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Tissue macrophages play a crucial role in the maintenance of tissue homeostasis and
also contribute to inflammatory and reparatory responses during pathogenic infection
and tissue injury. The high heterogeneity of these macrophages is consistent with their
adaptation to distinct tissue environments and specialization to develop niche-specific
functions. Although peritoneal macrophages are one of the best-studied macrophage
populations, recently it was demonstrated the co-existence of two subsets in mouse
peritoneal cavity (PerC), which exhibit distinct phenotypes, functions, and origins. These
macrophage subsets have been classified, according to their morphology, as large peri-
toneal macrophages (LPMs) and small peritoneal macrophages (SPMs). LPMs, the most
abundant subset under steady state conditions, express high levels of F4/80 and low
levels of class II molecules of the major histocompatibility complex (MHC). LPMs appear
to be originated from embryogenic precursors, and their maintenance in PerC is regulated
by expression of specific transcription factors and tissue-derived signals. Conversely,
SPMs, a minor subset in unstimulated PerC, have a F4/80lowMHC-IIhigh phenotype and
are generated from bone-marrow-derivedmyeloid precursors. In response to infectious or
inflammatory stimuli, the cellular composition of PerC is dramatically altered, where LPMs
disappear and SPMs become the prevalent population together with their precursor, the
inflammatory monocyte. SPMs appear to be the major source of inflammatory mediators
in PerC during infection, whereas LPMs contribute for gut-associated lymphoid tissue-
independent and retinoic acid-dependent IgA production by peritoneal B-1 cells. In the
previous years, considerable efforts have been made to broaden our understanding
of LPM and SPM origin, transcriptional regulation, and functional profile. This review
addresses these issues, focusing on the impact of tissue-derived signals and external
stimulation in the complex dynamics of peritoneal macrophage populations.
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Introduction

Macrophages are resident cells found in almost all tissues of the body, where they assume specific
phenotypes and develop distinct functions. Tissue macrophages are considered as immune sentinels
because of their strategic localization and their ability to initiate and modulate immune responses
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during pathogenic infection or tissue injury and to contribute
to the maintenance of tissue homeostasis (1–3). Macrophages
were first identified in the late 19th century by Élie Metchnikoff
(1845–1916) and designated as large phagocytes (4, 5). Based
on their phagocytic activity, macrophages were first classified as
cells from the reticuloendothelial system, which also comprised
endothelial cells, fibroblasts, spleen and lymphoid reticular cells,
Kupffer cells, splenocytes, and monocytes (6). However, because
endocytosis performed by endothelial cells is a process that is
distinct from phagocytosis, by the late 1960s a new classification
system for mononuclear phagocytic cells as cells from “mononu-
clear phagocytic system” (MPS) was proposed (7). The MPS was
defined as a group of phagocytic cells sharing morphological
and functional similarities, including pro-monocytes, monocytes,
macrophages, dendritic cells (DCs), and their bone marrow (BM)
progenitors (7–12). Although the phagocytic cells play similar
roles in orchestrating the immune response and maintaining tis-
sue homeostasis (11), they represent cell populations that are
extremely heterogeneous (13), and the general classification of
mononuclear cells in a unique system is currently under intense
discussion (12, 14). In this context, Guilliams et al. suggested a
classification of MPS cells based primarily on their ontogeny and
secondary on their location, function, and phenotype, promoting
a better classification under both steady state and inflammatory
conditions (14).

In the last few years, a complex scenario to describe
macrophage origins has been developed (15–19), replacing the
simplistic view of myeloid precursors giving rise to blood
monocytes that, in turn, originate tissue macrophages (20–
22). For example, resident macrophages from brain, lung, liver,
peritoneum, and spleen are not differentiated from mono-
cytes; instead, they are derived from an embryonic precursor
and maintained by self-renewal (23–27). In addition to res-
ident macrophages, infiltrating monocytes are also found in
injured tissues, where they can differentiate into inflamma-
tory macrophages or TNF-α- and inducible nitric oxide syn-
thase (iNOS)-producing (Tip)-DCs (28). Currently, it is accepted
that inflammatory macrophages and tissue-resident macrophages
comprise developmentally and functionally distinct populations
(3, 14, 17, 18, 29).

