient-isolated modules and trains them separately under local supervision (see Figure
(b)). Since back-propagation is performed only within local modules, one does not need to store all

*Corresponding author.

https://github.com/blackfeather-wang/InfoPro-Pytorch

Published as a conference paper at ICLR 2021

/ 9
Regular / Strided Forward Back. Task lrreleyant Task Releyant
Conv Layer Propagation Information Information
Full Network Intermediate

Final Feature

— — , Feature h

End-to-end
¢ Loss
End-to-end "
Supervised Learning |
|
" |

End-to-end

O e End-to-end Loss |
a) End-to-end Supervised Learning Greedy r Loss
- . 1
T w— Supervised Learning i
Modul Module IT Loss (L = End-to-end Loss) !
T 1 Nt Minimize
! Sy —
H e e e Jl B Information 3 Loss
- = = > - Propagation Loss
!
| [(£ =Lingopro) =
(- . - = === === T

(b) Locally Supervised Learning (K = 2) (c) Comparison of Three Training Approaches

Figure 1: (a) and (b) illustrate the paradigms of end-to-end (E2E) learning and locally supervised learning (K =2).
“End-to-end Loss” refers to the standard loss function used by E2E training, e.g., softmax cross-entropy loss for
classification, etc., while £ denotes the loss function used to train local modules. (c) compares three training
approaches in terms of the information captured by features. Greedy supervised learning (greedy SL) tends to
collapse some of task-relevant information with the beginning module, leading to inferior final performance. The
proposed information propagation (InfoPro) loss, however, alleviates this problem by encouraging local modules
to propagate forward all the information from inputs, while maximally discard task-irrelevant information.

intermediate activations at the same time. Consequently, the memory footprint during training is
reduced without involving significant computational overhead. Moreover, by removing the demands
for obtaining error signals from later layers, different local modules can potentially be trained in
parallel. This approach is also considered more biologically plausible, given that brains are highly
modular and predominantly learn from local signals (Crickl 1989} |Dan & Pool 2004; [Bengio et al.,
2015). However, a major drawback of local learning is that they usually lead to inferior performance
compared to E2E training (Mostafa et al.| 2018 Belilovsky et al.,|2019;2020).

In this paper, we revisit locally supervised training and analyse its drawbacks from the information-
theoretic perspective. We find that directly adopting an E2E loss function (i.e., cross-entropy) to train
local modules produces more discriminative intermediate features at earlier layers, while it collapses
task-relevant information from the inputs and leads to inferior final performance. In other words, local
learning tends to be short sighted, and learns features that only benefit local modules, while ignoring
the demands of the rest layers. Once task-relevant information is washed out in earlier modules, later
layers cannot take full advantage of their capacity to learn more powerful representations.

Based on the above observations, we hypothesize that a less greedy training procedure that preserves
more information about the inputs might be a rescue for locally supervised training. Therefore, we
propose a less greedy information propagation (InfoPro) loss that aims to encourage local modules to
propagate forward as much information from the inputs as possible, while progressively abandon
task-irrelevant parts (formulated by an additional random variable named nuisance), as shown in
Figure[T] (c). The proposed method differentiates itself from existing algorithms (Ngkland & Eidnes),
2019; Belilovsky et al., 20195 [2020) on that it allows intermediate features to retain a certain amount
of information which may hurt the short-term performance, but can potentially be leveraged by later
modules. In practice, as the InfoPro loss is difficult to estimate in its exact form, we derive a tractable
upper bound, leading to surrogate losses, e.g., cross-entropy loss and contrastive loss.

Empirically, we show that InfoPro loss effectively prevents collapsing task-relevant information at
local modules, and yields favorable results on five widely used benchmarks (i.e., CIFAR, SVHN,
STL-10, ImageNet and Cityscapes). For instance, it achieves comparable accuracy as E2E training
using 40% or less GPU memory, while allows using a 50% larger batch size or a 50% larger input
resolution with the same memory constraints. Additionally, our method enables training different
local modules asynchronously (even in parallel).

2 WHY LOCALLY SUPERVISED LEARNING UNDERPERFORMS E2E TRAINING?

We start by considering a local learning setting where a deep network is split into multiple successively
stacked modules, each with the same depth. The inputs are fed forward in an ordinary way, while
the gradients are produced at the end of every module and back-propagated until reaching an earlier
module. To generate supervision signals, a straightforward solution is to train all the local modules as

Published as a conference paper at ICLR 2021

Linear Separability of Intermediate Features (in Test Errors) | Mutual Information between Features b and Inputs @ Mutual Information between Features b and Label y

0.94

—-— K =1
70 —— K=2
—— K =4

0.91
=0.88

=085

E

079

_(

o

0.7¢ N
k& P e S

0.73

SERERE

2 4 6 8 10 12 14 16
Layer Index

6 8 10 12 14 16
Layer Index

Figure 2: The linear separability (/eft, measured by test errors), mutual information with the input « (middle), and
mutual information with the label y (right) of the intermediate features h from different layers when the greedy
supervised learning (greedy SL) algorithm is adopted with K local modules. The ends of local modules are
marked using larger markers with black edges. The experiments are conducted on CIFAR-10 with a ResNet-32.

independent networks, e.g., in classification Table 1: Test errors of a ResNet-32 using greedy SL on
tasks, attaching a classifier to each module, and CIFAR-10. The network is divided into K successive
computing the local classification loss such as local modules. Each module is trained separately with the
cross-entropy. However, such a greedy version ~Softmax cross-entropy loss by appending a global-pool
of the standard supervised learning (greedy SL) layer f"l,lowid bya f‘}lly -connected layer (see Appendix[]
algorithm leads to inferior performance of the for details). “K =1" refers to end-to-end (E2E) training.
whole network. For instance, in Table [T we K1l K=9 | K=4 | K=8 | K=16
Sf)efg?i,flhﬁ;ﬁigffé ?Ii?i?h?xiity_?t ;If,e;(; é‘é‘)’ Test Error| 7.37% | 10.30% | 16.07% | 21.19% | 24.59%
when it is greedily trained with K modules. One can observe a severe degradation (even more than
15%) with K growing larger. Plausible as this phenomenon seems, it remains unclear whether it
is inherent for local learning and how to alleviate this problem. In this section, we investigate the
performance degradation issue of the greedy local training from an information-theoretic perspective,
laying the basis for the proposed algorithm.

Linear separability of intermediate features. In the common case that greedy SL operates directly
on the features output by internal layers, a natural intuition is to investigate how these locally learned
features differ from their E2E learned counterparts in task-relevant behaviors. To this end, we fix the
networks in Table[I] and train a linear classifier using the features from each layer. The test errors
of these classifiers are presented in the left plot of Figure [2] where the horizontal axis denotes the
indices of layers. The plot shows an intriguing trend: greedy SL contributes to dramatically more
discriminative features with the first one (or few) local module, but is only able to slightly improve
the performance with all the consequent modules. In contrast, the E2E learned network progressively
boosts the linear separability of features throughout the whole network with even more significant
effects in the later layers, surpassing greedy SL eventually. This raises an interesting question: why
does the full network achieve inferior performance in greedy SL compared to the E2E counterpart,
even though the former is based on more discriminative earlier features? This observation appears
incompatible with prior works like deeply-supervised nets (Lee et al.| 2015a).

Information in features. Since we use the same training configuration for both greedy SL and E2E
learning, we conjecture that the answer to the above question might lie in the differences of features
apart from merely separability. To test that, we look into the information captured by the intermediate
features. In specific, given intermediate feature h corresponding to the input data & and the label
y (all of them are treated as random variables), we use the mutual information I (h,) and I(h,y)
to measure the amount of all retained information and task-relevant information in h, respectively.
As these metrics cannot be directly computed, we estimate the former by training a decoder with
binary cross-entropy loss to reconstruct & from h. For the latter, we train a CNN using h as inputs to
correctly classify x, and estimate I (h, y) with its performance. Details are deferred to Appendix

The estimates of I(h,x) and I(h,y) at different layers are shown in the middle and right plots
of Figure 2l We note that in E2E learned networks, I (h,y) remains unchanged when the features
pass through all the layers, while I (h, x) reduces gradually, revealing that the models progressively
discard task-irrelevant information. However, greedily trained networks collapse both I (h, x) and
I(h,y) in their first few modules. We attribute this to the short sighted optimization objective of
earlier modules, which have relatively small capacity compared with full networks and are not capable
of extracting and leveraging all the task-relevant information in «, as the E2E learned networks

Published as a conference paper at ICLR 2021

do. As a consequence, later modules, even though introducing additional parameters and increased
capacity, lack necessary information about the target y to construct more discriminative features.

Information collapse hypothesis. The above observations suggest that greedy SL induces local
modules to collapse some of the task-relevant information that may be useless for short-term per-
formance. However, the information is useful for the full model. In addition, we postulate that,
although E2E training is incapable of extracting all task-relevant information at earlier layers as
well, it alleviates this phenomenon by allowing a larger amount of task-irrelevant information to be
kept, even though it may not be ideal for short-term performance. More empirical validation of our
hypothesis is provided in Appendix [A]

3 INFORMATION PROPAGATION (INFOPRO) LOSS

In this section, we propose an information propagation (InfoPro) loss to address the issue of infor-
mation collapse in locally supervised training. The key idea is to enforce local modules to retain as
much information about the input as possible, while progressively discard task-irrelevant parts. As it
is difficult to estimate InfoPro loss in its exact form, we derive an easy-to-compute upper bound as
the surrogate loss, and analyze its tightness.

