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Abstract: Better understanding of the bimodal coupled bridge flutter involving fundamental vertical bending and torsional modes offers
valuable insight into multimode coupled flutter, which has primarily been the major concern in the design of long span bridges. This paper
presents a new framework that provides closed-form expressions for estimating modal characteristics of bimodal coupled bridge systems
and for estimating the onset of flutter. Though not intended as a replacement for complex eigenvalue analysis, it provides important
physical insight into the role of self-excited forces in modifying bridge dynamics and the evolution of intermodal coupling with increasing
wind velocity. The accuracy and effectiveness of this framework are demonstrated through flutter analysis of a cable-stayed bridge. Based
on this analysis scheme, the role of bridge structural and aerodynamic characteristics on flutter, which helps to better tailor the structural
systems and deck sections for superior flutter performance, is emphasized. Accordingly, guidance on the selection of critical structural
modes and the role of different force components in multimode coupled flutter are delineated. The potential significance of the consid-
eration of intermodal coupling in predicting torsional flutter is highlighted. Finally, clear insight concerning the role of drag force to bridge
flutter is presented.
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Introduction

Flutter instability is primarily one of the major concerns in the
design of long span bridges. The flutter analysis that combines a
finite-element model of the bridge and its aerodynamic character-
istics derived from section model wind tunnel tests has played an
important role in seeking design solutions for innovative aero-
dynamically tailored bridge decks and effective structural sys-
tems. The mode-by-mode approach that neglects intermodal
aerodynamic coupling has proven its utility in predicting bridge
flutter dominated by the action of a single mode �Scanlan 1978�.
However, experience shows that bridges with longer spans gener-
ally require a multimode coupled analysis framework �e.g., Jones
et al. 1998; Chen et al. 2000a�. In this context, time domain
analysis schemes facilitate consideration of nonlinearities in both
structural and aerodynamic characteristics and the influence of
turbulence on flutter �Diana et al. 1999; Chen et al. 2000b; Chen
and Kareem 2003a,b�.

The multimode coupled bridge flutter is often dominated by
the aerodynamic coupling of fundamental vertical bending and
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torsional modes with secondary contributions from other modes
�Chen et al. 2000a�. Therefore, better understanding of the bi-
modal flutter involving the fundamental vertical bending and tor-
sional modes promises to provide valuable insight into multimode
coupled flutter. The bimodal coupled flutter has laid a firm foun-
dation for developing spring-supported bridge section model tests
in wind tunnels as a valuable tool for flutter prediction. The
bimodal flutter analysis is also often performed at preliminary
design stages to seek the best solution for superior flutter perfor-
mance. A step-by-step iterative analysis framework for the bi-
modal coupled flutter was introduced by Matsumoto et al. �1997�
and Matsumoto �1999�, which attempted to capture the mecha-
nism surrounding the evolution of bridge flutter.

The self-excited lift and pitching moment on a bridge deck
caused by vertical and torsional motions have been considered as
the most important force components in the prediction of bridge
flutter, whereas the lift force and pitching moment on a bridge
deck induced by the lateral motion and drag force have been
generally regarded as less important. However, recent experience
involving the Akashi Kaikyo Bridge has revealed that the drag
force induced by the torsional displacement resulted in a consid-
erable level of negative damping at higher wind velocities, which
is responsible for the coupled flutter �Miyata et al. 1994�. Since
then, the need for modeling and measurements of drag force and
its potential importance to bridge flutter analysis have received
some attention in the literature �e.g., Jones et al. 1998, 2002�.
However, a fundamental understanding of this behavior has re-
mained unclear in the bridge aerodynamics community.

In this paper, a new analysis framework that offers closed-
form expressions for estimating bimodal coupled flutter is pre-
sented. Its accuracy and effectiveness are demonstrated through
the flutter analysis of a cable-stayed bridge. Subsequently, this
framework is utilized to emphasize the significance of bridge

structural and aerodynamic characteristics on flutter. Based on
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this framework, guidance on the selection of critical structural
modes and the role of different force components in multimode
coupled flutter are delineated. The potential importance of the
consideration of intermodal coupling in predicting torsional flutter
is highlighted. Finally, a clear insight concerning the role of drag
force in bridge flutter is presented.

