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Revisiting Z

Mauricio Osorio, José Luis Carballido, and Claudia Zepeda

Abstract Béziau developed the paraconsistent logic Z, which is definitionally

equivalent to the modal logic S5, and gave an axiomatization of the logic Z: the

system HZ. Omori and Waragai proved that some axioms of HZ are not indepen-

dent and then proposed another axiomatization for Z that includes two inference

rules and helps to understand the relation between S5 and classical propositional

logic. In the present paper, we analyze logic Z in detail; in the process we also

construct a family of paraconsistent logics that are characterized by different

properties that are relevant in the study of logics.

1 Introduction

The present work is a theoretical contribution to the areas of modal logics, paracon-

sistent logics, and nonmonotonic reasoning. Briefly speaking, following Béziau [7],

a logic is paraconsistent if it has a negation (:) which is paraconsistent in the sense

that the relation a;:a ` b does not always hold for arbitrary formulas a; b and at

the same time has strong properties that justify calling it a negation. Nevertheless,

there is no paraconsistent logic that is unanimously recognized as a good one (see

[7]), and there are different proposals for what a paraconsistent logic should be (see

Carnielli, Marcos, and de Amo [12]). In this work, we discuss some paraconsistent

logics and relevant properties that can be considered as “desirable” in any logic. Our

study is limited to logics that are closed under modus ponens and substitution; some

are multivalued, some are defined in terms of an axiomatic system, and some can be

defined either way.

Motivation The convenience of accepting local inconsistencies is supported by Min-

sky’s comment1 in [22, p. 76]:

But I do not believe that consistency is necessary or even desirable in a develop-

ing intelligent system. No one is ever completely consistent. What is important
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is how one handles paradox or conflict, how one learns from mistakes, how one

turns aside from suspected inconsistencies.

We think that paraconsistent logics could help to give an answer to this important

issue addressed by Minsky. In fact, in [25] an interesting approach for knowledge

representation (KR) was proposed. This approach can be supported by any paracon-

sistent logic stronger than or equal to C! , the weakest paraconsistent logic introduced

by da Costa [13].

A second criticism that Minsky made of the logistic approach is that logic is

monotonic:

Because Logicians are not concerned with systems that will later be enlarged,

they can design axioms that permit only the conclusions they want. In the devel-

opment of Intelligence the situation is different. One has to learn which features

of situations are important, and which kinds of deductions are not to be regarded

seriously [22, p. 75].

Nonmonotonic logics were developed as an attempt to solve this problem. Ac-

tually the research community has long recognized the study of nonmonotonic rea-

soning (NMR) as a promising approach to model features of commonsense reason-

ing. On the other hand, monotonic logics have been successfully applied as a basic

building block in the formalization of nonmonotonic reasoning. The original idea,

suggested by McDermott and Doyle [20], was to use well-known modal logics. Mc-

Dermott, in [19], attempted to define nonmonotonic logics based on logics T , S4, and

S5. But he observed that, unfortunately, the nonmonotonic version of S5 collapses to

the ordinary logic S5. Grounded nonmonotonic logic is a proposed solution to this

problem.

In [7], the author establishes a strong relation between two logics that are treated

here, the paraconsistent logic Z and the modal logic S5. The interest of modal logics

is well known (see, e.g., Blackburn, van Benthem, and Wolter [8]). Several authors

have applied logic S5 in the modeling of nonmonotonic reasoning by means of com-

pletions (see [15], [20], [29]).

The logic Z, introduced by Béziau [7], is a paraconsistent logic with a very in-

tuitive semantics and a negation with strong properties. Z is of particular interest

because of the properties it possesses; for instance, it is equivalent to the modal logic

S5 under a translation, it satisfies the substitution theorem, it has a bottom parti-

cle, and also it can be defined in terms of axiomatic systems (see [7], [23]) as well

as in terms of bivaluations (see [7]). However, Z is not a maximal paraconsistent

logic in the following sense: for some authors a useful paraconsistent logic should be

maximal in the sense of containing as much of classical logic as possible while still

allowing nontrivial inconsistent theories (see [1], [13]).

In [28] the authors observed that an expressive fragment of a grounded version

of S5 can be captured by a 4-valued logic that later was called MFOUR. (The com-

mented fragment consists of sentences with modalities applied only to literals.) Gel-

fond proposes the interpretation of not a as :�a. In fact, Baral [3] explains that the

definition of stable models by Gelfond and Lifschitz [16] was inspired by this trans-

formation. This line of research was continued and developed in further detail in [29].

It has been observed that logics whose negation operator is based on some modal log-

ics (such as S5 or MFOUR) using Gelfond’s idea correspond to paraconsistent logics

(see [6]). This means that by considering standard monotonic paraconsistent logics

one can construct nonmonotonic logics (see [30], [25]).
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Understanding nonmonotonic reasoning in the context of inconsistent knowledge

bases is still an open problem; however in [24], [25], [29], [30], and [31], evidence

is presented that suggests that paraconsistent logics could support the definition of

robust nonmonotonic approaches in order to deal with inconsistent knowledge bases.

So, it is important to study/explore paraconsistent logics in order to understand them

better and see how such logics can be used to solve the problem of providing a useful

nonmonotonic logic for this application.

Contributions The contributions we present here are the following.

� We have a comparative table with some relevant paraconsistent logics that

share some desirable properties with Z. Some of these logics are multival-

ued, and some are defined in terms of axiomatic systems. Among the desir-

able properties one would like a logic to have are the substitution property,

the ::-necessitation rule, the De Morgan laws, and some other properties

related to the behavior of the connective :. When comparing Z with other

paraconsistent logics, it turns out that the paraconsistent 3-valued logic G0

3

shares more properties with Z than most of the other logics. Both of them are

extensions of C! ; the substitution property as well as the ::-necessitation

rule are valid in both of them. However Z is not multivalued, does not satisfy

all of the De Morgan laws, and counts among its axioms the Pierce formula,

which is not valid in G0

3. One more difference between these two logics is

that Z (see [7]) is originally presented in terms of an axiomatic system with

two inference rules, modus ponens and the ::-necessitation rule, whereas

G0

3, can also be defined by an axiomatic system with only modus ponens as

an inference rule.

� One of the results we present is that in any paraconsistent logic that has modus

ponens and the ::-necessitation rule as inference rules and for which some

rather relevant formulas are valid, the ::-necessitation rule can be replaced

by an extension of the axiomatic system.

� Starting from C! , we define an increasing family of paraconsistent logics

by adding at each step one more axiom or property, usually representing a

desirable property in any logic, like the weak principle of explosion, the weak

contrapositive rule, the ::-necessitation rule, and so forth.

� We prove that in a logic that contains all of the axioms of C! as theorems,

the substitution property is equivalent to the weak substitution property.

� We prove that a paraconsistent logic that extends C! and has only modus

ponens as inference rule cannot satisfy double negation, standard De Morgan

laws, and the substitution property at the same time.

� We prove that adding double negation and weak contrapositive as axioms to

C! destroys paraconsistency.

� The first paraconsistent logic in our family, which we call L1, is defined in

terms of the axioms of C! plus the formula that expresses the weak contra-

positive rule. We show that in L1 one can define a constructive negation, and

we prove that any theorem in intuitionistic logic is a theorem in the paracon-

sistent logic L1.

� In the process of defining our family of paraconsistent logics, we show that

the axiom or property added to each of them to obtain the next one is a valid

formula in Z. As a result of our observations we offer a very interesting result;
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namely, Z can be defined in terms of an axiomatic system with only modus

ponens as inference rule.

� We show that the only 3-valued paraconsistent logic that extends C! and in

which the substitution property is valid is G0

3.

� We show that neither Z nor G0

3 are maximal paraconsistent logics: we prove

that the valid formulas of Z are tautologies in the 4-valued logic P-FOUR

which is also paraconsistent, but not all of the tautologies in P-FOUR are

valid in Z. We also show that the consequence relation inG0

3 can be extended

to define another paraconsistent logic CG0

3 with the property that the set of

theorems of G0

3 is properly contained in the set of tautologies of CG0

3.

� We prove with the help of the contrapositive rule, which is valid in Z, that

adding double negation as an axiom schema to Z results in a logic that is no

longer paraconsistent. This result provides an answer to the problem posted

in [12] of characterizing the exact relation between LF2 and the logic that

results when adding the axiom schema A! ::A to Z.

The structure of our paper is as follows. In Section 2, we present the necessary

background to read the paper. In Section 3, we present some multivalued logics and

look into some of their properties. We also review an axiomatization of Z. We close

the section by summarizing the properties of these logics in a table. In Section 4, we

examine the substitution property along with some other important properties in the

context of paraconsistent logics. In Section 5, we define in terms of axiomatic sys-

tems a family of paraconsistent logics that share some interesting properties among

those gathered in Table 8, in such a way that at each step the resulting logic is closer

to Z. Finally, we arrive at two axiomatizations of Z, one of them with only modus

ponens as inference rule. In Section 6, we compare Z to some important multivalued

logics. Finally, in Section 7, we present our conclusions and ideas for future work.