3.1 LEARNING TO DISCARD USELESS INFORMATION

Nuisance. We first model the task-irrelevant information in the input data « by introducing the
concept of nuisance. A nuisance is defined as an arbitrary random variable that affects & but provides
no helpful information for the task of interest (Achille & Soattol 2018). Take recognizing a car in
the wild for example. The random variables determining the weather and the background are both
nuisances. Formally, given a nuisance r, we have I(r,x) > 0 and I(r,y) = 0, where y is the label.
Without loss of generality, we suppose that y, r, and h form the Markov chain (y,r) — = — h,
namely p(h|z,y,r) = p(h|x). As a consequence, for the intermediate feature h from any layer,
we obviously have I(r,x) > I(r,h). Nevertheless, we postulate that max, I(r,h) > 0. This
assumption is mild since it does not hold only when h strictly contains no task-irrelevant information.

Information Propagation (InfoPro) Loss. Thus far, we have been ready to introduce the proposed
InfoPro loss. Instead of overly emphasizing on learning highly discriminative features at local
modules, we also pay attention to preventing collapsing useful information in the feed-forward
process. A simple solution to achieve this is maximizing the mutual information I (h,). Ideally,
if there is no information loss, all useful information will be retained. However, it goes to another
extreme case where the local modules do not learn any task-relevant feature, and is obviously
dispensable. By contrast, in E2E training, intermediate layers progressively discard useless (task-
irrelevant) information as well as shown above. Therefore, to model both effects simultaneously, we
propose the following combined loss function:

£Inf0Pro(h) = Oé[—](h;, il?) + 6[(7”*, h)]7 «, B Z Oa s.t. T* = argmax I(T, h‘)? (1)
r, I(r,e)>0, I(r,y)=0

where the nuisance 7* is formulated to capture as much task-irrelevant information in h as possible,
and the coefficient S controls the amount of information that is propagated forward (first term) and
task-irrelevant information that is discarded (second term). Notably, we assume that the final module
is always trained using the normal E2E loss (e.g., softmax cross-entropy loss for classification)
weighted by the constant 1, such that « is essential to balance the intermediate loss and the final one.
In addition, Linfopro (R) is used to train the local module outputting h, whose inputs are not required
to be . The module may stack over another local module trained with the same form of Lingopro (R)
but (possibly) different « and 5.

Our method differs from existing works (Ngkland & Eidnes, 2019; Belilovsky et al.,[2019; [2020)
in that it is a non-greedy approach. The major effect of minimizing Lygpro(R) can be described as
maximally discarding the task-irrelevant information under the goal of retaining as much information
of the input as possible. Obtaining high short-term performance is not necessarily required. As we
explicitly facilitate information propagation, we refer to Linfopro (P) as the InfoPro loss.

3.2 UPPER BOUND OF Lintopro

The objective function in Eq.(T)) is difficult to be directly optimized, since it is usually intractable to
estimate 7*, which is equivalent to disentangling all task-irrelevant information from intermediate

Published as a conference paper at ICLR 2021

features. Therefore, we derive an easy-to-compute upper bound of Li,po as an surrogate loss. Our
result is summarized in Proposition[I] with the proof in Appendix

Proposition 1. Suppose that the Markov chain (y,r) — & — h holds. Then an upper bound of
Linfopro IS given by)
'ClnfoPro < _AlI(h’ :B) -)‘QI(hv y) £ 'ClnfoProa (2)

where Ay = a(1 — f3), A2 = afs.

For simplicity, we integrate « and [into two mutually independent hyper-parameters, A; and A,.
Although we do not explicitly restrict Ay > 0, we find in experiments that the performance of
networks is significantly degraded with \; — 0T (see Figure , or say, 8 — 17, where models tend
to reach local minima by trivially minimizing I(r*, h) in Eq. . Thus, we assume A1, A2 > 0.

With Proposition [1] we can optimize the upper bound Liysopro as an approximation, circumventing
dealing with the intractable term I (r*, h) in Lpfopro. To ensure that the approximation is accurate,
the gap between the two should be reasonably small. Below we present an analysis of the tightness of
Lintopro in Proposition [2} (proof given in Appendix . We also empirically check it in Appendix
Proposition 2] provides a useful tool to examine the discrepancy between Liyopro and its upper bound.

Proposition 2. Given that 1* = argmax,. 1, z)>0, 1(r,y)=0 (7 h) and that y is a deterministic

4 ry)=
Sfunction with respect to x, the gap € = Linfopro — Linfopro IS upper bounded by

€< /\2 [I(.’E,y) - I(hﬂy)} : (3)

3.3 MUTUAL INFORMATION ESTIMATION

In the following, we describe the specific techniques we use to obtain the mutual information I (h,)
and I(h,y) in Lingopro- Both of them are estimated using small auxiliary networks. However, we note
that the involved additional computational costs are minimal or even negligible (see Tables [3]).

Estimating I(h,). Assume that R(x|h) denotes the expected error for reconstructing « from
h. Tt has been widely known that R(x|h) follows I(h,x) = H(x)—H(x|h) > H(x)—R(x|h),
where H(x) denotes the marginal entropy of x, as a constant (Vincent et al., 2008} Rifai et al.,
2012; Kingma & Welling}, 2013} [Makhzani et al., 2015} |Hjelm et al.,|2019). Therefore, we estimate
I(h, x) by training a decoder parameterized by w to obtain the minimal reconstruction loss, namely
I(h,) ~maxy[H (x)— Ry (x|h)]. In practice, we use the binary cross-entropy loss for R, (z|h).

Estimating I(h,y). We propose two ways to estimate I(h,y). Since I(h,y) = H(y) —
H(ylh) = H(y) —E(n) [—log p(y|h)], a straightforward approach is to train an auxiliary clas-
sifier gy (y|h) with parameters 1) to approximate p(y|h), such that we have I (h,y) ~maxy{H (y)—
En[>_,—p(y|h)log gy (y|h)]}. Note that this approximate equation will become an equation if and
only if gy (y|h) =p(y|h) (according to the Gibbs’ inequality). Finally, we estimate the expectation on
h using the samples {(x;, hi,y;)} Y ;, namely I(h, y) ~maxy{H(y) — %[Zf;l—log qw (yi|hi)]}
Consequently, g, (y|h) can be trained in a regular classification fashion with the cross-entropy loss.

In addition, motivated by recent advances in contrastive representation learning (Chen et al.| 2020
Khosla et al., 2020; He et al., |2020), we formulate a contrastive style loss function L ongras, and
prove in Appendixthat minimizing Leonast 1S €quivalent to maximizing a lower bound of I (h, y).
Empirical results indicate that adopting Lonirast may lead to better performance if a large batch size is
available. In specific, considering a mini-batch of intermediate features {h1, ..., hx} corresponding
to the labels {y1, ..., Y~} Leontrast 1S given by:

1 exp(z; z;/7)
Econtrast B S — 1 i =1 10g v 7 ,
iz Ly, ; PTTES L oxp(2] 24 /7)

zi = fo(hi). 4

Herein, 15 € {0,1} returns 1 only when A is true, 7 > 0 is a pre-defined hyper-parameter, temper-
ature, and fy is a projection head parameterized by ¢ that maps the feature h; to a representation
vector z; (this design follows |Chen et al.| (2020); Khosla et al.[(2020)).

Implementation details. We defer the details on the network architecture of w, ¥ and ¢ to Appendix
Briefly, on CIFAR, SVHN and STL-10, w is a two layer decoder with up-sampled inputs (if not
otherwise noted), with 1) and ¢ sharing the same architecture consisting of a single convolutional

Published as a conference paper at ICLR 2021

layer followed by two fully-connected layers. On ImageNet and Cityscapes, we use relatively larger
auxiliary nets, but they are very small compared with the primary network. Empirically, we find that
these simple architectures are capable of achieving competitive performance consistently. Moreover,
in implementation, we train w, v and ¢ collaboratively with the main network. Formally, let 6
denote the parameters of the local module to be trained, and then our optimization objective is

S 1 N S
mIHI}:UIqull)ZC AlRw(a:|h)+)\2N Zizl—log ¢y (yilhi) or mggﬂngze MR (x|h)+ A2 Leontrast, (5)
which corresponds to using the cross-entropy and contrast loss to estimate I (h, y), respectively. Such
an approximation is acceptable as we do not need to acquire the exact approximation of mutual
information, and empirically it performs well in various experimental settings.