Under steady state conditions, some tissues and serous cav-
ities, including lung, spleen, and the peritoneal cavity (PerC),
present distinct resident macrophage subpopulations. In the
spleen, at least three macrophage subsets are found: red pulp,
metalophilic, and marginal zone macrophages (30). In the PerC,
two peritoneal macrophage subsets have been described: large
peritoneal macrophage (LPM) and small peritoneal macrophage
(SPM) (31). Mouse peritoneal macrophages are among the
best-studied macrophage populations in terms of cell biology,
development, and inflammatory responses (24, 31–42). Peri-
toneal macrophages play key roles in the control of infec-
tions and inflammatory pathologies (43, 44), as well as in the
maintenance of immune response robustness (40). Therefore,
this review will discuss recent advances in our understanding
of peritoneal macrophage subsets characterization, origin and
functions, and the accurate experimental approaches to ana-
lyze them.

Identification of Peritoneal Macrophages

Cohn and collaborators introduced the study of peritoneal
macrophages (45–48). Indeed, a representative portion of the
current knowledge regarding macrophage biology, such as their
function, specialization, and development stems from studies per-
formed using peritoneal macrophages as a cellular source. How-
ever, the existence of two resident macrophage subsets present in
the PerC was described recently (31). These macrophage subsets
were designated LPM and SPM according to their size. LPMs
and SPMs were initially identified based on their differential
expression of F4/80 andCD11b,where LPMs express high levels of
F4/80 and CD11bwhile SPMs show F4/80lowCD11blow phenotype
(Table 1). CD11b is an integrin that, together with CD18, forms
the CR3 heterodimer (13, 30, 49), but is not exclusively expressed
on macrophages and is found on several others cell types, includ-
ing polymorphonuclear cells (50, 51), DCs (52), and at low levels
on B lymphocytes (53, 54). F4/80, a 160 kD glycoprotein from the
epidermal growth factor (EGF)-transmembrane 7 (TM7) family,
is expressed by macrophages in several organs, such as the kidney
(55), BM (56), epithelium (57), lung (58, 59), lymphoid organs
(60), and among others (61, 62), and it is not found on fibrob-
lasts, polymorphonuclear cells, and lymphocytes (63). However,
peritoneal eosinophils show low levels of F4/80 (31) and some
macrophage subpopulations exhibit low levels or do not express
F4/80, such as white pulp and marginal zone splenic macrophages
(30). Therefore, F4/80 expression levels distinguish macrophage
subpopulations, including those residing in the same tissue, such
as subsets found in the spleen and PerC (30, 31, 35). In this sense,
the great majority (approximately 90%) of F4/80+CD11b+ cells
present in the PerC from severalmouse strains, including BALB/c,
C57BL/6, 129/S6, FVB/N, SJL/J, and RAG−/−, express high levels
of thesemolecules and correspond to the LPM subset, whereas the
minor SPM subset expresses low levels of these markers (31).

An accurate evaluation of SPMs and LPMs by flow cytom-
etry and optical microscopy revealed that in addition to the
differential expression of CD11b and F4/80, SPMs and LPMs
display unique morphologies and phenotypes. LPMs assume the

TABLE 1 | Phenotypic profile of SPMs and LPMs.