Proofs are presented in the appendix.

2 Background

We first introduce the syntax of logical formulas considered in this paper. Then we

present a few basic definitions of how logics can be built to interpret the meaning

of such formulas. Finally, we give a brief introduction to several of the logics that

are relevant for the results of later sections. We assume that the reader has some

familiarity with basic logic such as [21, Chapter 1].

2.1 Syntax of formulas We consider a formal (propositional) language built from

an enumerable set L of elements called atoms (denoted a, b, c, . . . ); the binary

connectives ^ (conjunction), _ (disjunction), and ! (implication); and the unary

connective : (negation). Formulas (denoted A, B , C , . . . ) are constructed as usual

by combining these basic connectives together with the help of parentheses. We

also use A$ B to abbreviate .A! B/ ^ .B ! A/ and A  B as another way

of writing B ! A. Finally, it is useful to agree on some conventions to avoid the

use of so many parentheses when writing formulas in order to make the reading of

complicated expressions easier. First, we may omit the outer pair of parentheses

of a formula. Second, the connectives are ordered as follows: :;^;_;!, $, and

parentheses are eliminated according to the rule that, first, : applies to the smallest

formula following it, then ^ is to connect the smallest formulas surrounding it, and

so on.



Revisiting Z 133

2.2 Logic systems We consider a logic simply as a set of formulas that (i) is closed

under modus ponens (i.e., if A and A! B are in the logic, then so is B) and (ii) is

closed under substitution (i.e., if a formula A is in the logic, then any other formula

obtained by replacing all occurrences of an atom b in A with another formula B is

also in the logic). The elements of a logic are called theorems, and the notation `X A

is used to state that the formula A is a theorem of X (i.e., A 2 X ). We say that a

logic X is weaker than or equal to a logic Y if X � Y ; similarly we say that X is

stronger than or equal to Y if Y � X .

2.2.1 Hilbert-style proof systems There are many different approaches that have been

used to specify the meaning of logic formulas or, in other words, to define logics. In

Hilbert-style proof systems, also known as axiomatic systems, a logic is specified by

giving a set of axioms (which is usually assumed to be closed under substitution).

This set of axioms specifies, so to speak, the “kernel” of the logic. The actual logic

is obtained when this “kernel” is closed with respect to some given inference rules

which include modus ponens. The notation `X F for provability of a logic formula

F in the logic X is usually extended within Hilbert-style systems; given a theory

T , we use T `X F to denote the fact that the formula F can be derived from the

axioms of the logic and the formulas contained in T by a sequence of applications of

the inference rules.2 For any pair of theories T and U , we use T `X U to state the

fact that T `X F for every formula F 2 U .

Since we will be working with logics that extend some other logics, we provide

the next definition.

Definition 2.1 Let X and Y be two logics. We say that X extends Y if every

theorem in Y is a theorem in X . We say that X AX-extends Y if both logics have

modus ponens as their unique rule of inference, and every axiom in Y is a theorem

in X .

Note that if X AX-extends Y , then X extends Y .

We consider the standard substitution, here represented with the usual notation:

'Œ˛=p� will denote the formula that results from substituting the formula ˛ in place

of the atom p wherever it occurs in '. Recall the recursive definition: if ' is atomic,

then 'Œ˛=p� is ˛ when ' equals p, and ' otherwise. Inductively, if ' is a formula of

the form '1 # '2 for any binary connective #, then 'Œ˛=p�will be '1Œ˛=p� # '2Œ˛=p�.

Finally, if ' is a formula of the form:'1 (resp.,�'1), then 'Œ˛=p�will be:'1Œ˛=p�

(resp., �'1Œ˛=p�).

As an example of a Hilbert style system we present next a logic that is relevant for

our work.

C! (see [13]) is defined by the following set of axiom schemata:

Pos1: a! .b! a/,

Pos2: .a! .b! c//! ..a! b/! .a! c//,

Pos3: a ^ b! a,

Pos4: a ^ b! b,

Pos5: a! .b ! .a ^ b//,

Pos6: a! .a _ b/,

Pos7: b! .a _ b/,

Pos8: .a! c/! ..b! c/! .a _ b! c//,

C!1: a _ :a,

C!2: ::a! a.
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Note that the first eight axiom schemata somewhat constrain the meaning of the!,

^, and _ connectives to match our usual intuitions. It is a well-known result that in

any logic satisfying Pos1 and Pos2, and with modus ponens as its unique inference

rule, the deduction theorem holds (see [21]).

We also have the following defined connective: A$B WD .A!B/^ .B!A/.

It is always useful to know that some strong inference rules hold in a given logic.

In this sense, a simple but useful and well-known result is the following (see Carnielli

and Marcos [11]).

Theorem 2.2 Let � and � be two sets of formulas. Let � , �1, �2, ˛, and  

be arbitrary formulas. Let ` be the deductive inference operator of C! . Then the

following basic properties hold:

1. � ` ˛ implies � [� ` ˛ (monotonicity);

2. � ` ˛ and �; ˛ `  , then � [� `  (cut);

3. �; � ` ˛ iff � ` � ! ˛ (deduction theorem and its reciprocal);

4. � ` �1 ^ �2 iff � ` �1 and � ` �2 (^-rules);

5. �; � ` ˛ and �;:� ` ˛ iff � ` ˛ (strong proof by cases).

Note that the cut rule, when � D ;, has a form of transitivity, namely, � ` ˛ and

˛ `  , then � `  . We point out that Theorem 2.2 holds in any logic that extends

C! logic by adding new axioms.

2.2.2 Multivalued systems An alternative way to define a logic is with the use of

truth values and interpretations. Multivalued systems generalize the idea of using

truth tables that are used to determine the validity of formulas in classical logic.

It has been suggested that multivalued systems should not count as logics; on the

other hand, pioneers such as Lukasiewicz considered such multivalued systems as

alternatives to the classical framework. Like other authors do, we prefer to give

multivalued systems the benefit of the doubt about their status as logics.

The core of a multivalued system is its domain of values D , where some of such

values are special and identified as designated. Connectives (e.g., ^, _,!, :) are

then introduced as operators over D according to the particular definition of the

logic. An interpretation is a function I WL! D that maps atoms to elements in the

domain. The application of I is then extended to arbitrary formulas by mapping first

the atoms to values in D and then evaluating the resulting expression in terms of the

connectives of the logic. A formula is said to be a tautology if, for every possible

interpretation, the formula evaluates to a designated value. The most simple example

of a multivalued logic is classical logic where D D ¹0; 1º, 1 is the unique designated

value, and connectives are defined through the usual basic truth tables.

Note that in a multivalued system, so that it can truly be a logic, the implication

connective has to satisfy the following property: for every value x 2 D , if there is

a designated value y 2 D such that y ! x is designated, then x must also be a

designated value. This restriction enforces the validity of modus ponens in the logic.

The inference rule of substitution holds without further conditions because of the

functional nature of interpretations and how they are evaluated.

2.3 Maximality Next we present two nonequivalent definitions of maximality for

paraconsistent logics. The first definition refers to maximality of a logic relative to

another logic, whereas the second one is absolute in the sense that it is not defined

with respect to some other given logic.
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Definition 2.3 (see [11]) A logicL2 is said to be maximal relative to a logic L1 if

(i) both are written in the same language (so that they can be deductively compared);

(ii) all theorems of L2 are provable by L1; (iii) given a theorem D of L1 which is

not a theorem of L2, if D is added to L2 as a new axiom schema, then all theorems

of L1 turn out to be provable.

A paraconsistent logicL2 is maximally paraconsistent in the strong sense (see [2])

if every logic L1 in the language of L2 that properly extends L2 ( i.e., `L2�`L1)

is no longer paraconsistent.

The idea of the first definition, of course, is that any deductive extension of L2 con-

tained in L1 and obtained by adding a new axiom schema to L2 would turn out to be

identical to or stronger than L1. Examples of maximal logics in this sense abound

in the literature. The second definition takes into account any possible extension

of the underlying consequence relation of a logic, not just its set of logically valid

sentences.3

Some of the many-valued paraconsistent logics presented in this work (Civw,

some of the logics LFI’s, the P-FOUR logic) are maximally paraconsistent relative

to classical logic (see [12], [18]).

In what follows, we will be specific when we refer to the term maximal paracon-

sistent logic.

3 Some Paraconsistent Logics

In this section, we review some well-known multivalued logics. We start with the

3-valued logics, among them logics that are maximal paraconsistent with respect to

classical logic, P1, P2, P3, LFI2, and LFI1. We remark that the matrices of P1 are

axiomatized by Civw, the matrices of P2 by Cive, the matrices of P3 by Ciorw,

the matrices of LFI2 by Ciore, and the matrices of LFI1 by Cije (see [11]). We

continue with the review of 4-valued logics, and then we summarize some important

facts and results about Z.