4 EXPERIMENTS

Setups. Our experiments are based on five widely used datasets (i.e., CIFAR-10 (Krizhevsky et al.,
2009), SVHN (Netzer et al., 2011}, STL-10 (Coates et al.l 2011), ImageNet (Deng et al., [2009)
and Cityscapes (Cordts et al.,|2016)) and two popular network architectures (i.e., ResNet (He et al.,
2016) and DenseNet (Huang et al., 2019)) with varying depth. We split each network into K
local modules with the same (or approximately the same) number of layers, where the first K —1
modules are trained using Linopro, and the last module is trained using the standard E2E loss, as
aforementioned. Due to spatial limitation, details on data pre-processing, training configurations and
local module splitting are deferred to Appendix |F The hyper-parameters Ay and A, are selected from
{0,0.1,0.5,1,2,5,10,20}. Notably, to avoid involving too many tunable hyper-parameters when K

is large (e.g., K =16), we assume that \; and A change linearly from 1% to (K — 1)th local module,
and thus we merely tune A\; and A, for these two modules. We always use 7=0.07 in Leongrast-

Two training modes are considered: (1) simultaneous training, where the back-propagation process
of all local modules is sequentially triggered with every mini-batch of training data; and (2) asyn-
chronous training, where local modules are isolatedly learned given cached outputs from completely
trained earlier modules. Both modes enjoy high memory efficiency since only the activations within
a single module require to be stored at a time. The second mode removes the dependence of local
modules on their predecessors, enabling the fully decoupled training of network components. The
experiments using asynchronous training are referred to as “Asy-InfoPro”, while all other results are
based on simultaneous training.

4.1 MAIN RESULTS

Comparisons with other local learning 13 Mutnal nformation betveen Featres and Label y
methods. We first compare the proposed ' i 002 SN A
InfoPro method with three recently pro- " oot IS)

A

posed algorithms, decoupled greedy learn- Slj : SN el e, eey
ing (Belilovsky et al.,[2020) (DGL), Boost- = Arepah
ResNet (Huang et al.| 2018a) and deep in- Z

cremental boosting (Mosca & Magoulas,
2017) (DIB) in Figure E} Our method
yields the lowest test errors with all val-
ues of K. Notably, DGL can be viewed)
as a special case of InfoPro where A\ =0. Figure 3: Comparisons of InfoPro and state-of-the-art local
learning methods in terms of the test errors at the final layer
(left) and the task-relevant information capture by intermediate
features, I(h,y) (right). Results of ResNet-32 on CIFAR-10
are reported. We use the contrastive loss in Linfopro-

o v & o ®

- - - = 2 | 6 3 0 12 416

K=2 K=4 K=8 K=16 Layer Index

Hence, we use the same architecture of
auxiliary networks as us in DGL for fair
comparison. In addition, we present the
estimates of mutual information between
intermediate features and labels in the right plot of Figure[3| One can observe that DGL suffers from
a severe collapse of task-relevant information at early modules, since it optimizes local modules
greedily for merely short-term performance. By contrast, our method effectively alleviates this
problem, retaining a larger amount of task-relevant information within intermediate features.

Results on various image classification benchmarks are presented in Table[2] We also report the
result of DGL (Belilovsky et al.l 2020) in our implementation. It can be observed that InfoPro
outperforms greedy SL by large margins consistently across different networks, especially when K is

Published as a conference paper at ICLR 2021

Table 2: Performance of different networks with varying numbers of local modules. The averaged test errors and
standard deviations of 5 independent trials are reported. InfoPro (Softmax/Contrast) refers to two approaches to
estimating I (h, y). The results of Asy-InfoPro is obtain by asynchronous training, while others are based on
simultaneous training. Greedy SL adopts deeper networks to have the same computational costs as InfoPro.

Dataset Network Method K=2 K=4 K =238 K =16
Greedy SL 1030 £0.20% 16.07 £ 0.46% 21.19 +0.52% 24.59 + 0.83%
ResNet-32 DGL (Belilovsky et al.2020] | 8.69 £ 0.12% 11.48 +0.20% 14.17 £0.28% 16.21 & 0.36%
(E2E: 7.37 & 0.10%) InfoPro (Softmax) 8.134+£023% 8.64+025% 1140 +0.18% 14.23 + 0.42%
InfoPro (Contrast) 776 +0.12% 858 +0.17% 1113+ 0.19% 12.75 + 0.11%
Greedy SL 821+ 024% 1316 +£028% 15.61 £0.57% 1892+ 1.27%
Greedy SLT 8004 0.11% 1247 +0.17% 1458 £036% 17.354+0.31%
ResNet-110 DGL (Belilovsky et al.2020] | 7.70 £ 0.28% 10.50 & 0.11% 12.46 +0.37% 13.80 &= 0.15%
CIFAR-10)
(E2E: 6.50 = 0.34%) InfoPro (Softmax) 701 £034% 796 £0.06% 940+027% 10.78 £ 0.28%
Asy-InfoPro (Contrast) 7.34+£0.11% 8.39 4+ 0.15% - -
InfoPro (Contrast) 6.42+0.08% 730 +0.14% 893+ 040% 9.90 + 0.19%
Greedy SL 5104+ 0.05% 607 +£021% 8214+031% 1041 + 0.42%
DenseNet-BC-100-12 | DGL (Belilovsky et al.[2020] | 4.86 4 0.15% 571 £0.04% 6.82+£021% 7.67 % 0.16%
(E2E: 4.61 £ 0.08%) InfoPro (Softmax) 4794+0.07% 5.694+021% 644+0.11% 7.47+021%
InfoPro (Contrast) 474+ 0.04% 524 +025% 586+ 0.18% 692+ 0.16%
Greedy SL 3714+016% 539+£022% 575+0.10% 637 +042%
ResNet-110 DGL (Belilovsky et alJ2020] | 3.61 £0.16% 4.97£0.19% 5354+0.13% 555+ 0.34%
SVHN)
(E2E: 3.07 & 0.23%) InfoPro (Softmax) 341 £008% 372+003% 467+007% 5.14 £ 0.08%
InfoPro (Contrast) 3154+ 0.03% 328+011% 3.62+0.11% 391+ 0.16%
Greedy SL 2556 + 1.37% 2797 +£0.75% 29.07 +0.76% 30.38 4 0.39%
ResNet-110 DGL (Belilovsky et al.|2020] | 24.96 = 1.18% 26.77 + 0.64% 27.33 +0.24% 27.73 + 0.58%
STL-10 .
(B2E: 22.27 & 1.61%) InfoPro (Softmax) 21.02+051% 21284+ 027% 23.60 +0.49% 26.05 & 0.71%
InfoPro (Contrast) 2099 +0.64% 2273 +0.40% 25.15+0.52% 2627 + 0.48%

Table 3: Trade-off between GPU memory footprint during training and test errors. Results of training ResNet-110
on a single Nvidia Titan Xp GPU are reported. ‘GC’ refers to gradient checkpointing (Chen et al., 2016).

CIFAR-10 (batch size = 1024) STL-10 (batch size = 128)
Methods Test Exror Memory Cost Computélional Overl?ead Test Error Memory Cost Computélional Overl?ead
(Theoretical / Wall Time) (Theoretical / Wall Time)
E2E Training 6.50 4 0.34% 9.40 GB - 2227 £ 1.61% 10.77 GB -

GC (Chen et al.}2016] | 6.50 +0.34% 3.91 GB (] 58.4%) 32.8%/27.5% 2227 £ 1.61% 4.50 GB (] 58.2%) 32.8%/27.0%
InfoPro*, K = 2 6.41 +0.13% 5.38 GB (].42.8%) 1.3% /1.1% 20.95 + 0.57% 6.15 GB (] 42.9%) 1.3% /11.7%
InfoPro*, K = 3 6.74 £ 0.12% 4.22 GB (1. 55.1%) 3.3%/7.5% 21.00 £+ 0.52% 4.96 GB (1.53.9%) 3.3%/7.0%
InfoPro", K = 4 6.93 +0.20% 3.52 GB (1 62.6%) 5.9% 113.4% 2122 £0.72% 4.08 GB (].62.1%) 5.9% 1 11.4%

Table 4: Single crop error rates (%) on the validation set of ImageNet. We use 8 Tesla V100 GPUs for training.

Models Methods Batch Size | Top-1 Error | Top-5 error Memory Cost Comp utz.monal Overl{lead
(per GPU) (Theoretical / Wall Time)
ResNet-101 I?ZE Training 1024 22.03% 5.93% 19.71 GB -
InfoPro*, K = 2 1024 21.85% 5.89% 12.06 GB (] 38.8%) 5.7% 1 11.7%
ResNet-152 E2E Training 1024 21.60% 5.92% 26.29 GB -
InfoPro*, K = 2 1024 21.45% 5.84% 15.53 GB (1. 40.9%) 3.9% /8.7%
21N (7 0 —
ResNeXt-101, 32x8d E2E Training 512 20.64% 5.40% 19.22GB
InfoPro*, K = 2 512 20.35% 5.28% 11.55 GB (1. 39.9%) 2.7% 15.6%

large. For example, on CIFAR-10, ResNet-32 + InfoPro achieves a test error of 12.75% with K =16,
surpassing greedy SL by 11.84%. For ResNet-110, we note that our method performs on par with
E2E training with K =2, while degrading the performance by up to 0.8% with K =4. Moreover,
InfoPro is shown to compare favorably against DGL under most settings.