Surface molecule LPMs SPMs

F4/80 +++ +

CD11b +++ +

CD11c + −

MHC-II + ++

GR1 + −

Ly6C − −

c-kit − −

CD62L − ++

Dectin-1 + ++

DC-Sign − ++

TLR4 ++ +

CD80 ++ +

CD86 +++ +

CD40 ++ +

12/15-LOX + −

TIM4 + −
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classical morphology described for macrophages after adherence,
exhibiting prominent vacuolization and abundant cytoplasm,
whereas SPMs display a polarized morphology in culture, pre-
senting dendrites similar to DCs (35). Moreover, the analysis of
a complex panel of cell surface molecules (Table 1) demonstrated
that SPMs express higher levels of MHC-II (IAb), dectin-1, and
DC-sign endocytic receptors than LPMs. Moreover, half of SPM
subset expresses high levels CD62L (31, 35, 36). Conversely,
LPMs express higher levels of toll like receptor (TLR)-4 and
co-stimulatory molecules in comparison to SPMs (31, 35, 36).

Given that PerC is a singular compartment where special-
ized immune cells reside and interact, including macrophages,
B cells, DCs, eosinophils, mast cells, neutrophils, T cells, nat-
ural killer (NK), and invariant NKT cells (31, 32, 35, 36, 64),
the identification of myeloid cells from PerC based on cell sur-
face molecules is still a complex matter, particularly in terms
of distinguishing macrophage subsets from DCs and inflamma-
tory monocytes. The expression of 12/15-lipoxygenase (LOX),
Tim4, and Ly6B has also been examined to discriminate heteroge-
neous macrophage subsets in PerC under steady state conditions
and during peritonitis (24, 37, 38, 42). The high expression of
12/15-LOX and Tim4 was observed in peritoneal macrophages,
which also express high levels of F4/80 and CD11b, correlating
with the phenotype and frequencies observed for LPMs (24, 31,
37, 38, 42). Conversely, 12/15-LOX- cells and SPM share the
same CD11b+F4/80lowMHCIIhigh phenotype; however, 12/15-
LOX- cells express high levels of CD11c and co-stimulatory
molecules, suggesting that 12/15-LOX- cells and SPMs are, at least
in part, distinct populations (31, 35, 37). Despite similarities in cell
morphology andMHC-II expression presented by SPMs andDCs,
the possibility that SPMs may be part of the peritoneal DC pool is
excluded by the smaller size, the distinct and lack of the CD11b
and F4/80 expression presented by DCs and, primarily, by the
lower expression of CD11c (HL3 or N418 clones of monoclonal
anti-CD11c) on SPMs compared with LPMs or typical peritoneal
DCs (31, 35).

Given the cell complexity present in PerC and the impor-
tance of the development of efficient strategies to correctly
identify macrophage subsets as well as to avoid contamination
by other cell populations and misinterpretation of peritoneal
macrophage studies, our group has proposed a simple way to
identify peritoneal macrophage subsets using a four-color flow
cytometry staining panel. From doublet, CD19high and CD11chigh
discarded selected cell populations; the analysis of F4/80+ cells
based onMHCII expression defines three distinct subpopulations,
F4/80highIAb-neg, F4/80lowIAb-high, and F4/80lowIAb-neg, which cor-
respond, respectively, to LPMs, SPMs, and granulocytes (35).

Origin and Development of LPM and SPM

The theories that explain the origin of macrophages have been
completely reformulated in the last few years. The differentia-
tion process of monocytes, macrophages, and DCs that occurs
in the BM starts with the earliest progenitor, the hematopoietic
stem cell (HSC), and follows the common myeloid progenitor
(CMP) and the granulocyte and macrophage progenitor (GMP)
(16). The clonotypic BM-resident precursor differentiated from

GMP, termed the macrophage-DC precursor (MDP), expresses
high levels of the fractalkine receptor CX3CR1, c-kit, and CD115,
and gives rise to circulating blood monocytes, some macrophage
populations and a common DC precursor (CDP), but does not
originate granulocytes (15, 65, 66). The recruitment of mono-
cyte subsets under steady state or inflammatory and pathological
conditions depends on particular chemokines and the expression
of their counterpart’s receptors. The Ly6C+ monocyte subset
migrates via a CCR2-dependent pathway, whereas Ly6C- appears
to migrate in response to CX3CR1 signaling (67). Under steady
state conditions, extravasated monocytes do not contribute to
the pool of resident macrophages in many tissues (3, 15, 16).
In inflammatory settings, the Ly6C+ monocyte subset differenti-
ates into inflammatory macrophages and monocyte-derived DCs,
such as Tip-DCs (15, 16).