New Analysis Framework

The bridge deck dynamic displacements in the vertical, lateral,
and torsional directions, i.e., h�x , t�, p�x , t�, and ��x , t�, respec-
tively, about its statically displaced position, are expressed as

h�x,t� = �
j

hj�x�qj�t�; p�x,t� = �
j

pj�x�qj�t�;

��x,t� = �
j

� j�x�qj�t� �1�

where hj�x�, pj�x� and � j�x��jth mode shapes in each respective
direction; qj�t��jth modal coordinate; and x�spanwise position.

The self-excited �se� forces per unit length linearized around
the statically displaced position, i.e., lift �downward�, drag �down-
wind�, and pitching moment �nose up�, are given as �e.g., Scanlan
1978, 1993; Chen and Kareem 2002�
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where ��air density; U�mean wind velocity; B=2b�bridge
deck width; k=�b /U�reduced frequency; ��frequency of mo-
tion; and Hj

*, Pj
*, and Aj

* �j=1,2 , . . . ,6��flutter derivatives that
are functions of reduced frequency.

The governing matrix equation of bridge motions in terms of
modal coordinates is given by

Mq̈ + Cq̇ + Kq =
1

2
�U2�Asq +

b

U
Adq̇� �5�

where M=diag�mj�, C=diag�2mj�sj�sj� and K=diag�mj�sj
2 �

�generalized mass, damping, and stiffness matrices, respectively;
mj, �sj, and �sj�jth modal mass, damping ratio, and frequency;
As and Ad�aerodynamic stiffness and damping matrices, respec-
tively, and their elements pertaining to the i and jth modes are

given by
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*G�ipj
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� �7�

and Grisj
=�spanri�x�sj�x�dx �where r ,s=h , p ,���modal integrals.

The modal frequencies and damping ratios as well as inter-
modal coupling of the bridge at a given wind velocity, with the
contributions of aerodynamic stiffness and damping terms, can be
analyzed through the solution of the following complex eigen-
value problem by putting q�t�=q0e�t:

��2M + �C + K�q0e�t =
1

2
�U2�As + �̄Ad�q0e�t �8�

where �=−��+ i�	1−�2; � and ��damping ratio and fre-

quency of the complex modal branch of interest; �̄=�b /U
= �−�+ i	1−�2�k; and i=	−1. The flutter condition is determined
by seeking the flutter onset velocity that corresponds to zero
damping.

Now, consider the bimodal coupled case where the bridge is
modeled by its fundamental vertical bending and torsional modes,
i.e., h1�x��0, p1�x�=0, �1�x�=0; h2�x�=0, p2�x��0, �2�x��0;
and q0= 
q10q20�T �where T�matrix transpose operator�. In this
context where the fundamental torsional mode is antisymmetric,
the corresponding fundamental bending mode is referred to as the
fundamental antisymmetric mode. Otherwise, both are referred to
as fundamental symmetric modes. In the ensuing analysis, only
the lift and pitching moment caused by the vertical and torsional
motions are considered. Accordingly, the aerodynamic matrices
are described by

As = �2k2��H4
*Gh1h1

bH3
*Gh1�2

bA4
*Gh1�2

b2A3
*G�2�2


 �9�

Ad = �2k��H1
*Gh1h1

bH2
*Gh1�2

bA1
*Gh1�2

b2A2
*G�2�2


 �10�

The aeroelastic bridge system with low level of damping is
considered. Because of low level of damping, the decay or growth
of motion has little influence on the generation of the self-excited

forces, i.e., As+ �̄Ad�As+ �ik�Ad. By eliminating the terms
involving higher order of damping ratio, i.e., �2�−�2−2��i,
2�s1�s1��2�s1�s1�i and 2�s2�s2��2�s2�s2�i, Eq. �8� can be re-
written as