In addition, given that our method introduces auxiliary networks, we enlarge network depth for
greedy SL to match the computational cost of InfoPro, named as greedy SLT. However, this only
slightly ameliorates the performance since the problem of information collapse still exists. Another
interesting phenomenon is that InfoPro (Contrast) outperforms InfoPro (Softmax) on CIFAR-10 and
SVHN, yet fails to do so on STL-10. We attribute this to the larger batch size we use on the former
two datasets and the proper value of the temperature 7. A detailed analysis is given in Appendix

Asynchronous and parallel training. The results of asynchronous training are presented in Table 2]
as “Asy-InfoPro”, and it appears to slightly hurt the performance. Asy-InfoPro differentiates itself
from InfoPro on that it adopts the cached outputs from completely trained earlier modules as the
inputs of later modules. Therefore, the degradation of performance might be ascribed to lacking
regularizing effects from the noisy outputs of earlier modules during training (Lowe et al.| 2019).
However, Asy-InfoPro is still considerably better than both greedy SL and DGL, approaching E2E

Published as a conference paper at ICLR 2021

Table 5: Results of semantic segmentation on Cityscapes. 2 Nvidia GeForce RTX 3090 GPUs are used for
training. ‘SS’ refers to the single-scale inference. ‘MS’ and ‘Flip’ denote employing the average prediction of
multi-scale ([0.5, 1.75]) and left-right flipped inputs during inference. We also present the results reported by the
original paper in the “original” row. DGL refers to decoupled greedy learning (Belilovsky et al., 2020).

Training Training | Batch . mloU Memory Cost Computational Overhead
Model N N K Crop Size n . .
Algorithms | Iterations | Size SS MS MS+Flip (per GPU) (Theoretical / Wall Time)
E2E (original) | 40k 8 | 769x769 | 77.82% | 79.06% | 79.30% - -
E2E (ours) 40K 8 | 512x1024 | 79.12% | 79.81% | 80.02% 19.43GB -
DeepLab-V3 DGL 40k 8 | 512x1024 | 78.15% | 79.40% | 79.56% - -
-RI01 |InfoPrc*, K =2| 40k 8 | 512x1024 | 79.37% | 80.53% | 80.54% | 12.01GB (| 38.2%) 6.4% 12.2%
(w/ syncBN) [E2E (ours) 60K 8 | 512x1024 | 79.32% | 79.95% | 80.07% 19.43GB -
InfoPro*, K =2| 40k | 12 | 512x1024 | 79.99% | 81.09% | 81.20% | 16.62GB (] 14.5%) 6.4%/12.1%
InfoPro*, K =2| 40k 8 |640x1280| 80.25% | 81.33% | 81.42% | 17.00GB (| 12.5%) 103% / 1 2.9%
training. Besides, we note that asynchronous 1" local module 3 local module s
training can be easily extended to training ~ 10'm mmm 10'@ o
. . 8] :
different local modules in Pafauel by dynam- < 5- 858 942 | 963 (] s REWTY sss 866 895 899 105
ically caching the outputs of earlier modules. =
. . . . o . < 1- 865 924 mm 17 924 868 871 9.08 10.0
To this end, we preliminarily test training two 3
g
local modules parallelly on 2 GPUs when § 0s- 8e7 m 05 , 930 007 866 900 5
. - g
K =2, using the same exper}mental proto- = E . | o 90
cols as|Huo et al.| (2018b) (train ResNet-110 ;TS e S 85
.5 5

0.5 1 5 10

with a batch size of 128 on CIFAR-10) and Ns (cocficient of I(h,y)

their public code. Our method gives a 1.5x Figure 4: Sensitivity tests. The CIFAR-10 test errors of

speedup over the standard parallel paradigm ResNet-32 trained using Infog’ro (K =4) are reported. We

of E2E training (the DataParallel toolkit in vary A1 and Az for 1*" and 3" local modules respectively,

Pytorch). Note that parallel training has the with all other modules unchanged. We do not consider A\; =
y) par: g has | A2 =0, where we obviously have Linfopro = Linforro = 0.

same performance as simultaneous training

(i.e., “InfoPro” in Table[2) since their training processes are identical except for the parallelism.

Reducing GPUs memory requirements. Here we split the network into local modules to ensure
each module consumes a similar amount of GPU memory during training. Note that this is different
from splitting the model into modules with the same number of layers. We denote the results in this
setting by InfoPro*, and the trade-off between GPU memory consumption and test errors is presented
in Table [3] where we report the minimally required GPU memory to run the training algorithm.
The contrastive and softmax loss are used in InfoPro* on CIFAR-10 and STL-10, respectively. One
can observe that our method significantly improves the memory efficiency of CNNs. For instance,
on STL-10, InfoPro* (K = 4) outperforms the E2E baseline by 1.05% with 37.9% of the GPUs
memory requirements. The computational overhead is presented in both the theoretical results and
the practical wall time. Due to implementation issues, we find that the latter is slightly larger than
the former for InfoPro*. Compared to the gradient checkpointing technique (Chen et al., 2016)), our
method achieves competitive performance with significantly reduced computational and time cost.

Results on ImageNet are reported in Table] The softmax loss is used in InfoPro* since the batch
size is relatively small. The proposed method reduces the memory cost by 40%, and achieves slightly
better performance. Notably, our method enables training these large networks using 16 GB GPUs.

Results of semantic segmentation on Cityscapes are presented in Table 5] We report the mean
Intersection over Union (mloU) of all classes on the validation set. The softmax loss is used in
InfoPro*. The details of % and w are presented in Appendix [E] Our method boosts the performance
of the DeepLab-V3 (Chen et al 2017) network and allows training the model with 50% larger
batch sizes (2 — 3 per GPU) under the same memory constraints. This contributes to more accurate
statistics for batch normalization, which is a practical requirement for tasks with high resolution
inputs. In addition, InfoPro* enables using larger crop sizes (512x1024 — 640x1280) during training
without enlarging GPUs memory footprint, which significantly improves the mloU. Note that this
does not increase the training or inference cost.

4.2 HYPER-PARAMETER SENSITIVITY AND ABLATION STUDY

The coefficient \; and \o. To study how A; and A, affect the performance, we change them for
the 1% and 3" local modules of a ResNet-32 trained using InfoPro (Contrast), K = 4, with the
results shown in Figure] We find that the earlier module benefits from small A, to propagate more
information forward, while larger A5 helps the later module to boost the final accuracy. This is

Published as a conference paper at ICLR 2021

compatible with previous works showing that removing earlier layers in ResNets has a minimal
impact on performance (Veit et al., 2016). Table 6: Ablation studies. Test errors of
ResNet-32 on CIFAR-10 are reported.
w ¢ K=2 K=28
1030 +0.20% | 21.19 & 0.52%
v | 8904+0.17% | 15.82 4+ 0.34%

' 849 £0.16% | 14.13 £0.22%
5 RELATED WORK v v | 776 £012% | 11.13 £+ 0.19%

Ablation study. For ablation, we test directly removing the
decoder w or replacing the contrastive head ¢ by the linear
classifier used in greedy SL, as shown in Table [6]

Greedy training of deep networks is first proposed to learn unsupervised deep generative models,
or to obtain an appropriate initialization for E2E supervised training (Hinton et al., |2006; Bengio
et al., |2007). However, later works reveal that this initialization is indeed dispensable once proper
networks architectures are adopted, e.g., introducing batch normalization layers (loffe & Szegedyl
20135), skip connections (He et al.|[2016) or dense connections (Huang et al.,[2019). Some other
works (Kulkarni & Karande, [2017; Malach & Shalev-Shwartz, 2018} [Marquez et al.,[2018; |Huang
et al 2018a) attempt to learn deep models in a layer-wise fashion. For example, BoostResNet
(Huang et al.| |2018a)) trains different residual blocks in a ResNet (He et al.||2016) sequentially with a
boosting algorithm. Deep Cascade Learning (Marquez et al.,|2018)) extends the cascade correlation
algorithm (Fahlman & Lebiere, |1990) to deep learning, aiming at improving the training efficiency.
However, these approaches mainly focus on theoretical analysis and are usually validated with
limited experimental results on small datasets. More recently, several works have pointed out the
inefficiencies of back-propagation and revisited this problem (Ngkland & Eidnes|, 2019} Belilovsky
et al., [2019; |2020). These works adopt a similar local learning setting to us, while they mostly
optimize local modules with a greedy short-term objective, and hence suffer from the information
collapse issue we discuss in this paper. In contrast, our method trains local modules by minimizing
the non-greedy InfoPro loss.

Alternatives of back-propagation have been widely studied in recent years. Some biologically-
motivated algorithms including target propagation (Lee et al.,[2015b; Bartunov et al. 2018]) and
feedback alignment (Lillicrap et al.l 2014} Ngkland, [2016) avoid back-propagation by directly
propagating backward optimal activations or error signals with auxiliary networks. Decoupled Neural
Interfaces (DNI) (Jaderberg et al.|[2017) learn auxiliary networks to produce synthetic gradients. In
addition, optimization methods like Alternating Direction Method of Multipliers (ADMM) split the
end-to-end optimization into sub-problems using auxiliary variables (Taylor et al.,|2016;Choromanska
et al.,|2018). Decoupled Parallel Back-propagation (Huo et al.| 2018b)) and Features Replay (Huo
et al., [2018a) update parameters with previous gradients instead of current ones, and show its
convergence theoretically, enabling training network modules in parallel. Nevertheless, these methods
are fundamentally different from us as they train local modules by explicitly or implicitly optimizing
the global objective, while we merely consider optimizing local objectives.