Recent accumulating evidence supports the prenatal origin of
tissue-residentmacrophages and the idea that they aremaintained
locally by self-renewal throughout adult life, both in the steady
state and after cell turnover, which is predominantly independent
of hematopoiesis (17, 18, 23–27, 29, 68, 69).Microglia, Langerhans
cells, Kupffer cells, red pulp splenic macrophages, lung, and peri-
toneal macrophages are originated from embryogenic precursor
and proliferative cells maintained by self-renewal (23–27, 69–
71). Fetal-liver monocytes or primitive macrophages found in the
yolk sac, an extraembryonic tissue, have been related with the
origin of tissue-resident macrophages. In this context, recent date
using yolk sac macrophages depletion and fate-mapping models
demonstrated that yolk sac macrophages, which are generated
from early erythro-myeloid progenitors (EMPs), are important
for development of macrophages in mid-gestation; however in
adulthood, only microglia is maintained by these embryogenic
precursor (69). In contrast, fetal monocytes that are derived from
late EMPs give rise to tissue-resident macrophages from liver,
lung, skin, kidney and spleen (69). The exception to the origin
of resident macrophages is intestinal macrophages, which are
continuously repopulated by circulating monocytes (72).

Understanding the dynamics of maintenance and recruitment
of peritoneal macrophages is of particular interest since these cells
are involved in physiological as well as pathological processes,
such as peritonitis, tumors, and pancreatitis (40, 43, 44). Early
studies demonstrated that peritoneal macrophages are main-
tained in PerC through self-renewal in the steady state or under
inflammatory conditions (73–76). The omentum, a fat tissue that
connects the abdominal organs, is also involved in peritoneal
macrophage development through the proliferative capacities of
omental macrophages (75, 76). The combination of these early
observations, which were acquired recently, with the technical
advances to correctly identify the peritoneal macrophage subsets
has permitted the ontogeny of the peritoneal macrophage subsets
to be elucidated (24, 31, 36, 39, 40, 42).

Under steady state conditions, LPMs appear to be main-
tained by self-renewal and independent of hematopoiesis (26, 36),
whereas SPMs are originated from circulating monocytes (31, 36,
40) (Figure 1). Dates from Schulz et al. suggest that, in general,
F4/80 expression by tissue macrophages correlated with yolk sac
(F4/80high) and not hematopoietic (F4/80low) progenitors (25). In
the CX3CR1GFP/WT mice, Cain et al. (36) showed the presence of
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FIGURE 1 | Distinct origin of peritoneal macrophage subsets. SPMs are
generated from hematopoietic stem cells (HSC) in the bone marrow (BM) by
differentiation of inflammatory blood monocytes (31, 40). However, LPMs
appear to be originated from progenitors from yolk sac and independent of
hematopoietic progenitors (69). Local proliferation of LPMs ensures
homeostatic maintenance by self-renewal (36).

GFP+ cells in DC and SPM pool, but not in the LPM population.
Conversely, in the CX3CR1CreRosa26R-FGFP mice, which show
the active and past expression of CX3CR1, the presence of GFP+

cells was found within DC, SPM, and LPM populations. These
data indicate that SPMs are short-lived cells, whereas LPMs have a
more distant ontogenic relationship with a CX3CR1+ progenitor,
corroborating the idea that they originate from the yolk sac (36).
However, in chimeric C57BL/6 mice reconstituted with C57BL/6-
CD45.1 BM, around 80% of SPMs and more than 70% of LPMs
are CD45.1-expressing cells, demonstrating that both peritoneal
macrophage subsets differentiate from BM precursors after abla-
tion of peritoneal macrophages induced by irradiation (36). Data
from our group suggest that PerC recruited Ly6C+ monocytes
could give rise to SPMs during inflammatory conditions (31).
Confirming that SPMs are generated via the differentiation of
inflammatory monocytes recruited to PerC, reduced numbers of
SPMs are found in the PerC of CCR2−/− mice (40).