�− �2 + i2�̄1�̄1� + �̄1
2�q10e

�t

= �D�2�H3
* + iH2

*��G�2�2
/Gh1h1

�1/2�bq20�e�t �11�

�− �2 + i2�̄2�̄2� + �̄2
2��bq20�e�t

= 	D�2�A4
* + iA1

*��Gh1h1
/G�2�2

�1/2bq10e
�t �12�

where �̄ j and �̄ j �j=1,2��frequencies and damping ratios that are
influenced only by the uncoupled self-excited forces, i.e., the lift
caused by vertical motion and the pitching moment caused by

* * * *
torsion, associated with H1, H4, A2, and A3

6



¯

�̄1 = �s1�1 − ���/�s1�2H4
*�1/2 �13�

�̄1 = �s1��s1/�̄1� − 0.5���/�̄1�H1
* − ���/�̄1� �14�

�̄2 = �s2�1 − 	��/�s2�2A3
*�1/2 �15�

�̄2 = �s2��s2/�̄2� − 0.5	��/�̄2�A2
* − ���/�̄2� �16�

and �=�b2 /m; 	=�b4 / I; m=m1 /Gh1h1
; and I=m2 /G�2�2

=mr2

�effective mass and polar moment of inertia per unit
span, respectively; r�radius of gyration of the cross section;
D=Gh1�2

/ �Gh1h1
G�2�2

�1/2�the similarity factor between the verti-
cal and torsional mode shapes.

When the coupled self-excited forces, i.e., the lift caused by
torsion and the pitching moment caused by vertical motion, asso-
ciated with H2

*, H3
*, A1

*, and A4
*, are negligibly small, the equations

of motion become uncoupled. For this uncoupled system, the
modal frequencies and damping ratios are given by �Scanlan
1978�

�10 = �s1�1 + �H4
*�−1/2 �17�

�10 = �s1��s1/�10� − 0.5�H1
* �18�

�20 = �s2�1 + 	A3
*�−1/2 �19�

�20 = �s2��s2/�20� − 0.5	A2
* �20�

It is noted that in the case of the uncoupled system, �10= �̄1,

�1=0, �20= �̄2, and �̄2=0. As the flutter derivatives are func-
tions of reduced frequency, for the bimodal coupled system,
�̄1��10 and �̄2��20. However, the modal frequencies of
the coupled system are generally very close to those of the
corresponding uncoupled system at the same wind velocity. In
addition, the influence of the uncoupled self-excited forces
on modal frequencies is not sensitive to the change in reduced
frequency. Therefore, �̄1��s1�1−���̄1 /�s1�2H4

*�1/2=�10 and
�̄2��s2�1−	��̄2 /�s2�2A3

*�1/2=�20.
The solutions of Eqs. �11� and �12� lead to the modal frequen-

cies, damping ratios, and complex mode shapes for both modal
branches. Consider the solution of the vertical mode branch with
a frequency �=�1 that is closer to �̄1 than �̄2, and damping ratio
�=�1. The amplitude ratio, 
, and phase difference between ver-
tical and torsional motions, �, as defined by bq20/q10=
ei�, can
be determined from Eq. �12� as


 = 	DRd1
��A4
*�2 + �A1

*�2��Gh1h1
/G�2�2

��1/2 �21�

� = tan−1�A1
*/A4

*� − tan−1
�2�̄2��1/�̄2��/�1 − ��1/�̄2�2�� �22�

where

Rd1 = ��1/�̄2�2
�1 − ��1/�̄2�2�2 + �2�̄2��1/�̄2��2�−1/2 �23�

By replacing �bq20� with q10
ei�, Eq. �11� becomes

�− �1
2 + i2�̄1�̄1�1 + �̄1

2 − �	D2�1
2
�ei���q10e

�t = 0 �24�

where


� = Rd1
��H3
*�2 + �H2

*�2���A4
*�2 + �A4

*�2��1/2 �25�

�� = tan−1�H*/H*� + � �26�
2 3
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Eq. �24� can only be satisfied when the term in the brackets
becomes zero, which leads to the closed-form solutions for the
frequency and damping ratio of the modal branch as