Information-theoretic analysis in deep learning has received increasingly more attention in the
past few years. Shwartz-Ziv & Tishby|(2017) and |Saxe et al.|(2019) study the information bottleneck
(IB) principle (Tishby et al., [2000) to explain the training dynamics of deep networks. [Achille &
Soatto| (2018)) decompose the cross-entropy loss and propose a novel IB for weights. There are also
efforts towards fulfilling efficient training with IB (Alemi et al.}2016). In the context of unsupervised
learning, a number of methods have been proposed based on mutual information maximization (Oord
et al.|[2018; Tian et al., [2020; |[Hjelm et al.,|2019). SimCLR (Chen et al.,2020) and MoCo (He et al.,
2020) propose to maximize the mutual information of different views from the same input with the
contrastive loss. This paper analyzes the drawbacks of greedy local supervision and propose the
InfoPro loss from the information-theoretic perspective as well. In addition, our method can also be
implemented as the combination of a contrastive term and a reconstruction loss.

6 CONCLUSION

This work studied locally supervised deep learning from the information-theoretic perspective. We
demonstrated that training local modules greedily results in collapsing task-relevant information at
earlier layers, degrading the final performance. To address this issue, we proposed an information
propagation (InfoPro) loss that encourages local modules to preserve more information about the
input, while progressively discard task-irrelevant information. Extensive experiments validated that
InfoPro significantly reduced GPUs memory footprint during training without sacrificing accuracy. It
also enabled model parallelization in an asynchronous fashion. InfoPro may open new avenues for
developing more efficient and biologically plausible deep learning algorithms.

Published as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

This work is supported in part by the National Science and Technology Major Project of the Ministry
of Science and Technology of China under Grants 2018AAA0100701, the National Natural Science
Foundation of China under Grants 61906106 and 62022048, the Institute for Guo Qiang of Tsinghua
University and Beijing Academy of Artificial Intelligence.

REFERENCES

Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in deep
representations. The Journal of Machine Learning Research, 19(1):1947-1980, 2018.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. arXiv preprint arXiv:1612.00410, 2016.

Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy Lilli-
crap. Assessing the scalability of biologically-motivated deep learning algorithms and architectures.
In NeurIPS, pp. 9368-9378, 2018.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In ICML, pp. 583-593. PMLR, 2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns.
In ICML, 2020.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. In Advances in neural information processing systems, pp. 153-160, 2007.

Yoshua Bengio, Dong-Hyun Lee, Jorg Bornschein, Thomas Mesnard, and Zhouhan Lin. Towards
biologically plausible deep learning. arXiv preprint arXiv:1502.04156, 2015.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155, 2019.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587,2017.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In /CML, 2020.

Anna Choromanska, ECENYU Tandon, Sadhana Kumaravel, Ronny Luss, Irina Rish, Brian Kings-
bury, Ravi Tejwani, and Djallel Bouneffouf. Beyond backprop: Alternating minimization with
co-activation memory. stat, 1050:24, 2018.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In AISTATS, pp. 215-223, 2011.

MMSegmentation Contributors. Mmsegmentation, an open source semantic segmentation toolbox.
https://github.com/open—-mmlab/mmsegmentation) 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In CVPR, pp. 3213-3223, 2016.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129-132, 1989.
Yang Dan and Mu-ming Poo. Spike timing-dependent plasticity of neural circuits. Neuron, 44(1):

23-30, 2004.

10

https://github.com/open-mmlab/mmsegmentation

Published as a conference paper at ICLR 2021

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In ICML, pp. 248-255, 2009.

Scott E Fahlman and Christian Lebiere. The cascade-correlation learning architecture. In NeurlPS,
pp- 524-532, 1990.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network:
Backpropagation without storing activations. In NeurIPS, pp. 2214-2224, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770-778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, pp. 9729-9738, 2020.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527-1554, 2006.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In /CLR, 2019.

Furong Huang, Jordan Ash, John Langford, and Robert Schapire. Learning deep resnet blocks
sequentially using boosting theory. In ICML, pp. 2058-2067, 2018a.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Weinberger.
Multi-scale dense networks for resource efficient image classification. In ICLR, 2018b. URL
https://openreview.net/forum?id=Hk2aImxAbl

Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens Van Der Maaten, and Kilian Weinberger. Convo-
lutional networks with dense connectivity. IEEE transactions on pattern analysis and machine
intelligence, 2019.

Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay. In
NeurIPS, pp. 6659-6668, 2018a.

Zhouyuan Huo, Bin Gu, Qian Yang, and Heng Huang. Decoupled parallel backpropagation with
convergence guarantee. In ICML, 2018b.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In ICML,
pp. 1627-1635. PMLR, 2017.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. arXiv preprint
arXiv:2004.11362, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In NeurIPS, pp. 1097-1105, 2012.

Mandar Kulkarni and Shirish Karande. Layer-wise training of deep networks using kernel similarity.
arXiv preprint arXiv:1703.07115, 2017.

11

https://openreview.net/forum?id=Hk2aImxAb

Published as a conference paper at ICLR 2021

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-supervised
nets. In AISTATS, pp. 562-570, 2015a.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Joint european conference on machine learning and knowledge discovery in databases, pp.
498-515. Springer, 2015b.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random feedback
weights support learning in deep neural networks. arXiv preprint arXiv:1411.0247, 2014.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft coco: Common objects
in context, 2014. URL http://arxiv.org/abs/1405.0312.

Tsung-Yi Lin, Piotr Dollér, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In CVPR, pp. 2117-2125, 2017.

Sindy Lowe, Peter O’Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-isolated
learning of representations. In NeurlIPS, pp. 3039-3051, 2019.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Eran Malach and Shai Shalev-Shwartz. A provably correct algorithm for deep learning that actually
works. arXiv preprint arXiv:1803.09522, 2018.

Enrique S Marquez, Jonathon S Hare, and Mahesan Niranjan. Deep cascade learning. [EEE
transactions on neural networks and learning systems, 29(11):5475-5485, 2018.

Alan Mosca and George D Magoulas. Deep incremental boosting. arXiv preprint arXiv:1708.03704,
2017.

Hesham Mostafa, Vishwajith Ramesh, and Gert Cauwenberghs. Deep supervised learning using local
errors. Frontiers in neuroscience, 12:608, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Arild Ngkland. Direct feedback alignment provides learning in deep neural networks. In NeurlIPS,
pp. 1037-1045, 2016.

Arild Ngkland and Lars Hiller Eidnes. Training neural networks with local error signals. arXiv
preprint arXiv:1901.06656, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NeurIPS, pp. 91-99, 2015.

Salah Rifai, Yoshua Bengio, Aaron Courville, Pascal Vincent, and Mehdi Mirza. Disentangling
factors of variation for facial expression recognition. In ECCV, pp. 808-822. Springer, 2012.

Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D
Tracey, and David D Cox. On the information bottleneck theory of deep learning. Journal of
Statistical Mechanics: Theory and Experiment, 2019(12):124020, 2019.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

12

http://arxiv.org/abs/1405.0312

Published as a conference paper at ICLR 2021

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR,
pp. 1-9, 2015.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. In NeurIPS, pp. 1195-1204, 2017.

Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein. Training
neural networks without gradients: A scalable admm approach. In ICML, pp. 2722-2731, 2016.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning. arXiv preprint arXiv:2005.10243, 2020.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Andreas Veit, Michael] Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. In NeurIPS, pp. 550-558, 2016.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In ICML, pp. 1096-1103, 2008.

Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Gao Huang, and Cheng Wu. Implicit semantic
data augmentation for deep networks. In NeurIPS, pp. 12635-12644, 2019.

Yulin Wang, Jiayi Guo, Shiji Song, and Gao Huang. Meta-semi: A meta-learning approach for
semi-supervised learning. arXiv preprint arXiv:2007.02394, 2020a.

Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang, and Gao Huang. Glance and focus: a
dynamic approach to reducing spatial redundancy in image classification. In NeurIPS, 2020b.

Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive networks
for efficient inference. In CVPR, pp. 2369-2378, 2020.

13

Published as a conference paper at ICLR 2021

APPENDIX

A A Toy EXAMPLE

To further validate the proposed information collapse hypothesis, we Input Labels
visualize the “information flow” within deep networks using a toy
example. First, we establish a MNIST-STL10 dataset via placing

Y1: Background

MNIST digits on a certain position (randomly selected from 64 can- Y2: Digit
didates) of a background image from STL-10. Then, three specific Y3: Position of
Digit

tasks can be defined on MNIST-STL10, namely classifying digits, g
backgrounds and positiops of numbers. We refer to the labels of them gure 5: Illustration of the
as y1, y2 and ys, respectively, as illustrated by Figure 5] MNIST-STL10 dataset.

We train ResNet-32 networks for the three tasks with greedy SL (/{ =4) and end-to-end training
(K =1). The estimates of mutual information I (k, y1), I(h, y2) and I(h,ys) are shown in Figure 6]
with the same estimating approach as Figure 2] (details in Appendix [G). Note that when one label
(take 3, for example) is adopted for training, the information related to other labels (I(h,y>) and
I(h,ys3)) is task-irrelevant. From the plots, one can clearly observe that end-to-end training retains
all task-relevant information throughout the feed-forward process, while greedy SL usually yields
less informative intermediate representations in terms of the task of interest. This phenomenon
confirms the proposed information collapse hypothesis empirically. In addition, we postulate that the
end-to-end learned early layers prevent collapsing task-relevant information by being allowed to keep
larger amount of task-irrelevant information, which, however, may lead to the inferior classification
performance of intermediate features, and thus cannot be achieved by greedy SL.