The analysis of Ki67 and phosphorylated histone H3 (pHH3
at a discrete stage of mitosis) staining and the quantification of
cell cycle and basal DNA content revealed that the number of
proliferating F4/80highCD11bhigh cells decreases in 12-week-old
mice compared with proliferation capacity of this population in
newborn mice (15 days to 4weeks) (24). After 12–16weeks, the
number of F4/80highCD11bhighcells in PerC is maintained under
a low rate of proliferation, which suggests that the number of
F4/80highCD11bhigh peritoneal cells increases duringmouse devel-
opment until PerC acquires sufficient homeostatic cell numbers
(24). Indeed, BrdU-labeled LPM frequencies after a single BrdU
pulse were 7 and 15-fold lower than those found in HSC and
GMP, respectively. Moreover, the presence of BrdU+ LPMs was
detectable 14 days after BrdU pulse, suggesting that they are a

long-lived population, i.e., maintained at low levels of prolifera-
tion (36). Conversely, the detection of low numbers of proliferat-
ing SPMs at 6–10 days after one pulse of BrdU suggests that these
cells have a low proliferation rate under steady state conditions
and are short-lived cells (36).

Studies with mice deficient in CCAAT/enhancer binding
protein (C/EBP)b also support the notion that LPMs and
SPMs represent distinct ontogenies, because in the absence
of this transcription factor, PerC did not contain LPMs and
exhibited increased numbers of SPMs (36). Interestingly, adop-
tively transferred SPMs differentiated into LPMs in Cebpb−/−

mice. However, in control mice that have normal numbers of
LPMs, only a small frequency of transferred SPMs acquired the
F4/80hiMHCIIlowCD93+ phenotype of LPMs. Based on these
results, the authors proposed that under physiological conditions,
SPMs appear to contribute in only a small way to generate LPMs,
but SPMs could be involved in the maintenance of LPMs in sit-
uations where this pool has been greatly reduced, such as under
inflammatory conditions or following radiation ablation (36).
These data are consistent with the findings of Yona et al. (26),
which demonstrated the presence ofmonocyte-derived cells in the
LPM compartment 8weeks after the i.p. injection of thioglycol-
late. Together with LPMs, a subset of proliferating BM-derived
inflammatory macrophage has also been associated with self-
renewal mechanisms during the resolution of peritonitis induced
by zymosan and thioglycollate (42). Conversely, LPMs do not
seem to contribute to the SPM pool, even during inflammation.
Our group demonstrated that adoptively transferred CFDA-SE-
labeled LPMs 1 h after LPS stimulation retained its phenotype, and
no CFDA-SE+ cells were found in the SPM compartment until
2 days after stimulation (31).