�1 = �s1�1 + �H4
* + �	D2
� cos ���−1/2 �27�

�1 = �s1��s1/�1� − 0.5�H1
* − 0.5�	D2
� sin �� �28�

Similar expressions can be derived for the torsional modal
branch with a frequency �=�2 that is closer to �̄2 than �̄1, and
damping ratio �=�2. The amplitude ratio, �, and phase difference
between vertical and torsional motions, 
, as defined by
q10/ �bq20�=�ei
, can be determined from Eq. �11� as

� = �DRd2
��H3
*�2 + �H2

*�2��G�2�2
/Gh1h1

��1/2 �29�


 = tan−1�H2
*/H3

*� − tan−1
�2�̄1��2/�̄1��/�1 − ��2/�̄1�2�� �30�

where

Rd2 = ��2/�̄1�2
�1 − ��2/�̄1�2�2 + �2�̄1��2/�̄1��2�−1/2 �31�

The frequency and damping ratio of this modal branch are
given by

�2 = �s2�1 + 	A3
* + �	D2�� cos 
��−1/2 �32�

�2 = �s2��s2/�2� − 0.5	A2
* − 0.5�	D2�� sin 
� �33�

where

�� = Rd2
��H3
*�2 + �H2

*�2���A4
*�2 + �A1

*�2��1/2 �34�


� = tan−1�A1
*/A4

*� + 
 �35�

It is noted that the derivation of the preceding closed-form
expressions was based only on the assumption of low level of
damping. In fact, such an approximation has also been implicitly
invoked in the modeling of the self-excited forces and analysis of
bridge flutter. Because of the low level of damping, the decay or
growth of the deck motion does not influence the self-excited
forces, which permits characterization of flutter derivatives only
in terms of the reduced frequency rather than both the reduced
frequency and damping. This assumption has also been routinely
made in flutter analysis schemes such as so-called p−k and p
methods and conventional complex eigenvalue analysis �e.g.,
Chen and Kareem 2003b�. Therefore, this approximation is by no
means restrictive, thus the proposed framework with closed-form
expressions is expected to be generally applicable to a variety of
bimodal coupled systems. It is also emphasized that at the flutter
onset velocity with zero damping, the proposed framework for the
flutter modal branch results in the exact solution as the conven-
tional eigenvalue analysis because the invoked approximation
vanishes.

As the flutter derivatives are functions of reduced frequency,
in the preceding expressions for each modal branch, the flutter
derivatives are defined at the respective reduced frequency. The
influence of the coupled self-excited forces on the modal frequen-
cies is often negligible, while it tends to separate closely spaced
frequencies. The influence of damping ratio � on the amplitude
ratio and phase difference is often small and even can be ne-
glected by simply setting �=0, particularly, in cases where modal
frequencies are well separated and the damping ratio is small.
Although iterative calculations for both frequencies and damping
ratios are required, they converge very fast. The iterative calcu-

lations may even be eliminated by inserting respective values
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of frequencies and damping ratios obtained at the immediate
previous wind velocity for evaluating parameters, like the flutter
derivatives, on the right-hand side of the formulations. It is em-
phasized that the proposed framework is not intended to replace
the conventional complex eigenvalue analysis framework for the
purpose of flutter analysis. Instead, it offers closed-form analyti-
cal solutions that provide clear physical insight as to how self-
excited forces change bridge dynamics and to how the intermodal
coupling evolves with increasing wind velocity.

Illustration and Discussion

In the following, the accuracy and effectiveness of the proposed
framework is demonstrated utilizing a long span cable-stayed

Fig. 1. Bridge mode shapes: �a� Mode 3; �b� Mode 10; and �c�
Mode 13

Fig. 2. Flutter derivatives for the slender bridge deck section: �a�
flutter derivatives Hi