Mutual Information between Features h and Label y; Mutual Information between Features h and Label y» Mutual Information between Features h and Label y3

K =4 (tra

K = 4 (trained with ys)

4 6 8 10 12 14 16 6 8 10 12 14 16 - 2 4 6 8 10 12 14 16

Layer Index Layer Index Layer Index
Figure 6: The estimates of mutual information between the intermediate features h and the three labels of
MNIST-STL10 (see: Figure EI), i.e. y1 (left, background), y2 (middle, digit) and y3 (right, position of digit).
Models are trained using greedy SL (K =1, 4) supervised by one of the three labels, and the results are shown
with respect to layer indices. “K =1" refers to end-to-end training.

B PROOF OF PROPOSITION [1]

Proposition 1. Suppose that the Markov chain (y,r) — & — h holds. Then an upper bound of
Linfopro IS given by

Lintopro < —A1I(h, @) — X2I(h,y) £ Lintopro, (6)
where \y = a(1 —), A2 = af.
Proof. Note that, Lysopo 1S given by

Lintorro(R) = a[—I(h,x) + BI(r*,h)], o, 8 >0, s.t.7%= argmax I(r,h). (7)
r, I(r,e)>0, I(r,y)=0

Due to the Markov chain (y,) — & — h, we have I(h, (y,7*)) < I(h, x). Given that
I(h, (y,r")) = H(h) — H(hly,r")

= [H(h) — H(h|r")] + [H(h|r") — H(h|y,7")] (®)
I(h,r") + I(h,y|r"),

we have

14

Published as a conference paper at ICLR 2021

By the definition of nuisance, we note that v* and y are mutually independent, and thus we obtain
I(h,y|lr*) = H(y|r*) — H(ylh,r")

= H(y) — H(ylh,") (10)
> H(y) — H(ylh) = 1(h,y).
Combining Eqs. (9) and (I0), we have
I(h,r*) < I(h,z) — I(h,y). n
Finally, Proposition[I]is proved by combining Eq. (7)) and Inequality (TT). O

C PROOF OF PROPOSITION 2]

We first introduce a Lemma proven by |Achille & Soatto| (2018).

Lemma 1. Given a joint distribution p(x,y), where y is a discrete random variable, we can always
find a random variable r independent of y such that x = f(y,r), for some deterministic function f.

Proposition 2. Given that 7* = argmax,. 1, z)>0, 1(r,y)=0 (7 h) and that y is a deterministic
function with respect to x, the gap € = Lintopro — Linfopro IS Upper bounded by
e <X [I(z,y) — I(h,y)]. (12)

Proof. Let 7 be the random variable in Lemmal(I] and then, since we can find a deterministic function
that maps « to y, we have

I(h,x) = I(h,(y,7)) = I(h,7) + I(h,y|F). (13)
Assume ¢ = [I(h,x) — I(h,y)] — I(h,7*), in terms that r* = argmax,. (. z)>0, 1(r,y)=0 L (7,),
we obtain
¢<[I(h,z) - I(h,y)] -

= I(h,7)+ I(h,y|F) — I(,y) I(h,7)

= I(h,y|7) — I(h,y) (14)

= I(h,y|7) = I(z,y) + I(z,y) — I(h,y)

= H(ylr) = H(y|7, h) — H(y) + H(y|z) + I(z,y) — I(h,y).

Since y and 7 are mutually independent, namely H (y|7) = H (y), we have
(< H(y)— H(ylr,h) — H(y) + H(ylz) + I(z,y) — I(h,y)

< H(ylz) + I(x,y) — I(h,y).

When considering y as a deterministic function with regards to x, we obtain H(y|x) = 0, and
therefore

Given that € = Liyfopro — Linforro = A2(, we have
€< Ay [I((E,y) - I(hvy)]))
for which we have proven Proposition 2} O

D WHY MINIMIZING THE CONTRASTIVE LOSS MAXIMIZES THE LOWER BOUND
OF TASK-RELEVANT INFORMATION?

In this section, we show that minimizing the proposed contrastive loss, namely

1 exp(z, z;/7)
ﬁ ast — ~— o 1 = '10 L , Rj = f hZ 9 (18)
contrat Z#j Lyi—y; ; e gz,ivzl Lk eXp(ziTZk/T) #(P:)

actually maximizes an lower bound of task-relevant information I (h,y). We start by considering
a simplified but equivalent situation. Suppose that we have a query sample 21, together with a set

15

Published as a conference paper at ICLR 2021

X = {z1,...,zN} consisting of N samples with one positive sample zP from the same class as 2+
definitely, and other negative samples are randomly sampled, namely X = {zP} U X,,. Then the
expectation of L¢onirast Can be written as

exp(zt ' 2 /7) .
SN exp(zt ! zi/7)

Eq. can be viewed as a categorical cross-entropy loss of recognizing the positive sample 2P
correctly. Hence, we define the optimal probability of this classification problem as PP*(z;| X),
which denotes the true probability of z; being the positive sample. Assuming that the label of 2P is y,
the positive and negative samples can be viewed as being sampled from the true distributions p(z|y)
and p(z), respectively. As a consequence, PP*(z;|X) can be derived as

IE[‘Ccontrast] = IEz‘f—,X _IOg (19)

' p(zily)
PP (2] X) = — Gl iwinlz) LD (20)
S p(z) Ty plz) XL, 2l
which indicates that an optimal value for exp(z“‘sz /7) is ”;}fjjf;). Therefore, by assuming that 2+
is uniformly sampled from all classes, we have
[p(?"\z)/)
imal zP
E[‘Ccomrast] > E[E?S;EZ[] = IEy,)(_IOngip(zj‘y) (21)
J=1 "p(z;)
[p('(z"lz)/)
— _ p(=P
=By x | —log p(2°|y) 3 p(2;1y) 22)
p(2P) z;€Xnee p(25)

() p(%;ly)
p(Ply) 5 plz)

~E, x {log :1 L PE) 1)Ezjwp(zj)p(zjy)] } (24)
{

(23)

p(2Ply) p(z5)
[, p(zP)
=E, . ¢log _1 + 2Ty (N 1)} } (25)
p(2P)
S B, . {log Ferltl 1)] } (26)
= —I(2",y) +log(N — 1) > —I(h,y) + log(N —1). (27)

In the above, Inequality ([24) follows from [Oord et al.| (2018), which quickly becomes more accurate
when N increases. Inequality follows from the data processing inequality (Shwartz-Ziv &
Tishby, [2017)). Finally, we have E[Lcongrast) > log(N — 1) — I(h,y), and thus minimizing Lconerast
under the stochastic gradient descent framework maximizes a lower bound of I(h,).

E ARCHITECTURE OF AUXILIARY NETWORKS

Here, we introduce the network architectures of w, 1) and ¢ we use in our experiments. Note that, w
is a decoder that aims to reconstruct the input images from deep features, while 1) and ¢ share the
same architecture except for the last layer. The architectures used on CIFAR, SVHN and STL-10
are shown in Table[7]and Table[8] Architectures on ImageNet are shown in Table [9]and Table
The architecture of 1) for the semantic segmentation experiments on Cityscapes is shown in Table [I 1}
where we use the same decoder w as on ImageNet (except for the size of feature maps). An empirical
study on the size and architecture of auxiliary nets is presented in Appendix

F DETAILS OF EXPERIMENTS

Datasets. (1) The CIFAR-10 (Krizhevsky et al., 2009) dataset consists of 60,000 32x32 colored
images of 10 classes, 50,000 for training and 10,000 for test. We normalize the images with channel

16

Published as a conference paper at ICLR 2021

Table 7: Architecture of the decoder w on CIFAR, SVHN and STL-10.
Input: 32x32/16x16 / 8x8 feature maps (9696 / 48x48 / 24x24 on STL-10)
Bilinear Interpolation to 32x32 (96x96 on STL-10)

33 conv., stride=1, padding=1, output channels=12, BatchNorm+ReLU
3x3 conv., stride=1, padding=1, output channels=3, Sigmoid

Table 8: Architecture of 1 and ¢ on CIFAR, SVHN and STL-10.

Input: 32x32/16x16 / 8 x8 feature maps (9696 / 48x48 / 24x24 on STL-10)
32x32 (96 x96) input features: 3x3 conv., stride=2, padding=1, output channels=32, BatchNorm+ReLU
1616 (48x48) input features: 3 x3 conv., stride=2, padding=1, output channels=64, BatchNorm+ReLU
8% 8 (24 x24) input features: 3x 3 conv., stride=1, padding=1, output channels=64, BatchNorm+ReLU
Global average pooling
Fully connected 32 / 64—128, ReLU
Fully connected 128—10 for v or 128— 128 for ¢

Table 9: Architecture of the decoder w on ImageNet.