Finally, as a result of this review, we present a comparative table showing some

of the important properties of these logics as well as some of their differences.

3.1 3-valued logics: Civw, Cive, Ciorw, Ciore, Cije, G
0

3
, and CG

0

3

3.1.1 The logic P1 (also called Civw) The maximal 3-valued logic P1 proposed

by Sette in [33] is paraconsistent. The truth values of logic P1 are in the domain

D D ¹0; 1; 2º where 1 and 2 are the designated values. The ^, _,!, and : connec-

tives are defined according to the truth tables given in Table 1.

3.1.2 The logic P2 (also called Cive) It is possible to modify the matrix of negation

of P1 in order to obtain a new and interesting maximal 3-valued paraconsistent logic

called P2. In this case, we change the matrix of negation, setting the value of :1

as 1, instead of 2.

Table 1 Truth tables of connectives ^, _,!, and : in P1.

^ 0 1 2

0 0 0 0

1 0 2 2

2 0 2 2

_ 0 1 2

0 0 2 2

1 2 2 2

2 2 2 2

! 0 1 2

0 2 2 2

1 0 2 2

2 0 2 2

x :x

0 2

1 2

2 0
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Table 2 Truth tables of connectives ^, _,!, and : in P3.

^ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 2

_ 0 1 2

0 0 2 2

1 2 1 2

2 2 2 2

! 0 1 2

0 2 2 2

1 0 1 2

2 0 2 2

x :x

0 2

1 2

2 0

Table 3 Truth tables of connectives ^, _,!, and : in LFI1.

^ 0 1 2

0 0 0 0

1 0 1 1

2 0 1 2

_ 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

! 0 1 2

0 2 2 2

1 0 1 2

2 0 1 2

x :x

0 2

1 1

2 0

Table 4 Truth tables of connectives : and! in G0

3.

x :x

0 2

1 2

2 0

! 0 1 2

0 2 2 2

1 0 2 2

2 0 1 2

3.1.3 The logic P3 (also called Ciorw) The 3-valued logic P3 is a logic which is

paraconsistent. The truth values of logic P3 are in the domain D D ¹0; 1; 2º where

1 and 2 are the designated values. The ^, _, !, and : connectives are defined

according to the truth tables given in Table 2.

3.1.4 The logic LFI2 (also called Ciore) It is possible to modify the matrix of nega-

tion of P3 in order to obtain a new and interesting maximal 3-valued paraconsistent

logic called LFI2 (investigated in [12]). In this case, we change the matrix of nega-

tion, setting the value of :1 as 1, instead of 2.

3.1.5 The logic LFI1 (also called Cije) The 3-valued logic LFI1 is a logic which

is paraconsistent. The truth values of logic LFI1 are in the domain D D ¹0; 1; 2º

where 1 and 2 are the designated values. The^, _,!, and: connectives are defined

according to the truth tables given in Table 3.

3.1.6 The logic G0

3
The G0

3 logic (see [30]) is a 3-valued logic with truth values

in the domain D D ¹0; 1; 2º where 2 is the designated value. The evaluation

function of the logic connectives is then defined as follows: x ^ y D min.x; y/,

x _ y D max.x; y/; the : and ! connectives are defined according to the truth

tables given in Table 4. G0

3 can also be defined in terms of an axiomatic system (see

[26]); that is, a theorem in such a system is a tautology in the 3-valued definition,

and vice versa.

3.1.7 The logic CG0

3
We introduce a new logic which is useful for our purposes; as

far as we know it has not been studied before. The logic CG0

3 is defined with the

truth tables of G0

3, except that 1 and 2 are the designated values.

3.2 4-valued logics: P-FOUR, M4p , M40

3.2.1 The logic P-FOUR P-FOUR logic is a 4-valued logic with truth values in the

domainD D ¹0; 1; 2; 3ºwhere 3 is the designated value. This logic is defined in [28]

and studied in further detail in [30]. The connectives ^, _, :, and ! are defined

according to the truth tables given in Table 5.
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Table 5 Truth tables of connectives ^, _,!, and : in P-FOUR.

^ 0 1 2 3

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

_ 0 1 2 3

0 0 1 2 3

1 1 1 3 3

2 2 3 2 3

3 3 3 3 3

! 0 1 2 3

0 3 3 3 3

1 2 3 2 3

2 1 1 3 3

3 0 1 2 3

x :x

0 3

1 3

2 3

3 0

Table 6 Truth tables of connectives ^, _,!, and : in M4 and � in M4p .

^ 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 2 2

3 0 1 2 3

_ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

3 3 3 3 3

! 0 1 2 3

0 3 3 3 3

1 2 2 2 3

2 1 1 2 3

3 0 1 2 3

x :x

0 3

1 2

2 1

3 0

x � x

0 3

1 3

2 3

3 0

Table 7 Truth table of connective : in M40.

x :x

0 3

1 2

2 2

3 0

3.2.2 The M4p logic M4 (see [6]) is a 4-valued modal logic with truth values in the

domain D D ¹0; 1; 2; 3º where 2 and 3 are the designated values. The connectives

^, _, :, and! are defined according to the truth tables given in Table 6. We can

see that conjunction and disjunction are defined in the usual way by the operators

min and max. The implication a! b is defined as :a _ b.

From M4 logic, we obtain a paraconsistent logic, called M4p , when we modify

the matrix of the negation connective as shown in Table 6, where the new negation

is denoted by �.

3.2.3 The M40 logic The author of [6] also proposes to modify the matrix of negation

of M4 logic to obtain another paraconsistent logic that we call M40. In this case, we

change the matrix of negation according to the truth table given in Table 7.

3.3 The logic Z Z is our main subject of interest, so we next present its definition

and some of its properties.

The logic Z is introduced semantically by means of bivaluations which are func-

tions from ForZ to ¹0; 1º, where ForZ is the set of formulas of Z. A Z-cosmos is

any nonempty set C of bivaluations defined by the following condition: v 2 C iff it

obeys the classical conditions for _;^;!, and also the following condition for the

: (intended to be a paraconsistent negation), v.:A/ D 1 iff 9u 2 C ; u.A/ D 0.

A formula A is Z-valid iff, for any Z-cosmos C , 8v 2 C ; v.A/ D 1.
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For example, the formulas A _ :A and ::A ! A given as axiom schemata

of the logic Z are Z-valid, since the condition that defines the paraconsistent nega-

tion guaranties that v.A/ D v.:A/ D 0 does not hold for any bivaluation; hence

v.A _ :A/ D 1. Also, let us assume that we have a bivaluation v in a Z-cosmos

C such that v.::A/ D 1; then by the same property there exists a u 2 C such that

u.:A/ D 0, and then v.A/ D 1; hence ::A! A is Z-valid.

Béziau offers also an axiomatization for Z, the Hilbert system HZ (see [7, Def-

inition 3.1]). The system HZ contains all of the axioms of C! plus the following

three axiom schemata:

Pierce: ..a! b/! a/! a,

AZ2: .a ^ :b/ ^ :.a ^ :b/! .a ^ :a/,

AZ3: :.a ^ b/! .:a _ :b/.

This is the only logic presented here that, in addition to modus ponens, has a

second rule of inference called RZ; namely, from a! b one can derive :.a ^ :b/.

In [7] it is proved that a formula A 2 ForZ is a theorem in the system HZ iff

A is Z-valid. Also the system HZ can be interpreted as an axiomatization of the

modal logic S5 that uses a negation operator as a primitive connective rather than a

necessity or possibility operator. In fact the logic Z is translatable into S5, and S5

contains Z in the sense that Z is a reduct of S5 (in the model-theoretic sense).

Definition 3.1 (see [7]) Let * be the following translation function from the set

of formulas of Z into the set of formulas of S5: hForS5I ^;_;!;�;�i (� is the

classical negation). We have the following:

a� D a if a is atomic;

.a ı b/� D a� ı b�; ı 2 ¹^;_;!º;

.:a/� D ��a�:

For a family T of formulas in Z, T � is defined as ¹f �jf 2 T º.

Remark According to this translation,

.::A/� D ����A� and ����A� $ ˙�A� $ �A� (see [6]).

Theorem 3.2 (see [7]) Let T be a Z-theory, and let ˛ be a formula of Z; then

T `Z ˛ iff T � `S5 ˛
�.

Let us consider the following two examples.

In order to prove that ::X ! X is provable in Z, it is enough to check that

����X ! X is provable in logic S5; this turns out to be an easy exercise.4

In a similar way, in order to verify that the formula
�

:.x _ y/ ^ :.y ! x/
�

! :
�

:
�

x !
�

:x ^ :.:x/
���

(1)

is not provable in Z, it is enough to check that
�

��.x _ y/ ^ ��.y ! x/
�

! ��
�

��
�

x !
�

��x ^ ��.��x/
���

is not provable in modal S5, which is also an easy exercise.