* �i=1,2 ,3 ,4�; �b� flutter derivatives Ai
*

�i=1,2 ,3 ,4�
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bridge with a center span of about 1000 m. The bridge deck width
is B=30 m. The nondimensional mass and polar moment of iner-
tia parameters are �=0.0139 and 	=0.0579. The frequencies of
the fundamental vertical bending and torsional modes, i.e., Modes
3 and 13, are 0.2144 and 0.5708 Hz, respectively. The corre-
sponding mode shapes in terms of the bridge deck displacements
in three directions are shown in Fig. 1. It can be seen that Mode
3 is a pure vertical bending mode, and Mode 13 is a torsional
mode with secondary coupled lateral motion. For these two
modes, the modal integrals are Gh1h1

=0.4951, bGh1p2
=−0.0224,

bGh1�2
=0.9767, Gp2p2

=0.0213, and b2G�2�2
=2.0573. The si-

milarity factor of these two modes is D=0.9678, very close to
unity, which indicates a high modal similarity in shapes between
these two modes. The modal damping ratio for these two modes
is assumed to be 0.0032. Only the lift and pitching moment
acting on the bridge deck related to flutter derivatives Hi

*, Ai
*

�i=1, 2, 3, 4� are considered. For comparison, two typical cases,
referred to as Cases A and B, corresponding to a slender and a
relatively bluff bridge deck section, respectively, are considered.
In Case A, the flutter derivatives are calculated from Theoderson
function. As shown in Fig. 2, H1

*, H3
*, H4

*, A2
*�0, and H2

*, A1
*, A3

*,
A4

*�0; in Case B, the flutter derivatives are measured using a
rectangular section with width to height ratio of 5 �Matsumoto
et al. 1997�. As shown in Fig. 3, H1

*, H3
*, H4

*, A4
*�0, H2

*�0,
A1

*�0, and changes to �0 for higher reduced wind velocities and
A2

*�0 at lower reduced wind velocities, but �0 at higher reduced
wind velocities, and A3

* is originally �0, but changes to �0 as the
reduced wind velocity increases. Obviously, Cases A and B, re-
spectively, correspond to the cases of coupled flutter and torsional
flutter.

Fig. 4 shows the predicted frequencies and damping ratios as
well as mode shapes in terms of amplitude ratios and phase dif-
ferences for both modal branches in Case A. For the vertical

Fig. 3. Flutter derivatives for the relatively bluff bridge deck section:
�a� flutter derivatives Hi

* �i=1,2 ,3 ,4�; �b� flutter derivatives Ai
*

�i=1,2 ,3 ,4�
modal branch, the complex mode is defined as the ratio of tor-
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sional motion to vertical motion, thus a positive value of phase
difference suggests that the vertical motion lags the torsional mo-
tion. For the torsional mode branch, the complex mode is defined
as the ratio of vertical motion to torsional motion, thus a positive
value of phase difference suggests that the torsional motion lags
the vertical motion. The amplitude ratio is given in terms of the
ratio between the vertical and torsional displacements of the
bridge deck at the center of the main span so that these are inde-
pendent of the mode shape normalization scheme. The solid lines
and circles, respectively, show the results of the conventional
complex eigenvalue analysis and the proposed framework. Fig. 5
shows the results for Case B. It can be seen that the proposed
framework provides predictions for both branches that show a
good agreement with the conventional complex eigenvalue analy-
sis. The predicted critical flutter velocities by both approaches are
identical, i.e., 119 m/s for Case A and 69.6 m/s for Case B.

Fig. 4. Comparison of flutter analysis for the cable-stayed bridge
�Case A�: �a� frequency; �b� damping ratio; �c� amplitude ratio; and
�d� phase difference

Fig. 5. Comparison of flutter analysis for the cable-stayed bridge
�Case B�: �a� frequency; �b� damping ratio; �c� amplitude ratio; and
�d� phase difference
JOURNA
There are some minor differences between the two approaches
in Case A, which only surface at the high wind velocities for
the vertical modal branch with high levels of damping where the
invoked assumption breaks down. It should be mentioned that
the flutter derivatives are generally experimentally identified for
motions with low level of damping �free vibration method� or
zero damping �forced vibration method�. Therefore, the predicted
high level of damping even by the conventional eigenvalue analy-
sis is equally questionable.