In the last year, a great advance in the understanding of the
transcriptional control of peritoneal macrophages provided novel
insights into this scenario (39, 40). The zinc finger transcrip-
tion factor GATA-binding protein 6 (GATA6) appears to regulate
the majority of peritoneal macrophage-specific genes (PMSGs).
Of note, GATA6 is selectively expressed by LPMs (40). Accord-
ingly, the number of LPMs were greatly reduced in peritoneal
lavages from GATA6-KOmye and Mac-GATA6 KO mice, which
have a GATA6 deficiency in all myeloid cells or only in the
macrophage lineages, respectively (39, 40). Interestingly, retinoic
acid (RA) is the extracellular factor that regulatesGATA-6-specific
gene expression in LPMs, because vitamin A depleted (VAD;
the RA precursor) mice exhibited a decrease in GATA6 expres-
sion and LPM numbers (40). Moreover, the stimulation of peri-
toneal macrophages from VAD mice with all-trans RA restored
the expression of GATA-6 and many PMSGs at levels found in
peritoneal macrophages from control mice. In addition to the
regulation of gene expression profiling in peritonealmacrophages,
GATA-6 appears to be involved in the control of the proliferation,
survival, andmetabolism of these cells (39, 77). GATA-6-deficient
macrophages demonstrate an altered proliferation state during
peritonitis (39). Moreover, Lyz2-Cre×GATA6(flox/flox) mice also
exhibit reduced numbers of peritoneal macrophages, which could
be explained by the perturbation in theirmetabolism, culminating
in the high frequency of cell death found in this compartment
(77). Despite great contributions to our understanding in the
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involvement of GATA-6 in peritoneal macrophage development,
metabolism, self-maintenance, and survival, the existence of dis-
tinct pathways that could govern the transcriptional regulation of
SPMs remains largely unknown.

In addition to transcriptional regulation, signaling factors
derived from the microenvironment also play an essential role
in promoting the development and phenotype of tissue-resident
macrophages. For example, TGF-β1 signaling is required for
the development of the microglia population and to regulate a
microglia expression program through the Smad tissue factors
(78–80). Heme has been shown to induce Spi-c, a transcription
factor important for red pulp macrophage development (81, 82).
Finally, in PerC, omentum-derived RA promotes the expression
of GATA-6 in the LPM subset, determining its localization and
functions (40), even if the factors that maintain the SPM pool
under steady state conditions still remain to be elucidated.

Dynamics and Function of Peritoneal
Macrophage Subsets

Mouse PerC is a compartment where many cell types co-habitat
and interact, similar to the secondary lymphoid organs. In addi-
tion, PerC is a unique body compartment that contains B-1 cells
(83). Under steady state conditions, the peritoneal cells comprise

LPMs, SPMs, B-1 cells, conventional B-2 cells, T cells, NK cells,
DCs, and granulocytes (mostly eosinophils) (31, 35). B1 cells con-
stitute the majority of the PerC cell population, whereas the SPM
and LPM frequencies represent 30–35% of total peritoneal cells
(31, 35) (Figure 2A). However, after inflammatory or infectious
stimuli, there is a dramatic alteration in cell numbers and the
frequencies of each of PerC cell subpopulation. With regard to the
myeloid compartment, modifications in PerC cell composition
include the disappearance of LPMs, increases in SPM frequency
and numbers, and a massive recruitment of inflammatory mono-
cytes (24, 31, 35, 36, 40) (Figure 2B).

The “macrophage disappearance reaction” (MDR) in PerC has
been extensively described during delayed-type hypersensitivity
(DTH) and acute inflammatory processes (84). MDR has been
associated with cell death, emigration to draining lymph nodes,
or adherence of macrophages to structural tissues. LPMs are the
unique peritoneal macrophage subset that disappears from PerC,
which is attributed not to cell death but rather to their migration
to the omentum (31, 40). LPM disappearance in response to
inflammatory stimuli is accompanied by an increase in SPM and
inflammatory monocyte numbers (24, 31, 35, 36, 40) (Figure 2B),
and has been correlated with the renewal and improvement of
immune conditions of the PerC (35). Adherent peritoneal cells
from naive mice, which are composed primarily of LPM, exhibit