Since formula (1) will be used in a result presented in a later section, we call it ˆ.

More recently Omori and Waragai in [23] prove that some axioms of HZ are not

independent, and they then propose another axiomatization of Z. They also discuss

a new perspective on the relation between S5 and classical propositional logic with
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the help of the new axiomatization of Z and conclude the paper by making a remark

on the paraconsistency of Z. Specifically, the system HZ seems to be of great in-

terest, since it gives an axiomatization of S5 using not the necessity operator or the

possibility operator explicitly but a specific negation-like operator as its primitive

connective. Therefore, they indicate that they might be able to reach a new point of

view on the system of modal logic S5. They show that the property of necessitation

in the system HZ holds, give the definition of the bottom particle ?, and give the

proof of the replacement theorem for the negation in the system HZ. They also show

an alternative axiomatization of Z-logic given by: Pos1–Pos8 of C!-logic, Pierce’s

axiom schema of Z, and the two following negation axiom schemata:

AZ2
0: :.a ^ :b/! .:b!:a/,

C!2: ::a! a.

In that axiomatization the authors include two rules of inference, modus ponens and

RZ, and prove the next result, which they call rule R3:

If ` a! b; then ` :b ! :a:

We now present the first result of this paper as Theorem 3.4 (as noted above, all

the proofs are in the appendix). Theorem 3 assures us that any theorem in S5 can

be mapped into a theorem in Z, so it extends Theorem 3.2, by proving the opposite

direction. To see this, we define a mapping ?: ForS5 �! ForZ such that for any

˛ 2 ForS5, we have that `S5 ˛ iff `Z ˛
?. This mapping is defined as follows (the

notation is taken from [17]):

a? D a if a is atomic;

?? D :p ^ ::p for a fixed atom p;

.a ı b/? D a? ı b?ı 2 ¹^;_;!º for any formulas a; b;

.�a/? D ::.a?/ for any formula a:

We have the following lemma to support the result.

Lemma 3.3 For any formula ˇ 2 ForS5;`S5 .ˇ
?/� $ ˇ.

Theorem 3.4 Given the transformation ?: ForS5 �! ForZ, we have that `S5 ˛ iff

`Z ˛
? for any ˛ 2 ForS5.

3.4 Summarizing the properties of some paraconsistent logics In Table 8, we sum-

marize the properties of the several logics we have explored in this section. Many of

them can be found in the literature (see [7], [11], [12], [23] [28], [30], [33]), while

others are verified in later sections.

4 Some General Results in Paraconsistent Logics

An interesting theoretical question that arises in the study of logics is whether a given

logic satisfies the substitution property, also known as the congruence relation (see

[34]). It is well known that there are several paraconsistent logics for which that

property is not valid (see [10]). In this section we examine this property along with

some other important results in the context of paraconsistent logics.

Definition 4.1 A logic X satisfies the substitution property: if `X ˛ $ ˇ,5 then

`X ‰Œ˛=p� $ ‰Œˇ=p� for any formulas ˛, ˇ, and ‰ and any atom p that appears
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Table 8 Logics and their properties.

Formula cije ciore ciorw civw cive G0

3 CG0

3 P-FOUR M 4p M 40
Z

:˛ ! .::˛ ! ˇ/ X X X X X X X X X X X

::.˛ ! ˛/ X X X X X X X X X X X

.˛ ! ˇ/ ! ::.˛ ! ˇ/ X X X X X X X X X X X

.:˛ ! :ˇ/ $ .::ˇ ! ::˛/ X X X X X X X X X X X

::.˛ ! ˇ/ ! .::˛ ! ::ˇ/ X X X X X X X X X X X

:.˛ ^ :˛/ X X X X X X X X X X X

::.˛ ^ ˇ/ $ .::˛ ^ ::ˇ/ X X X X X X X X X X X

::˛ $ ˛ X X X X X X X X X X X

:.˛ ^ ˇ/ ! .:˛ _ :ˇ/ X X X X X X X X X X X

.:˛ _ :ˇ/ ! :.˛ ^ ˇ/ X X X X X X X X X X X

:.˛ _ ˇ/ ! .:˛ ^ :ˇ/ X X X X X X X X X X X

.:˛ ^ :ˇ/ ! :.˛ _ ˇ/ X X X X X X X X X X X

Axioms of C! -logic X X X X X X X X X X X

Necessitation X X X X X X X X X X X

..˛ ! ˇ/ ! ˛/ ! ˛ (Pierce) X X X X X X X X X X X

in ‰, where ‰Œ˛=p� denotes the resulting formula that is left after every occurrence

of p is substituted by the formula ˛.

The next weak version of the substitution property is relevant for our work.

Definition 4.2 A logic X satisfies the weak substitution property: if `X ˛ $ ˇ,

then `X :˛ $ :ˇ.

Besides these two properties, there are some other properties that are relevant in the

study of these logics. The next definition lists some of them.

Definition 4.3 We say that a logic X satisfies, respectively, the following:

1. Double negation if `X ˛$::˛;

2. Standard De Morgan if `X :.˛ ^ ˇ/$ .:˛ _ :ˇ/ and `X :.˛ _ ˇ/$

.:˛ ^ :ˇ/;

3. Distribution of :: over ^ if `X ::.˛ ^ ˇ/$ .::˛ ^ ::ˇ/;

4. Distribution of :: over! if `X ::.˛! ˇ/! .::˛!::ˇ/;

5. ::-Necessitation if `X ˛, then `X ::˛;

6. Weak Explosion if the following property holds: `X :˛ ! .::˛ ! ˇ/;

7. Weak Contrapositive if `X .:˛!:ˇ/$ .::ˇ!::˛/.

The formulas in Definition 4.3 are relevant for our work, since they will be used to

define a family of logics that will help us to reconstruct logic Z.

The next theorem ensures that, in a logic that has modus ponens and the ::-

necessitation rule as its inference rules and that counts among its axioms some of

the formulas that define the properties listed above, the ::-necessitation rule can be

replaced by an extension of the axiomatic system with only modus ponens as an in-

ference rule. This result will be useful later to present one of our main contributions.

Theorem 4.4 Let Ł be a logic defined in terms of a family of axioms � and with

modus ponens and the ::-necessitation rule as its inference rules. Let us assume

that ¹::˛! ˛;::.˛! ˇ/! .::˛!::ˇ/; .:˛!:ˇ/$ .::ˇ!::˛/º

are theorems of Ł. Let NŁ be the logic defined by the family of axioms ¹::˛! ˛º [

¹::AjA 2 �º and with modus ponens as its unique inference rule. Then Ł and NŁ

have the same theorems.

The proof consists in showing that if A is a theorem in NŁ, then ::A is also a

theorem in NŁ and is done by induction on the size of the proof of A.
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Observe that, according to Theorem 4.4, if each axiom in the logic is replaced by

its double negation, then three specific axiom schemata together with modus ponens

as inference rule guarantee the ::-necessitation rule.

The following lemma says that we cannot have three suitable properties in a para-

consistent logic that AX-extends C! .

Lemma 4.5 Let X be a paraconsistent logic that AX-extends C! . Then X does

not satisfy double negation, standard De Morgan, and substitution (the congruence

relation) at the same time.

The next lemma says that, in any extension of C! , the properties of double negation

and weak contrapositive are not consistent with paraconsistency.

Lemma 4.6 If we add to C! the 2-axiom schemata ˛ $ ::˛ (double negation)

and .:˛ ! :ˇ/$ .::ˇ ! ::˛/, the resulting logic is not paraconsistent.

Remark 4.7 In [5] the author refers to a related result in paraconsistent logic;

namely, if the principle of noncontradiction and the double negation are both valid,

then the replacement theorem cannot hold.

We see now that any logic stronger than C! that satisfies the weak substitution prop-

erty also satisfies the substitution property, and vice versa.

Lemma 4.8 Let X be a logic that contains all of the axioms of C! as theorems.

X satisfies the weak substitution property iff X satisfies the substitution property.

The next theorem is the main part of the proof of Theorem 4.10; its proof is based on

an answer-set encoding which includes the formula that defines the weak substitution

property.

Theorem 4.9 (see [27]) G0

3 is the only 3-valued logic, up to isomorphism, which

extends C! and in which the weak substitution property is valid.

As an immediate consequence we have the next result.

Theorem 4.10 G0

3 is the only 3-valued logic, up to isomorphism, which extends

C! and in which the substitution property is valid.

The formula .:˛ ! :ˇ/$ .::ˇ ! ::˛/ that appears in Lemma 4.6 is valid in

several of the logics shown in Table 8, in particular in Z. We are interested in logics

for which this formula is valid; in fact it will help us to rebuild Z, and that is why we

will call it E1.