Significance of Bridge Structural and Aerodynamic
Characteristics on Flutter

The proposed framework clearly highlights the contributions of
different aerodynamic force components to the modifications
in modal frequencies and damping ratios with changing wind ve-
locities. For the example of the torsional modal branch, the terms
	A3

* and −0.5	A2
* in Eqs. �32� and �33�, respectively, represent the

influences of uncoupled aerodynamic stiffness and damping
forces on the frequency and damping. The terms involving
�	D2�� sin 
� and −0.5�	D2�� cos 
� are the respective contri-
butions from the coupled aerodynamic forces. Fig. 6 shows the
contributions of different force components to the modal frequen-
cies and damping ratios in Case A. It is inferred from Fig. 6�a�
that the modification in frequencies is a result of the uncoupled
aerodynamic stiffness, while the contribution of coupled aerody-
namic forces is quite small. As shown in Fig. 6�b�, the coupled
aerodynamic forces result in an increase in the damping of the
vertical modal branch. By contrast, as shown in Fig. 6�c�, the
coupled forces generate negative damping in the torsional modal
branch, which leads to the initiation of coupled flutter at 119 m/s.
As A2

*�0, torsional motion generates positive damping and tor-
sional flutter does not exist at the action of the torsional mode
alone. The contrasting contributions of the coupled aerodynamic
forces to the damping ratios of both modal branches clearly point
at an energy transfer between these two branches.

This contrasting behavior is attributed to the difference in

Fig. 6. Contributions of different force components to frequencies
and damping ratios �Case A�: �a� frequency; �b� damping ratio �Mode
Branch 3�; and �c� damping ratio �Mode Branch 13�
the algebraic signs of sin �� and sin 
�, respectively, for the ver-
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tical and torsional modal branches, where ��=tan−1�H2
* /H3

*�
+tan−1�A1

* /A4
*�−�d1, 
�=tan−1�H2

* /H3
*�+tan−1�A1

* /A4
*�−�d2, �d1

= tan−1
�2�̄2��1 / �̄2�� / �1− ��1 / �̄2�2��, and

�d2 = tan−1
�2�̄1��2/�̄1��/�1 − ��2/�̄1�2��

The angle tan−1�H2
* /H3

*� represents the phase difference between
the torsional motion and its resulting lift force. The angle
tan−1�A1

* /A4
*� represents the phase difference between the vertical

motion and its resulting pitching moment. As shown in Figs. 7�a
and b�, tan−1�H2

* /H3
*� for both branches at the same wind velocity

are very close to each other, although they correspond to different
reduced frequencies. Similar observation can also be made for
tan−1�A1

* /A4
*�. However, the angles �d1 and �d2, respectively, for

the vertical and torsional branches, are considerably different,
which are attributed to the distinct values of frequency ratios, i.e.,
�1 / �̄1 and �2 / �̄1. As shown in Fig. 7�c�, for the vertical modal
branch, as �1 / �̄2�1, �d1 ranges from 0 to � /2, and approaches

zero for a low level of damping �̄2 and a small value of frequency
ratio �1 / �̄2. On the other hand, for the torsional modal branch, as
�2 / �̄1�1, �d2 ranges from � /2 to �, and approaches � for a low

level of damping �̄1 and a large value of frequency ratio �2 / �̄1.
Consequently, the phase differences of coupled motions in both
branches, i.e., � and 
, are between 0 and � /2. Thus, the vertical
modal branch is associated with a coupled motion in which tor-
sional motion lead vertical motion, while the torsional modal
branch corresponds to a coupled motion in which torsional mo-
tion lags vertical motion. This type of motion allows the coupled
self-excited forces to produce a positive damping to the vertical
modal branch as sin ���0, and a negative damping to the tor-
sional modal branch as sin 
��0. The bimodal coupled flutter is
likely to be initiated from the branch with higher frequency.