FIGURE 2 | Summary of the dynamic of peritoneal macrophage
subsets. (A) Under homeostatic conditions, peritoneal macrophages
comprise two subsets LPMs and SPMs (31). LPMs, which are the major
peritoneal macrophage population, appear to be responsible for phagocytosis
of apoptotic cell and tissue repair (36). (B) At the outset of inflammation, the
myeloid compartment is modified in general by disappearance of LPMs,
increase of SPMs numbers, and monocytes influx (31, 35, 36, 40). The
changes in the myeloid cells from zymosan, T. cruzi, and LPS stimulated or
thioglicollate-elicited PerC result in the gain of immune state (35, 36). SPMs

from zymosan and T. cruzi stimulated mice contribute to effector function of
PerC through secretion of high levels of NO and presence of IL-12-producing
cells (35). In response to LPS in vivo, SPMs produce several inflammatory
cytokines, such as IL-12, MIP-1α, TNF-α, and RANTES, whereas LPMs
produce enhanced amounts of G-CSF, GM-CSF, and KC (36). LPMs, which
migrate to omentum by a retinoic acid and GATA-6-dependent way in
response to in vivo LPS stimulation or vitamin-A deprivation, return to PerC
and appear to be correlated with GALT-independent and TGF-β2-dependent
IgA production by B-1 cells in the intestine (40).
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a high frequency of cells stained for β-galactosamine (β-gal), a
senescence marker (85–87). These cells are unable to secrete NO
in response to LPS challenge (35). In contrast, adherent peri-
toneal cells from Trypanosoma cruzi or zymosan-stimulated mice
in which the main cell population constitutes SPMs and mono-
cytes (F4/80lowMHCIIintLy-6C+), respectively, display a signifi-
cant reduction in the frequency of β-gal-positive cells and secrete
high levels of NO in response to LPS (35). The frequency of IL-
12-producing cells after in vitro LPS plus IFN-γ stimulation was
also higher within myelo-monocytic cells from mice exposed to
zymosan and T. cruzi than the frequencies of IL-12-producing
cells found in unstimulated mice (35). In response to Staphylo-
coccus epidermidis cell-free (SES) supernatant in vivo stimulation,
F4/80lowCD11b+ cells (consisting of SPMs and DCs) produced
enhanced levels of IL-1β, IL-1α, TNF-α, and IL-12 in the presence
or absence of subsequent SES treatment (37). In contrast, the
supernatants of adherent cells from naïve mice treated with SES
were found to contain high levels of MCP-1, MCP-1α, MIP-
1β, and G-CSF (37). It is important to note that 4 days after
thioglycollate injection, peritoneal cells, an extensively studied cell
population (88–91), also consist primarily of SPMs and inflam-
matory monocytes (31, 40). The increase in SPM numbers and
the influx of inflammatory monocytes that will give rise to SPMs
greatly contribute to the improvement of the capacity of PerC to
deal with inflammatory stimuli. Indeed, although neither SPMs
nor LPMs produce significant levels of pro- or anti-inflammatory
cytokines under steady state conditions (35–37), SPMs appear to
develop a pro-inflammatory profile in response to in vitro stimuli.
SPMs produced high levels of TNF-α, MIP-1α, and RANTES in
response to LPS, whereas LPMs were the unique population that
produced abundant levels of G-CSF, GM-CSF, and KC in response
to the same stimulus (36) (Figure 2B).

The NO secretion and pro-inflammatory cytokine produc-
tion are the most important functions of activated macrophages
by inflammatory stimulation and assigns the M1 profile (13,
34, 92–97). The functional profile of peritoneal macrophages
was previous studied by our group and others (33, 34). Peri-
toneal macrophages fromTh1-pronemouse strains (C57BL/6 and
B10.A) are easily activated to produceNO in response to rIFN-γ or
LPS, characterizing theM1 profile. In contrast, macrophages from
Th2-prone mouse strains (BALB/c and DBA/2) exhibit a weak
NO response as a consequence of high levels of spontaneously
secreted TGF-β1 (34). Moreover, the cells from C57BL/6 IL-
12p40-deficient mice have a bias toward the M2 profile, indi-
cating that IL-12 is required for M1 polarization of peritoneal
macrophages (33). Although LPMs from naïve mice can produce
NO after in vitro LPS stimulation, SPMs produce higher levels of
NO than LPMs following in vivo LPS stimulation. The NO secre-
tion by LPMs was also detected by flow cytometry in Escherichia
coli inoculatedmice (31), whereas nitrite was not produced in vitro
by LPS-stimulated adherent peritoneal cells from control mice,
which is composed mainly by LPMs (35). In addition, adherent
cells obtained 48 h after T. cruzi infection, which are mostly com-
posed by SPMs, were the unique source of NO without in vitro
subsequent challenge with LPS (35). In resume, the SPM and
LPM subsets cannot be accommodated in the M1/M2 framework
considering the NO secretion. However, considering phagocytic