Lemma 4.11 If we add to C! any one of the two axiom schemata :˛ !

.::˛ ! ˇ/, E1 D .:˛ ! :ˇ/ $ .::ˇ ! ::˛/, the resulting logics are the

same.

Double negation is a feature that shows up more often than weak explosion in the

literature related to paraconsistent logics. However, there are paraconsistent logics

such as Sette’s logic and some of the logics shown in Table 8, where weak explosion

holds (see [9]). In what follows, we are more interested in paraconsistent logics

where the property of weak explosion holds (see [4]). According to Lemma 4.11,

weak explosion is equivalent to axiom schema E1 for logics that extend C! . L1 is

defined as the result of adding E1 to C! .



142 Osorio, Carballido, and Zepeda

5 Extending C!

In this section we build a new Hilbert-style axiomatization for Z that uses only modus

ponens as inference rule. In the process, we define a family of logics that are defined

in terms of important properties satisfied by some known paraconsistent logics. Each

of these logics corresponds to a Hilbert-style axiomatization that extends C! .

The definition of the family of logics is progressive; each step will consist of

adding a new axiom schema or property to the previous logic to define a new one.

Then we present some properties of the new logic; in particular, we point out its

relation with Z. Finally, we indicate which logics in Table 8 satisfy the property used

to define the new logic.

As before, proofs of the following results can be found in the appendix.

5.1 The logic L1 Logic L1 has four primitive logical connectives, namely, GL WD

¹!;^;_;:º. We add the following axiom schema to the axiom schemata of C! :

E1: .:A!:B/$ .::B!::A/ (weak contrapositive).

To see that L1 is paraconsistent, observe that L1 is sound with respect to G0

3, but

.˛ ^ :˛/! ˇ is not a tautology of G0

3. Also note that, according to Lemma 4.6,

adding the double negation property to L1 would result in a logic which is no longer

paraconsistent.

In [12], the authors observe that the logic ciore (also called LFI2) and the

modal logic Z plus the axiom schema A ! ::A seem extremely close to each

other. According to [23], Z satisfies the weak explosion principle; therefore, from

Lemma 4.11, formula E1 is a theorem in Z. Hence it follows from Lemma 4.6

that adding axiom schema ˛ ! ::˛ to logic Z results in a logic that is not

paraconsistent.

By Lemma 4.11, L1, and in general any extension of L1, has the bottom particle;

that is, the formula :˛^::˛ trivializes the logic. This means that :˛^::˛ ` ˇ.

We define? as some fixed formula of the form :˛^::˛. We have the new defined

negation connective: �A WD .A!?/.

Lemma 5.1 The following formula is a theorem in L1: ` :ˇ$:::ˇ.

Observe that L1 restricted to the language IL WD ¹!;^;_;?º defines a construc-

tive logic. Recall that the formula .˛!ˇ/_.ˇ!˛/ is not a theorem in intuitionistic

logic, the weakest constructive logic.

The next result points out an interesting property ofL1, which is that it can express

intuitionistic logic.

Theorem 5.2 Let ˛ be any formula based on IL. Then any theorem ˛ in intu-

itionistic logic is a theorem in L1. Moreover, none of the following formulas is a

theorem in L1: .˛! ˇ/ _ .ˇ! ˛/, ˛ _ �˛, ��˛! ˛, �˛ _ ��˛.

Note that, according to the next lemma, � is a strong negation.

Lemma 5.3 In L1, ` �˛!:˛.

A weak principle of disjunctive syllogism is valid in L1, as the following lemma

shows.

Lemma 5.4 In L1, ::˛;:˛ _ ˇ ` ˇ.
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Observe that although L1 AX-extends C! , it does not satisfy any double negation,

standard De Morgan, or substitution properties.

Lemma 5.5 In L1 none of the following properties hold: double negation, stan-

dard De Morgan, and substitution.

The next lemma asserts that the formulas ::.˛ ! ˇ/ ! .::˛ ! ::ˇ/ and

.˛ ! ˇ/ ! ::.˛ ! ˇ/ destroy paraconsistency in any extension of L1 that has

them both as theorems. However, each formula is accepted in some paraconsistent

logics. For example, among the logics exhibited in Table 8, CG0

3, P-FOUR, and Z

have the first formula as a theorem, whereas civw, cive, and M4p have the second

one as a theorem. It is worth mentioning that civw is an example of an extension of

L1 for which the second formula is valid.

Lemma 5.6 If we add toL1 the axiom schemata::.˛ ! ˇ/! .::˛ ! ::ˇ/

and .˛ ! ˇ/! ::.˛ ! ˇ/, then the resulting logic is not paraconsistent.

According to the translation in Definition 3.1 the formula ::.˛ ! ˇ/! .::˛ !

::ˇ/ becomes the condition that defines normality in modal logic, �.˛ ! ˇ/ !

.�˛ ! �ˇ/ (see [17]), hence the relevance of this formula in the study of paracon-

sistent logics.

Finally, note that E1 is accepted in some paraconsistent logics, such as ciorw,

civw, G0

3, CG0

3, P-FOUR, M4p , and Z (see Table 8, [26], and [29]).

5.2 The logic L2 Let us define L2 as the logic resulting when the following axiom

schema is added to L1:

E2: ::.˛ ! ˇ/! .::˛ ! ::ˇ/.

Lemma 5.7 If L2 is extended by adding the ::-necessitation rule (i.e., if ` ˛,

then ` ::˛) or by adding the following two properties:

(1) there exists a formula � such that ` � and ` ::� ,

(2) if ` ˛ $ ˇ, then ` :ˇ $ :˛ (weak substitution),

then the resulting logics are the same.

Let us note that E2 is a theorem in Z. In order to prove this statement we first prove

the following weak version of disjunctive syllogism for logic Z.

Proposition 5.8 The formulas ..:˛ _ ˇ/ ^ ::˛/! ˇ and :.:˛ _ ::ˇ/ $

.::˛ ^ :ˇ/ are theorems in Z.

As indicated before, the next result is well known in S5; however, we offer a proof in

Z in order to obtain more insight into the axiomatization system defined in [23].

Theorem 5.9 E2 is a theorem in Z.

Finally, as Table 8 notes, some of the paraconsistent logics in which formula E2 as

well as formula E1 are theorems are G0

3, CG0

3, P-FOUR, M4p , and Z.

5.3 The logic L3 L3 extends L2 by adding the following axiom schema:

:.˛ ^ :˛/ ( principle of noncontradiction):

This formula is one possible way of expressing the principle of noncontradiction

(see [14]), intuitively read as saying that ˛ and :˛ cannot be true at the same time.

We note that this formula is a theorem in Z as established in the next proposition.
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Proposition 5.10 The formula :.˛ ^ :˛/ is a theorem in Z.

At this point the ::-necessitation rule and the substitution properties do not ex-

clude each other, and according to Lemmas 4.8 and 5.7, we have the following easy

consequence.

Corollary 5.11 IfL3 is extended by adding the::-necessitation rule (i.e., if ` ˛,

then ` ::˛) or by adding the substitution property, then the resulting logics are the

same.

Eight of the logics presented in Table 8 satisfy the principle of noncontradiction;

among them G0

3, CG0

3, P-FOUR, M4p , and Z also have formulas E1 and E2 as

theorems.

5.4 The logic L4 L4 extends L3 by adding the following axiom schema:

::.˛ ^ ˇ/$ .::˛ ^ ::ˇ/ (distributivity of double negation over ^):

This formula is a well-known property in any normal modal logic when the double

negation is interpreted as the operator � (see [17]).

Next we consider a couple of formulas that are theorems in L4 and will be used

to show that the next logic we define satisfies the inference rule RZ of Z.

Proposition 5.12 InL4 the formulas::.˛!ˇ/!:.˛^:ˇ/ and:.˛^:ˇ/!

.:ˇ!:˛/ are theorems.

Theorem 5.13 The formula ::.˛ ^ ˇ/$ .::˛ ^ ::ˇ/ is a theorem in Z.

G0

3, CG0

3, P-FOUR, M4p , and Z satisfy the distributivity of double negation ax-

iom schema as well as the formula that expresses the principle of noncontradiction;

besides, all of them have E1, E2 as theorems (see Table 8).

5.5 The logic L5 We define L5 as logic L4 together with the following inference

rule:

` ˛ then ` ::˛ (::- necessitation rule):

As an immediate consequence of the definition ofL5 we have the following result.

Theorem 5.14 In L5 the inference rule RZ of Z is valid; namely, from ˛! ˇ

one can derive :.˛ ^ :ˇ/.

Corollary 5.15 The substitution property is valid in L5. Let ˛, ˇ, and  be

formulas, and let p be an atom; if `L5
˛$ ˇ, then `L5

 Œ˛=p�$  Œˇ=p�.