Fig. 8 shows the contributions of different force components to
damping ratio of the torsional modal branch in Case B. As A2

*

becomes a positive value from a negative value with increasing
wind velocity, a torsional flutter exists beyond 69.6 m/s even
with the involvement of only a single torsional mode. While the
contribution of the coupled forces is relatively weak, it reduces

Fig. 7. Phase differences due to structural and aerodynamic
characteristics �Case A�: �a� vertical modal branch; �b� torsional
modal branch; and �c� �d1 and �d2
the damping and leads to a lower flutter onset velocity of
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64.3 m/s. This suggests that the multimode coupled flutter analy-
sis framework is generally required for not only bridges with
slender sections but also bridges with relatively bluff sections as
has been pointed out in Chen et al. �2000a� and Jones et al.
�2002�. Consideration of intermodal coupling is potentially more
significant in the cases of a soft-type flutter in which negative
damping builds up slowly with increasing wind velocity �Chen
and Kareem 2003c�, and a slight difference in the predicted
damping ratio may lead to a notable difference in the predicted
critical flutter velocity.

The proposed framework offered intuitive and valuable insight
into the significance of structural and aerodynamic characteristics
to coupled bridge flutter without performing extensive numerical
parametric studies, as is often needed in the traditional frame-
work. These insights could help in developing design solutions to
enhance flutter performance. For instance, increases in structural
mass and torsional frequency, as well as the frequency ratio be-
tween the torsional and vertical modes, help to improve flutter
performance. Higher structural damping contributes not only to
the increase in the damping of the respective modal branch but
also to the reduction of coupled motion and, therefore, is benefi-
cial in delaying flutter. Modification of the structural system can
potentially change structural dynamic characteristics including
mode shapes, which modify the associated modal integrals and
the contributions of aerodynamic forces. The uncoupled self-
excited forces due to displacements, i.e., terms related to H4

*

and A3
*, and in particular A3

*, reduce the modal frequencies and
thus have unfavorable influences on flutter. The uncoupled self-
excited forces due to bridge deck velocities, i.e., terms related to
H1

* and A2
*, and in particular A2

* increase the modal damping and
thus these are beneficial to flutter. The negative damping gener-
ated by the coupled forces, i.e., terms related to H2

*, H3
*, A1

*, and
A4

*, and in particular the aerodynamic stiffness terms H3
* and A1

*, is
the main contributing source that drives the bridge to coupled
flutter instability.

In order to improve bridge flutter performance, it is essential
to enhance the beneficial features and reduce the unfavorable
contributions to system damping. This can be realized through the
introduction of aerodynamically tailored bridge decks and effec-
tive structural systems. For example, a streamlined multibox
section with properly designed large portions of grating/air gap
between individual box sections is often characterized by low
static drag force and low aerodynamic forces as compared to a
single box section without grating/air gap. This kind of section
not only offers higher flutter performance but also leads to a rela-
tively soft-type flutter. Additional damping devices can be very
effective for further enhancing soft-type flutter behavior �e.g.,
Chen and Kareem 2003c�. In addition, the modification of the

Fig. 8. Contributions of different force components to damping ratio
of Modal Branch 13 �Case B�
bridge cable system of a suspension bridge not only helps in
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increasing frequencies, but also has the potential to change mode
shapes that could be beneficial to increasing flutter velocity.

The proposed framework also helps to understand the relative
participation of structural modes in a multimode coupled flutter,
which can guide the selection of modes in a flutter analysis. A
mode comprised of large values of coupled aerodynamic stiffness
and damping terms with the fundamental torsional mode, which
are functions of flutter derivatives and modal integrals, as shown
by Eqs. �6� and �7�, is more likely to be important for coupled
flutter. Furthermore, this coupling will be enhanced when its
damping is low and its frequency is close to the torsional modal
frequency. For example, the fundamental vertical bending mode
often has a higher similarity in shape with the fundamental tor-
sional mode, which leads to larger coupled aerodynamic terms
between these two modes. Therefore, the fundamental vertical
bending mode is more likely to be coupled with the torsional
mode as compared to other higher vertical bending modes whose
mode shapes have less similarity with the fundamental torsional
mode, although their frequencies may be closer to the torsional
modal frequency. Some modes may become locally important at a
certain wind velocity range when their frequencies become close
to the torsional modal frequency. The modes that are most likely
to be excited should be considered in the analysis. The infor-
mation concerning modes that play a major role in flutter not
only helps in better understanding multimode coupled bridge
flutter, but it offers equally valuable guidance for design and in-
terpretation of wind tunnel studies using full aeroelastic bridge
models, which may only be able to replicate a limited number of
selective modes of the prototype bridge due to difficulties in
model fabrication.