Input: 28 x 28 feature maps
1x1 conv., stride=1, padding=0, output channels=128, BatchNorm+ReLU
Bilinear Interpolation to 5656

3% 3 conv., stride=1, padding=1, output channels=32, BatchNorm+ReLLU
Bilinear Interpolation to 112x112

3% 3 conv., stride=1, padding=1, output channels=12, BatchNorm+ReLLU
Bilinear Interpolation to 224 x224

33 conv., stride=1, padding=1, output channels=3, Sigmoid

Table 10: Architecture of 1) on ImageNet.

Input: 28 x 28 feature maps
1x1 conv., stride=1, padding=0, output channels=128, BatchNorm+ReLU
33 conv., stride=2, padding=1, output channels=256, BatchNorm-+ReLU
33 conv., stride=2, padding=1, output channels=512, BatchNorm-+ReLU
1x1 conv., stride=1, padding=0, output channels=2048, BatchNorm+ReLU
Global average pooling
Fully connected 2048—1000

Table 11: Architecture of 1 on Cityscapes.

Input: 64 %128 feature maps, 1024 channels
33 conv., stride=1, padding=1, output channels=512, BatchNorm-+ReLU
Dropout, p=0.1
1x1 conv., stride=1, padding=0, output channels=19

means and standard deviations for pre-processing. Then data augmentation is performed by 4x4
random translation followed by random horizontal flip (He et al., 2016; Huang et al., [2019). (2)
SVHN (Netzer et al.l 2011) consists of 32x32 colored images of digits. 73,257 images for training
and 26,032 images for test are provided. Following Tarvainen & Valpola (2017); Wang et al.| (2020a)),
we perform random 2x2 translation to augment the training set. (3) STL-10 (Coates et al., 2011
contains 5,000 training examples divided into 10 predefined folds with 1000 examples each, and
8,000 images for test. We use all the labeled images for training and test the performance on the
provided test set. Data augmentation is performed by 4x4 random translation followed by random
horizontal flip. (4) ImageNet is a 1,000-class dataset from ILSVRC2012 (Deng et al.l 2009), with 1.2
million images for training and 50,000 images for validation. We adopt the same data augmentation
and pre-processing configurations as Huang et al.[(2019;2018b); Wang et al.|(2019;2020b); |Yang
et al.| (2020). (5) Cityscapes dataset (Cordts et al., |2016) contains 5,000 1024 x2048 pixel-level
finely annotated images (2,975/500/1,525 for training, validation and testing) and 20,000 coarsely
annotated images from 50 different cities. Each pixel of the image is categorized among 19 classes.

17

Published as a conference paper at ICLR 2021

Following|Chen et al.|(2017)), we conduct our experiments on the finely annotated dataset and report
the performance on the validation set. The training images are augmented by randomly scaling (from
0.5 to 2.0) followed by randomly cropping high-resolution patches (512x 1024 or 640x 1280). At
test time, we simply feed the whole 1024 x2048 images into the model.

Networks and training hyper-parameters. Our experiments on CIAFR-10, SVHN and STL-10 are
based on three popular networks, namely ResNet-32/110 (He et al., 2016} and DenseNet-BC-100-12
(Huang et al.,2019). The networks are trained using a SGD optimizer with a Nesterov momentum
of 0.9 for 160 epochs. The L2 weight decay ratio is set to le-4. For ResNets, the batch size is set
to 1024 and 128 for CIFAR-10/SVHN and STL-10, associated with an initial learning rate of 0.8
and 0.1, respectively. For DenseNets, we use a batch size of 256 and an initial learning rate of 0.2.
The cosine learning rate annealing is adopted. Note that, the results of greedy supervised learning
presented in Table[T]follows exactly the same experimental configurations stated here. On ImageNet,
we train ResNet-101 and ResNet-152 with a batch size of 1024 and an initial learning rate of 0.4. For
ResNeXt-101, 32 x8d, we use a batch size of 512 and an initial learning rate of 0.2. The number of
training epochs is set to 90. Other hyper-parameters are the same as CIAFR-10. For the DeepLab-V3
model used in semantic segmentation, we follow the training configurations of MMSegmentation
(Contributors, 2020) (with ResNet-101 and synthetic batch normalization), except for using an initial
learning rate of 0.015 when setting the batch size to 12 or using 640x 1280 cropped patches.

Local module splitting. Since ResNets consist of a cascade of residual blocks, which naturally
should not be further divided into smaller parts, we view each residual block as a minimal indivisible
unit, or say, a basic layer (distinguished from a single convolutional layer). Particularly, the first
convolutional layer of the network is individually viewed as a basic layer. As a consequence, ResNet-
32 has 16 basic layers, and ResNet-110 has 55 basic layers. If ResNet-32 is split into K = 8 local
modules, then each module will have 2 basic layers. In the cases where the number of basic layers is
not divisible by K, we assign one less basic layer to earlier modules. For example, if ResNet-110
is split into K = 4 modules, the corresponding numbers of basic layers will be {13, 14,14, 14}.
If ResNet-110 is split into K = 16 modules, the corresponding numbers of basic layers will be
{3} x 9 modules + {4} x 7 modules. For DenseNet-BC, similarly, we view each dense layer (the
composite function BN-ReLU-1 x 1Conv-BN-ReLU-3 x3Conv) as a basic layer following their paper
(Huang et al.| | 2019)). The first convolutional layer and the transition layers are viewed as individual
basic layers. The splitting criteria is the same as ResNets. Notably, for InfoPro*, the networks are
divided to make sure that each local module has the same memory consumption during training,
and hence the aforementioned splitting criteria based on the same numbers of basic layers is not
applicable, as we discussed in Section {.1]

G DETAILS OF MUTUAL INFORMATION ESTIMATION

In this section, we describe the details on obtaining the estimates of I(h, x) and I(h,y) we present
in Figures[2] [B|and[6]

As we have discussed in Section the expected reconstruction error R(x|h) follows I(h,x)=
H(x)— H(x|h) > H(x)—R(x|h) (Vincent et al., 2008 Rifai et al., 2012; |[Kingma & Welling,
2013; Makhzani et al.| 2015; [Hjelm et al., 2019). Therefore, similar to Section@ we estimate
I(h,) by training a decoder parameterized by w to obtain the minimal reconstruction loss, namely
I(h,x) ~ max,[H(x) — Ry (x|h)]. Note that, ideally, this bound can be arbitrarily tight provided
that w has sufficient capacity. In specific, we use the same network architecture as Table [/} and train
it for 10 epochs to minimize the averaged binary cross-entropy reconstruction loss of each pixel. An
adam (Kingma & Ba, 2014) optimizer with default hyper-parameters (Ir=0.001, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0) is adopted. Naive as this procedure might seems, for one thing, we find
that it is sufficient to reconstruct the input images well given enough information, and meanwhile
distinguish different values of I(h, x) via the quality of reconstructed images, as shown in Figure
For another, we are primarily concerned with the comparisons of I(h,x) between end-to-end
training and various cases of greedy supervised learning rather than obtaining the exact values of
I(h,x). The same training process is applied to all the intermediate features h, and hence the
comparisons are fair. Finally, since H () is a constant, for the ease of understanding, we simply
present 1 — Average BinaryCrossEntropyLoss(x|h) as the estimates of I(h, x), equivalent to
adding the constant 1 — H () to the real estimates of I(h, x).

18

Published as a conference paper at ICLR 2021

Layer 12 Layer 16

End-to-end
Training

Greedy SL
(K=4)

InfoPro
(K=4)

Figure 7: Visualization of the reconstruction results obtained from the decoder w.

Test Errors with Different Width of the Decoder w

5 Test Errors with Different Width of the Projection Head ¢ Table 12: Test errors Of ResNet_
oo lComet K22 1110 trained by InfoPro (Contrast)
on CIFAR-10, with different ar-
chitecture of ¢. “MLP” refers to
the multi-layer perceptron.

5.5 N_;_I Architecture of ¢ K=2 K=38

T Y s e B Y 2-MLP 7.19 £ 0.22%|10.63 + 0.45%
Width Coefficient of ¢ 1 Conv + 1 Linear |6.84 + 0.05%| 9.80 + 0.26%
N . 1 Conv + 2-MLP (ours)|6.42 + 0.08%| 8.93 £ 0.40%
Figure 8: Test errors of ResNet-110 trained by InfoPro (Contrast) on CIFAR-10,| | conv+3MLP [6.40 4 0.09%| 8.79 + 0.39%

with varying width of the decoder w (left) and the projection head ¢ (right). | 2Conv+2-MLP |67 £ 0.17%] 7.87 £ 0.99%

+— InfoPro (Contrast), K=2

—— InfoPro (Contrast), K =8

—*— InfoPro (Contrast), K=8

0.1 0.25 0.5 0.75 1
Width Coefficient of w

For I(h, y), as we have discussed in Section[3.3|as well, since I(h,y) = H(y) — H(y|h) = H(y) —
E(h,y)[—log p(y|h)], we train an auxiliary classifier gy (y|h) with parameters 1 to approximate

p(ylh), such that we have I(h,y) ~ maxy{H (y) — i[Zfil—log g (yi|h;)]}. Here we simply
adopt the test accuracy of g, (y|h) as the estimate of I(h,y), which is highly correlated to the value

of —% [Zil —log gy (yi|hi)]} (or say, the cross-entropy loss). This can be viewed as the highest
generation performance that a classifier based on h is able to reach. Notably, we use a ResNet-32 as
- For the inputs of gy, we up-sample h to 32 x 32 and map h to 16 channels at the first layer. All
training hyper-parameters of the ResNet-32 are the same as Appendix [F|

H MORE RESULTS

Size and architecture of auxiliary nets. Here we investigate how the auxiliary nets (i.e., w, ¥ and
¢) influence the performance of our method. Since 1) and ¢ share the same architecture, we study the
decoder w and the projection head ¢ for example. We start by scaling their width with a certain factor
(which equals 1 for our original design), and show the results in Figure[8] It can be observed that
using larger w and ¢ both improve the performance, but the effects are less significant. In addition,
their sizes can be shrunk by up to 2 times without severely degrading the accuracy. We also test other
architectures for ¢ in Table[12] where “Conv” and “Linear” refer to convolutional and linear layers,
respectively. We find that involving at least one conv layer and a following MLP instead of a simple
linear layer are both important designs. Besides, although adding more conv layers further boosts the
performance, we observe that this comes at a considerably increased computational overhead.