L5 is sound with respect toG0

3; hence as Table 8 notes, Pierce’s axiom schema is not

valid in L5.

Logics G0

3, P-FOUR, and Z satisfy the ::-necessitation inference rule and also

have the formulas we have used to define L1, L2, L3, and L4 as theorems (again,

see Table 8).

5.6 The logic L6 Going one step further, we define L6 by adding to L5 Pierce’s

axiom schema:
�

.˛! ˇ/! ˛
�

! ˛ (Pierce axiom):

The following theorem shows that we have reached Z.

Theorem 5.16 L6 and Z are equivalent; that is, they have the same theorems.
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5.7 Z is not a maximal paraconsistent logic Z is not maximal paraconsistent. The

logic (denoted ZCˆ) that results when addingˆ (formula (1) in Section 3.3) to Z is

paraconsistent according to the following lemma whose proof is straightforward by

using the truth tables of P-FOUR.

Lemma 5.17 Every theorem of Z C ˆ is a tautology in P-FOUR, whereas

˛ ^ :˛ ! ˇ is not a tautology in P-FOUR. Therefore, Z C ˆ is a paraconsistent

logic that extends Z.

5.8 One further axiomatization for Z With the results we have reached so far, we

can propose a new axiomatic system for Z in which modus ponens is the only infer-

ence rule. Basically, we apply Theorem 4.4 to obtain the following proposition that

gives an axiomatization of Z with modus ponens as its unique inference rule.

Theorem 5.18 Let us denote by NL6 the logic defined by the set of axiom

schemata consisting of ::˛ ! ˛ and all the formulas of the form ::A, where A

is an axiom of L6. NL6 has only one inference rule, which is modus ponens. Then

NL6 is equivalent to logic Z; that is, they have the same theorems.

6 Discussion: Z Compared to Some Multivalued Logics

At this point it is convenient to take a look at some of the differences and analogies

between Z and some of the multivalued logics presented here. One of the main re-

sults presented in this work is the fact that Z is comparable with P-FOUR, a maximal

paraconsistent logic whose set of tautologies contains properly the set of valid for-

mulas of Z. Logics G0

3, CG0

3, and M4p are close to Z, but in each of these logics

all of the De Morgan laws are valid, whereas in Z one of them is not valid. The

::-necessitation rule, which under certain conditions (see Lemma 5.7) guaranties

the substitution property, is not valid in either CG0

3 or M4p .

We observe also that from L5 there are two ways to go in terms of extending L5

to bigger paraconsistent logics. One is by using Pierce’s formula as an axiom schema

to obtain Z, and the other one is by extending L5 so as to guarantee the validity of all

of the De Morgan laws, as it is done in the axiomatic version ofG0

3. In this version of

G0

3, the differences with Z are clear. Whereas Pierce’s axiom schema appears in the

definition of Z, it is not a theorem in G0

3 (i.e., it is not a tautology in its 3-valued ver-

sion; see Section 3). On the other hand, the De Morgan law .:˛^:ˇ/! :.˛_ˇ/

which is not valid in Z is one of the axiom schemata of G0

3; hence Z and G0

3 are not

comparable. P-FOUR and CG0

3 are the result of going one step further in extend-

ing paraconsistent logics in these two directions: P-FOUR satisfies the substitution

property, but CG0

3 does not, according to Lemmas 5.7 and 4.8 and Table 8. Also,

P-FOUR satisfies the double negation of Pierce’s axiom schema, while CG0

3 does

not. Figure 1 illustrates the relations between some of these logics. The interested

reader is invited to examine Figure 1, in which any two logics above L5 that are not

connected in the diagram are not comparable (see Table 8).

7 Conclusions and Future Work

In the present work we have presented a family of logics, interesting in their own

right, in the process of reconstructing Z as an axiomatic system which requires only

modus ponens as its inference rule. Some of these logics are presented in such a

way that each is obtained from the previous one by adding a new axiom schema,
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Figure 1 Relations between some of the logics considered.

which usually represents a desirable property in a paraconsistent logic. Along the

way we noted that some pairs of desirable properties are not jointly compatible with

the paraconsistency of some logics. We also noted some other properties that, under

certain conditions, are equivalent in some paraconsistent logics. One of the most

relevant properties one would expect a logic to have is the substitution property.

Some of the logics presented in this work have this property, for example, the three-

valued logicsG0

3 andZ, both of them stronger than C! . These two logics lack another

desirable property, that of being maximal; that is, each of them can be extended to

another paraconsistent logic. As Table 8 (see Section 3.4) shows, the logics G0

3, Z,

and M4p share many properties. Exploring in detail the analogies and differences

existing among them, as well as exploring further properties of the logics defined in

this work, is the object of future research. In particular, we would like to know which

constructive logic corresponds to L1 based on IL.

Appendix

Proof of Lemma 3.3 The proof is straightforward, and it is done by induction on

the length of ˇ.

For an atomic formula, the proposition is immediate: .??/� D ��p ^����p,

which is equivalent to ? in S5.

For the other cases the result follows by induction and using the relation

..�ˇ/?/� D ����.ˇ?/�, which is equivalent to �.ˇ?/�.

Proof of Theorem 3.4 Given ˛ 2 ForS5, if °Z ˛
?, then according to Theorem 3.2,

°S5 .˛
?/�. From `S5 .˛

?/� $ ˛ (see Lemma 3.3), we conclude that °S5 ˛.

Proof of Theorem 4.4 It is clear that the theorems in NŁ are theorems in Ł since

the ::-necessitation rule guarantees that all axioms in NŁ are theorems in Ł. For

the converse it is enough to prove that if A is a theorem in NŁ, then ::A is also a

theorem in NŁ.

We note that ::˛! ˛ and ::.::˛! ˛/ are axiom schemata in NŁ.

Let us assume that A is a theorem in NŁ and prove by induction on the size of the

proof of A that ::A is also a theorem in NŁ.

First, we prove that ::A is a theorem whenever A is an axiom of NŁ. From the

fact that C!2 2 �, the formula :::˛! :˛ is a theorem; hence if we apply E1

(which is also in �), we get that ::˛! ::::˛ is a theorem. If A is an axiom
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in NŁ of the form ::˛, then it follows that ::A is a theorem by applying modus

ponens to the last formula.

If A is the formula ::˛! ˛, then its double negation is also a theorem since we

have included ::C!2 as an axiom schema.

Next, let us assume that the result is true for any theorem whose proof in NŁ

consists of less than n steps, and let A be a theorem whose proof consists of n steps,

where the last step is an application of modus ponens to two previous steps, say, ˇ

and ˇ!A. Then by hypothesis::ˇ and::.ˇ!A/ are theorems. By using axiom

schema E2 (which is also in �), we conclude that ::ˇ!::A is a theorem. We

reach the conclusion by applying modus ponens to this formula.

Proof of Lemma 4.5 In what follows, by basic reasoning in X we will mean the

application of simple results of C! , since we know that all theorems in C! are valid

in X .

We know that `C!
.˛ _:˛/$ .ˇ _:ˇ/. Thus, `X .˛ _:˛/$ .ˇ _:ˇ/. By

substitution, we can show that `X :.˛_:˛/$:.ˇ_:ˇ/. By standard De Morgan

and basic reasoning inX we obtain `X .:˛^::˛/$.:ˇ^::ˇ/. By substitution

and double negation we get `X .:˛ ^ ˛/$ .:ˇ ^ ˇ/. By basic reasoning in X we

obtain `X .:˛ ^ ˛/! ˇ.

Proof of Lemma 4.6 Let us assume ˇ;:ˇ as premises. We apply modus ponens

to Pos1, :ˇ ! .:˛ ! :ˇ/ to conclude that :˛ ! :ˇ. Now we apply modus

ponens to the second axiom schema we are adding to C! to obtain ::ˇ ! ::˛.

By double negation we obtain from the premises ::ˇ, and applying modus ponens

to last formula we obtain ::˛. Now we apply double negation and modus ponens

to obtain ˛.

Proof of Lemma 4.8 One of the implications of this statement is straightforward;

therefore, we prove that if X satisfies the weak substitution property, then it satisfies

the substitution theorem. First, we observe that we will use some basic consequences

from the axioms of positive logic; specifically, we have the following.

Remark A.1 We have A $ B;C $ D ` .A ! C/ $ .B ! D/, also

A$B;C$D ` .A^C/$ .B ^D/ and A$B;C$D ` .A_C/$ .B _D/.

The proof is done by induction on the size of  .

Base case:

If  D q, q an atom, we have

 Œ˛=p�,  Œˇ=p� D

´

q $ q if p ¤ q;

˛ $ ˇ if p D q;

where q $ q is a theorem since �! � is a theorem for any formula � and ˛ $ ˇ is

a theorem by hypothesis.

Now we assume that the statement is true for the formulas '; '1; '2.