assays, SPMs appear to develop an efficient profile to control
infections asM1macrophages, whereas LPMs assume a role in the
maintenance of PerC physiological conditions asM2 or alternative
macrophages. Despite the preserved phagocytic ability of LPMs,
higher numbers of zymosan and E. coli were found inside of
SPMs at early time points after i.p. injection (31, 35). Conversely,
at 1 h after challenge, LPMs appear to present a higher phago-
cytic index of apoptotic thymocytes in comparison to SPMs (36)
(Figure 2A).

In addition, it was recently demonstrated that LPMs have
a unique ability to induce gut-associated lymphoid tissue
(GALT)-independent IgA production by peritoneal B-1 cells
(40) (Figure 2B). RA and TGF-β2 are the most critical factors
to induce IgA class switching, and the production of TGF-β2 is
regulated by the Tgfb2 and Ltbp1 genes, which are expressed by
LPMs in a GATA-6-dependent manner. This process is regulated
by the abundant presence of RA in the omentum, which is
responsible for the induction of GATA-6 expression in LPMs
that migrates to this tissue. The dynamic of LPM migration
between the PerC and the omentum after the stimulation of PerC
is correlated with their disappearance and the return to basal
numbers of LPMs later after stimulation with LPS, zymosan,
and thioglycollate (24, 31, 35, 36, 39, 40). This observation
suggests that LPMs can return to PerC to resolve an infectious or
inflammatory process. Therefore, the presence of two specialized
macrophage subsets in PerC is crucial to maintain the health of
this compartment under different situations.

Concluding Remarks

Peritoneal macrophages represent one of the most studied
macrophage populations. However, the existence of two pheno-
typically and functionally distinct subsets, LPMs and SPMs, resid-
ing in the PerC was recognized recently (31). In the last year, great
advances in our understanding of the transcriptional regulation
of peritoneal macrophages have brought novel insights into the
identification of LPMs and SPMs (39, 40). GATA-6, an LPM-
restricted transcription factor, regulates many PMSGs, including
those related to the maintenance of LPMs in PerC (40) and those
that determine their function (40), metabolism, proliferation,
and cell survival (39, 77). Under steady state conditions, LPMs
appear to originate independently from hematopoietic precursors
and retained the ability to proliferate in situ, maintaining phys-
iological numbers (26, 36). Conversely, SPMs appear to origi-
nate from circulating monocytes (31, 36, 40), and their numbers
increase remarkably under inflammatory conditions. Of note,
SPMs together with their precursor, the inflammatory mono-
cyte population, are the major myeloid populations present in
elicited PerC, and are an excellent resource to study the biology of
inflammatory macrophages. SPMs and LPMs exhibit specialized
functions in the PerC, where SPMs present a pro-inflammatory
functional profile, and LPMs appear to have a role in the mainte-
nance of PerC physiological conditions. Moreover, the particular
interactions betweenmacrophage subsets and other peritoneal cell
populations appear to play crucial roles in PerC immune state.
Although the consequences of the crosstalk between SPMs and
peritoneal T and B lymphocytes remain to be clarified, LPMs are
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required for GALT-independent and RA-dependent IgA produc-
tion by peritoneal B-1 cells (40). Finally, the elucidation of the
influence of soluble factors and the microbiota on the mainte-
nance of LPM/SPM ratios in PerC, and the role of these subsets
in the systemic immune response are the future challenges for
this field.
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