Temperature 7. In Figure 0] we change the temperature 7 for InfoPro (Contrast). Our method is
robust to 7 when 7 < 0.1. However, we find the training tends to be unstable when 7 < 0.005.

Batch size. For a comprehensive comparison of InfoPro (Softmax) and InfoPro (Contrast), we
vary the batch sizes for the SGD optimizer, and present the results in Table [I3] It is shown that
training models with small mini-batches for sufficient epochs is beneficial for InfoPro (Softmax), but
produces limited positive effects on InfoPro (Contrast). We also note that using small mini-batches

19

Published as a conference paper at ICLR 2021

Table 13: Performance of InfoPro (Contrast/Softmax) with varying
batch sizes. Two settings are considered: training models with the same
number of iterations (40/80/160 epochs for batch size=256/512/1024)
/| and epochs (160 epochs). All other training hyper-parameters (i.e., the
' learning rate schedule, weight decay, etc.) are remained unchanged.
Test errors of ResNet-110 on CIFAR-10 are reported.

Test Errors with Different Values of the Temperature 7

0.005 0.01 0.07 0.1 1 10 Training Epochs 40 80 160
Temperature Batch Size 256 512 1024 512 256
. InfoPro (Softmax)| 8.88 £ 0.36% | 7.70 £ 0.23% | 7.01 & 0.34% | 6.14 + 0.11%| 5.95 £ 0.19%
. _ k=2
Figure 9 Perfor.mance of InfoPro (Con InfoPro (Contrast)| 9.96 - 0.29% | 7.49 + 0.35% | 6.42 + 0.08%| 6.16 + 0.15% | 6.19 + 0.20%
trast) with varying temperature 7. Test | ™ finfopro Sofimax)| 11.22 = 0.10% | 942 & 0.05%| 9.40 = 027% | 8.37 & 033%| 8.04 = 0.29%
errors of ResNet-110 on CIFAR-10. ™ "|InfoPro (Contrast)| 13.22 + 0.57% | 9.96 % 0.13% | 8.93 = 0.40%| 9.02 + 1.18% | 9.32 + 1.44%

Table 14: Performance of InfoPro with the VGG network (Simonyan & Zisserman, 2014). The averaged test
errors and standard deviations of 5 independent trials are reported. InfoPro (Softmax/Contrast) refers to two

approaches to estimating I (h,y).

Dataset Network Method K =2 K=14
Greedy SL 888+ 0.11% 10.04 £0.31%
CIFAR-10 VGG-11 (w/ BatchNorm) | DGL (Belilovsky et al.,|2020) | 8.25 £+ 0.12% 8.46 + 0.29%
(E2E: 8.10 & 0.14%) InfoPro (Softmax) 830+ 0.10% 8.36 & 0.16%
InfoPro (Contrast) 8.18 £ 0.15% 8.23 £+ 0.19%

Table 15: Object detection results on COCO (Lin et al.;, 2014). We initialize the backbone of Faster-RCNN-FPN
(Ren et al.;|2015) using ResNet-101 trained by E2E training and InfoPro*, K = 2 on ImageNet. The COCO
style box average precision (AP) metric is adopted, where AP5o and AP75 denote AP over 50% and 75% IoU
thresholds, mAP takes the average value of AP over different thresholds (50%-95%), and mAPs, mAPy and
mAP;, denote mAP for objects at different scales. All results are presented in percentages (%). The better results

are bold-faced.

Method Backbone mAP | APsg | AP75 | mAPs | mAPy | mAPL
Faster-RCNN-FPN (Ren ot al] 2013) ResNet-101 (FZE training) 40.0 | 60.7 | 43.7 | 22.7 442 51.4
ResNet-101 (InfoPro®, K = 2) | 40.2 | 61.1 | 44.0 | 23.4 444 52.1

usually prolongs the practical training time as they cannot make full use of even a single GPU
(Nvidia Titan Xp). Besides, when considering a short schedule with the same number of updates
(iterations), adopting small mini-batches significantly hurts the performance of InfoPro (Contrast).
This observation is consistent with previous works (Chen et al.,|2020; He et al., 2020; [Khosla et al.,

2020).
Empirical study on the tightness of the upper

Tightness of the Upper Bound Liyfopro

C
bound. Here, we empirically study the gap be- A::;i R ————
tween of the upper bound Liysopro and Lintopro- = 0.881 ,___'/"' el
Since the gap € = Lifopro — Linforo 1S UPPEr = g51 |
bounded by € < Ay [I(x,y) — I(h,y)], we sim- £ g |
ply need to check the gap between I(x,y) and So79{ |
I(h,y). To this end, we consider training a = o76{ |
ResNet-110 on CIFAR-10 using InfoPro (Con- = 0.73{ {
trast) with K =2, and estimate the mutual infor- % 0.701 4
mation I(h,y) between the outputs of the first E 0671 —— J(zy)
local module and the label. In addition, to obtain 0.647 -~ I(h.y)
a comparable estimate of /(z, y), we assume that OO 40 60 80 100 130 0 160
Training Epoch

in end-to-end learned networks, the intermediate
features retain all the task-relevant information
within the original inputs (which is empirically
observed in this paper). Hence, we can estimate I (x, y) by training the network in an end-to-end
fashion, and estimating the mutual information I (h, y) in the same position as the end of the first
module. The comparisons between the estimates of I(x, y) and I(h,y) are presented in Figure
One can observe that the gap e shrinks gradually during the training process.

Results with VGG are presented in Table Obviously, similar observations to Table [2 can be
obtained. InfoPro achieves competitive performance with E2E training, while outperforming DGL.

Figure 10: The estimates of I(x,y) and I(h,y).

Transferability. To verify the transferability of the models trained by the proposed method, we
initialize the backbone of Faster-RCNN (Ren et al.,[2015) using ResNet-101 trained by E2E training

20

Published as a conference paper at ICLR 2021

and InfoPro*, K = 2 on ImageNet, and train it for the MS COCO (Lin et al., 2014)) object detection
task. The training process adopts the default configuration of MMDetection (Chen et al., [2019) with
feature pyramid networks (FPN) (Lin et al.l 2017). The results are reported in Table[I3] It can be
observed that the locally learned backbone using InfoPro* outperforms its E2E counterpart in terms
of average precision (AP). This result is consistent with the accuracy on ImageNet.

I ADDITIONAL DISCUSSIONS AND FUTURE WORK

Applying InfoPro to regression tasks. Although this paper mainly focuses on implementing InfoPro
in the context of classification based tasks (i.e., image classification and semantic segmentation),
the formulation of Liypopro and Lipopro 18 general and flexible. As long as the mutual information
I(h,x) and I(h,y) can be estimated, InfoPro is able to be used in more tasks. In vision tasks,
I(h,x) can usually be estimated with a decoder, as we introduced in Section while for estimating
I(h,y), the technique we discussed may be easily extended to the regression tasks (e.g., depth
estimation, bounding box regression in object detection). For example, consider a target value
yi € [0,1] corresponding to the sample x; and the hidden representation h;. It can be viewed

as a Bernoulli distribution where P(y = 1) = y;, such that we have I(h,y) ~ maxy{H (y) —

%[Zil—yilog gy (y = 11h;) — (1 — y;)log g (y = Olh;)]}. As a result, the auxiliary network
¢v (y| k) can be trained with the binary cross-entropy loss. This might also be approximated by the
mean-square loss as it has the same minima as the binary cross-entropy loss. In the future, we will
focus on applying InfoPro to more complex tasks, such as 2D/3D detection, instance segmentation

and video recognition.

21

	Introduction
	Why locally supervised learning underperforms E2E training?
	Information Propagation (InfoPro) Loss
	Learning to Discard Useless Information
	Upper Bound of LInfoPro
	Mutual Information Estimation

	Experiments
	Main Results
	Hyper-parameter Sensitivity and ablation study

	Related Work
	Conclusion
	A Toy Example
	Proof of proposition 1
	Proof of proposition 2
	Why minimizing the contrastive loss maximizes the lower bound of task-relevant information?
	Architecture of auxiliary networks
	Details of Experiments
	Details of Mutual Information Estimation
	More Results
	Additional Discussions and Future Work