� Case 1.  D :'.

We want to prove that :'Œ˛=p�$ :'Œˇ=p� is a theorem.

Since by hypothesis 'Œ˛=p� $ 'Œˇ=p� is a theorem, we only need to

apply the hypothesis to conclude that :'Œ˛=p�$ :'Œˇ=p� is a theorem.
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� Case 2.  D '1 ! '2.

We assume that .'i Œ˛=p�$ 'i Œˇ=p�/ is a theorem for i 2 1; 2. We need

to prove that the following formula is a theorem: .'1Œ˛=p� ! '2Œ˛=p�/ $

.'1Œˇ=p�! '2Œˇ=p�/. This follows from the remark above.

� Case 3.  D '1 ^ '2.

Assume that .'i Œ˛=p� , 'i Œˇ=p�/ is a theorem for i 2 1; 2. From the

remark, it follows that .'1Œ˛=p� ^ '2Œ˛=p�/ $ .'1Œˇ=p� ^ '2Œˇ=p�/ is a

theorem.

� Case 4.  D '1 _ '2.

Assume that .'i Œ˛=p� , 'i Œˇ=p�/ is a theorem for i 2 1; 2. From the

remark it follows that .'1Œ˛=p� _ '2Œ˛=p�/ $ .'1Œˇ=p� _ '2Œˇ=p�/ is a

theorem.

Proof of Theorem 4.10 The result is an immediate consequence of Lemma 4.8 and

Theorem 4.9.

Proof of Lemma 4.11 Assuming that we have the axioms of C! plus :˛ !

.::˛ ! ˇ/, we will prove .::ˇ ! ::˛/ from .:˛ ! :ˇ/.

From the hypothesis, :ˇ ! .::ˇ ! ::˛/, and from :˛ ! :ˇ we obtain

:˛ ! .::ˇ ! ::˛/. Also from Pos1, we have ::˛ ! .::ˇ ! ::˛/.

Next we apply Pos8:
�

:˛ ! .::ˇ ! ::˛/
�

!
��

::˛ ! .::ˇ ! ::˛/
�

! .:˛ _ ::˛/! .::ˇ ! ::˛/
�

:

We apply two times modus ponens to this last formula to obtain .:˛ _ ::˛/ !

.::ˇ ! ::˛/. Then we use C!1 and modus ponens again to get ::ˇ ! ::˛.

Now, again from the same set of axioms, we will prove .:˛ ! :ˇ/ from

.::ˇ ! ::˛/.

Pos1 gives us :ˇ ! .:˛ ! :ˇ/, and from the axiom we are adding to C! ,

::˛ ! .:˛ ! :ˇ/ together with ::ˇ!::˛ we obtain ::ˇ ! .:˛ ! :ˇ/.

As in the previous part, we apply Pos8 to the last two formulas to get .:ˇ_::ˇ/!

.:˛ ! :ˇ/, and by using C!1 and modus ponens the result follows.

Conversely, we now assume the axioms of C! plus axiom schema .:˛ ! :ˇ/$

.::ˇ ! ::˛/. From :˛ we prove ::˛ ! ˇ.

By Pos1 we have :˛ ! .:ˇ ! :˛/. From :˛ and modus ponens we obtain

:ˇ ! :˛. From here, the use of E1, and modus ponens we obtain ::˛ ! ::ˇ,

and by C!2 the result follows.

Proof of Lemma 5.1 From .::::ˇ ! ::ˇ/ $ .:ˇ ! :::ˇ/ which is E1,

we use C!2 and modus ponens to obtain that .:ˇ ! :::ˇ/ is a theorem.

Proof of Theorem 5.2 That a theorem in intuitionistic logic is a theorem in L1

is direct. To see that .˛ ! ˇ/ _ .ˇ ! ˛/ is not a theorem in L1 we proceed

as follows. Construct the following lattice of 5 elements: 0; a; b; c; 1, where

0 < a; 0 < b; a < c; b < c; c < 1. The connectives _;^, and! are interpreted

as usual in the semantics of intuitionistic logic based on Heyting algebras (see

Rutherford [32]). This means that _ corresponds to the least upper bound of their

arguments and ^ corresponds to the greatest lower bound of their arguments; y! z

corresponds to the greatest element x such that glb.x; y/ � z. Now, define :x as 1

if x is different from 1 and as 0 otherwise (see Table 9). Then one can easily show
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Table 9 Table for : and!.

x :x

0 1

a 1

b 1

c 1

1 0

! 0 a b c 1

0 1 1 1 1 1

a b 1 b 1 1

b a a 1 1 1

c 0 a b 1 1

1 0 a b c 1

Table 10 Matrices for the operators.

A :A

0 1

1 0

2 1

! 0 1 2

0 2 2 2

1 0 2 2

2 0 2 2

^ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 2

_ 0 1 2

0 0 1 2

1 1 1 1

2 2 1 2

that L1 is sound with respect to the lattice, namely, that every axiom evaluates to 1

and also that if ˛! ˇ and ˛ evaluate both to 1, then ˇ evaluates to 1 too. This way,

every theorem in L1 evaluates to 1. However, .a! b/_ .b! a/ evaluates to c (not

to 1). In the same way, it is possible to check that the other three formulas do not

always evaluate to the designated value 1.

Proof of Lemma 5.3 Note that :˛; ˛ ! ? ` :˛ and ˛; ˛ ! ? ` :˛. Hence

˛!? ` :˛. Thus, ` �˛!:˛.

Proof of Lemma 5.4 This follows directly from the following two basic facts and

Lemma 4.11:

:˛;::˛;:˛ _ ˇ ` ˇ; ˇ;::˛;:˛ _ ˇ ` ˇ:

Proof of Lemma 5.5 For the first case, one can show that L1 is sound with respect

to G0

3 but double negation does not hold in G0

3. For the second case, one can show

that L1 is sound with respect to P-FOUR, but one of the standard De Morgan prop-

erties does not hold in P-FOUR. For the last case, observe that `L1
˛$ .˛ _ ˛/,

but it is false that `L1
.:˛/$ :.˛ _ ˛/. Table 10 provides the truth tables of a

multivalued logic for which all axioms of L1 are tautologies if 1 and 2 are taken as

designated values, the implication connective preserves tautologies, but the formula

.:˛/$:.˛ _ ˛/ does not always evaluate to 1 or 2.

Proof of Lemma 5.6 Let us prove that in such a logic the formula ˇ ^ :ˇ ! ˛

is a theorem. Assuming the formula ˇ and axiom schema Pos1, ˇ ! .:˛ ! ˇ/,

by modus ponens we arrive at :˛ ! ˇ. By one of the axioms in the hypothesis,

.:˛ ! ˇ/ ! ::.:˛ ! ˇ/, and by applying the other axiom in the hypothesis,

we arrive at .:˛ ! ˇ/ ! .:::˛ ! ::ˇ/. Now by using axiom schema E1,

we conclude that .:˛ ! ˇ/ ! .:ˇ ! ::˛/. Using modus ponens on this last

expression and one of the formulas just obtained, we get :ˇ! .::˛/. We conclude

from all this that .ˇ^:ˇ/!::˛. Now we just use axiom schema C!2 to conclude

that the formula .ˇ ^ :ˇ/! ˛ is a theorem.

Proof of Lemma 5.7 Let us assume that we have an extension ofL2 which satisfies

the following property: if ` ˛, then ` ::˛. Then we have to prove two properties.
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The first one is immediate from the hypothesis, since ˛ ! ˛ is a theorem in positive

logic.

As for the second property, we proceed as follows. Let us assume that ` ˛ ! ˇ;

then by hypothesis` ::.˛ ! ˇ/, and by using axiom schemaE2;` ::˛ ! ::ˇ.

Then an application of axiom schema E1 gives ` :ˇ ! :˛. By symmetry, we

obtain the desired result.

For the converse, let ˛ be a theorem. Then from ` ˛ and ` � we conclude that

` ˛ $ � , and by hypothesis it follows that ` :˛ $ :� . Next we apply axiom

schema E1 to obtain ` ::� $ ::˛. And since ::� is a theorem by hypothesis,

we reach the conclusion ` ::˛.

Proof of Proposition 5.8 We start with the next two theorems of Z, :˛ !

.::˛ ! ˇ/ (weak explosion) and ˇ ! .::˛ ! ˇ/ (Pos1). Applying axiom

schema Pos8 to these two formulas we get :˛ _ ˇ! .::˛! ˇ/, from which the

first formula follows.

As for the second formula, from Pos6, :˛! .:˛ _ ::ˇ/, we apply rule R3 to

obtain :.:˛ _ ::ˇ/! ::˛. In a similar way, from ::ˇ ! .:˛ _ ::ˇ/, we

obtain :.:˛ _ ::ˇ/! :::ˇ, and by using the formula :::ˇ ! :ˇ, we get

:.:˛ _ ::ˇ/!:ˇ. So we obtain :.:˛ _ ::ˇ/! .::˛ ^ :ˇ/.

For the other implication observe that, from .:˛ _ ::ˇ/ ^ .::˛ ^ :ˇ/ any-

thing follows due to the weak explosion principle, so that we have .:˛ _ ::ˇ/!

..::˛ ^ :ˇ/!:.:˛ _ ::ˇ// and by Pos1, :.:˛ _ ::ˇ/! ..::˛ ^ :ˇ/!

:.:˛ _ ::ˇ//. Then by applying Pos8 to these two formulas and then using the

formula .:˛ _::ˇ/_:.:˛ _::ˇ/ (axiom schema C!1) and modus ponens, we

obtain .::˛ ^ :ˇ/!:.:˛ _ ::ˇ/.

Proof of Theorem 5.9 According to Proposition 5.8,

`
�

.:˛ _ ˇ/ ^ ::˛
�

! ˇ:

Then from ` ..:˛ _ ˇ/ ^ .::˛ ^ :ˇ//! ..:˛ _ ˇ/ ^ ::˛/ and transitivity,

`
�

.:˛ _ ˇ/ ^ .::˛ ^ :ˇ/
�

! ˇ;

and using the following theorem,

`
�

.:˛ _ ˇ/ ^ .::˛ ^ :ˇ/
�

!:ˇ;

we obtain

`
�

.:˛ _ ˇ/ ^ .::˛ ^ :ˇ/
�

! .ˇ ^ :ˇ/:

Now using Proposition 5.8,

` :.:˛ _ ::ˇ/$ .::˛ ^ :ˇ/:

From the last two steps we have the following implication:

`
�

.:˛ _ ˇ/ ^ :.:˛ _ ::ˇ/
�

! .ˇ ^ :ˇ/:

Now, according to rule R3,

` :.ˇ ^ :ˇ/!:
�

.:˛ _ ˇ/ ^ :.:˛ _ ::ˇ/
�

:

Now by applying the rule RZ to the theorem ˇ! ˇ, we get

` :.ˇ ^ :ˇ/;
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and by applying modus ponens to the last two steps, we get

` :
�

.:˛ _ ˇ/ ^ :.:˛ _ ::ˇ/
�

:

Now by using rule AZ20 and modus ponens, we get

` :.:˛ _ ::ˇ/! :.:˛ _ ˇ/:

Again by Proposition 5.8,

` .::˛ ^ :ˇ/! :.:˛ _ ::ˇ/:

Now we apply transitivity to the last two steps and obtain

` .::˛ ^ :ˇ/! :.:˛ _ ˇ/:

From ` ˛ ^ .˛! ˇ/!:˛ _ ˇ and ` :˛ ^ .˛! ˇ/!:˛ _ ˇ, we get

` .˛! ˇ/! .:˛ _ ˇ/:

Now we apply rule R3:

` :.:˛ _ ˇ/!:.˛! ˇ/:

By transitivity applied to two of the last three steps, we get

` .::˛ ^ :ˇ/!:.˛! ˇ/:

Equivalently

` ::˛!
�

:ˇ!:.˛! ˇ/
�

;

and by using rule R3, we get

` ::˛!
�

::.˛! ˇ/!::ˇ
�

:

Then we reach the conclusion,

` ::.˛! ˇ/! .::˛!::ˇ/:

Proof of Proposition 5.10 It is an easy consequence of the fact that ˛ ! ˛ is a

theorem in Z and from rule RZ.

Proof of Corollary 5.11 It follows immediately by putting � D :.˛ ^ :˛/ in

Lemma 5.7, the fact that :˛ $ :::˛ is a theorem in L3, and Lemma 4.8.

Proof of Theorem 5.13 From ` ˛ ^ ˇ! ˛, it follows that ` :˛!:.˛ ^ ˇ/ by

rule R3, and by applying E1 we get ` ::.˛ ^ ˇ/!::˛, from which one of the

implications follows by repeating the same argument.

For the other implication we use Pos8, :˛! .::˛!:ˇ/! .:ˇ! .::˛!

:ˇ/ ! .:˛ _ :ˇ/ ! .::˛ ! :ˇ//, and using the fact that the formulas

:˛ ! .::˛ ! :ˇ/ and :ˇ ! .::˛ ! :ˇ/ are theorems in Z together with

modus ponens twice, we obtain .:˛ _ :ˇ/! .::˛ ! :ˇ/. From here we get

::˛ ! ..:˛ _ :ˇ/! :ˇ/. Next we use the formula :.˛ ^ ˇ/! .:˛ _ :ˇ/

which is an axiom schema in Z to get ::˛ ! .:.˛ ^ ˇ/! :ˇ/ by using basic

reasoning. Now by using axiom schema E1, ::˛! .::ˇ!::.˛^ˇ//, and this

is equivalent to .::˛ ^ ::ˇ/!::.˛ ^ ˇ/.



152 Osorio, Carballido, and Zepeda

Proof of Proposition 5.12 Let us prove the first formula.

Starting from E2,

::.˛! ˇ/! .::˛!::ˇ/I

equivalently,

::˛!
�

::.˛! ˇ/!::ˇ
�

:

Now we use axiom schema E1 to obtain

::˛!
�

:ˇ!:.˛! ˇ/
�

;

::˛ ^ :ˇ!:.˛! ˇ/;

::˛ ^ :ˇ!:::.˛! ˇ/:

Now we use the distributivity of the double negation in the conjunction and the fact

that :::ˇ$:ˇ to establish the next relation,

::.˛ ^ :ˇ/$ .::˛ ^ :ˇ/:

Now we use transitivity in the last two steps to obtain

::.˛ ^ :ˇ/!:::.˛! ˇ/:

Finally, we apply axiom schema E1 to get the desired formula,

::.˛! ˇ/!:.˛ ^ :ˇ/:

Let us prove the second formula; we start from the next two easy formulas,

:ˇ;::˛ ` ::˛ and :ˇ;::˛ ` :::ˇ:

Hence :ˇ;::˛ ` ::˛^:::ˇ, and by using the distributivity of double negation

over the conjunction, we get

:ˇ;::˛ ` ::.˛ ^ :ˇ/:

Equivalently,

:ˇ ` ::˛!::.˛ ^ :ˇ/;

and by using axiom schema E1, we obtain

:ˇ ` :.˛ ^ :ˇ/!:˛;

from which it follows that

:ˇ;:.˛ ^ :ˇ/ ` :˛;

which immediately gives the desired result.

Proof of Theorem 5.14 If ` ˛!ˇ, then ` ::.˛!ˇ/ according to the definition

of L5, and then by the previous theorem we conclude that ` :.˛ ^ :ˇ/.

Proof of Corollary 5.15 From ` ˛! ˇ, it follows that ` ::.˛! ˇ/ by the ::-

necessitation rule, and then by using the first part of Proposition 5.12 and modus

ponens, we obtain ` :.˛ ^ :ˇ/. Now by the second part of the same theorem and

modus ponens, we obtain ` .:ˇ! :˛/. A symmetric argument shows that from

` ˇ! ˛, one can derive ` .:˛!:ˇ/. Now we only have to appeal to Lemma 4.8

to finish the proof.

Proof of Theorem 5.16 We prove first that all axioms of Z are theorems in L6 and

that rule RZ is valid in L6. According to the axiomatic system given in [23], the
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only axioms of Z that are not included as axioms of C! are those represented by

Pierce’s axiom schema (..˛ ! ˇ/! ˛/! ˛), which is an axiom schema of L6

defined above, and axiom schema AZ20, which is a theorem in L6 as proved in the

second part of Proposition 5.12. The inference rule RZ is valid in L6 as shown by

the previous theorem.

Conversely, every theorem in L6 is a theorem in Z, for we know that all axioms

of C! are theorems in Z according to [23]. In [23] it is also proven that the principle

of weak explosion is valid in Z; therefore, according to Lemma 4.11 axiom schema

E1 is valid in Z. The ::-necessitation rule used to define L5 is also valid in Z (see

[23]). Finally, all the axioms that were added to L1; L2; L3, and L5 to define the

next logic in the family are theorems in Z as we already verified after defining each

of those logics.

Proof of Theorem 5.18 It is a consequence of Theorems 5.16 and 4.4.

Notes

1. “Minsky’s frame paper” (see [22]) in its original form had an appendix titled “Criticism

of the logistic approach.”

2. We drop the subscript X in `X when the given logic is understood from the context.

3. Note that this definition is not based on the terms “weaker” and “stronger” used to com-

pare two logics as defined in Section 2.2.2.

4. This can be confirmed by using the Logics Workbench (LWB) at http://www.lwb

.unibe.ch/

5. Here we use the notation `X to indicate that the formula that follows it is a theorem or a

tautology depending on how the logic is defined.
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