Influence of Intermodal Coupling
on Torsional Flutter

Fig. 9 shows the predicted frequencies and damping ratios
of Modal Branches 3, 10, and 13 for the cable-stayed bridge with
the bluff deck section �Case B�. As shown in Fig. 1�b�, Mode 10
is the second symmetric lateral bending mode with coupled
motion in torsion. The values of modal integrals of Mode 10 are:
Gpipi

=0.4051, bGpi�i
=0.0019, and b2G�i�i

=0.1170. The damping
ratio of Mode 10 is also assumed to be 0.0032. The results for
cases that include and ignore intermodal coupling are compared
here. Without the consideration of intermodal coupling, the action
of the single Mode 13 leads to a torsional flutter beyond 69.6 m/s
and the action of the single Mode 10 develops a torsional flutter
exceeding 74.3 m/s. The aerodynamic damping of Mode 10 is
very low due to low aerodynamic damping force introduced by
Adii= �2k2�b2A3

*G�i�i
as compared to Mode 13. With the consider-

ation of intermodal coupling, the curve veering of the frequency
and damping loci of Modal Branches 10 and 13 is observed
around 80 m/s where these two modal frequencies are close to
each other. The curve veering is due to strong interactions of these
two modes �Chen and Kareem 2003d�. These two modal branches
continuously exchange their properties as these experience veer-
ing action. As shown in Table 1, at the end of the veering action,
Modal Branch 13 becomes dominated by structural Mode 10, and
Modal Branch 10 is dominated by structural Mode 13. Based
on Eqs. �6� and �7� and consideration of only flutter derivatives
Hi

*, Ai
*, �i=1,2 ,3 ,4�, the coupled stiffness and damping terms

involving Modes 10 and 13 are given by Asij = �2k2�b2A3
*G�i�i

and
Adij = �2k2�b2A2

*G�i�j
with b2G�i�j

=−0.4892. Based on the expres-

sion for the amplitude ratio, it is clear that the coupling between
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Modes 10 and 13 becomes significant only in the region where
their frequencies are close to each other, as indicated in Table 1.
This strong intermodal coupling results in a negative peak in the
damping loci of Modal Branch 13 around 80 m/s. The flutter
onset velocities for these two branches are 58.7 and 65.9 m/s.
These results demonstrate the importance of intermodal coupling
for the prediction of a torsional bridge flutter.

Influence of Drag Force on Flutter

While the self-excited drag force is often neglected in a flutter
analysis, it may have a notable contribution to flutter in some
cases, as observed in the case of the Akashi Kaikyo Bridge
�Miyata et al. 1994�. In the following, based on the proposed
analysis framework, clear insight into this important issue is
offered.

The following discussion focuses on the contribution of drag
damping force related to P1

*=−2CD /k �where CD=0.2�static drag
force coefficient�. Based on Eqs. �6� and �7�, the inclusion of P1

*

only affects the damping terms involving Modes 10 and 13 as

Table 1. Amplitude Ratios in Modal Branches

Modal Branch 10 Modal Branch 13

U
�m/s�

Mode
10

Mode
13

Mode
10

Mode
13

60 1.0 0.3502 0.4182 1.0

70 1.0 0.5527 0.6548 1.0

78 1.0 0.9699 0.9921 1.0

80 1.0 1.1789 1.1378 1.0

82 1.0 1.3841 1.3225 1.0

90 1.0 1.9830 2.0711 1.0

Fig. 9. Influence of intermodal coupling on torsional flutter: �a�
frequency; �b� damping ratio
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Adij = �2k2��P1
*Gpipi

+b2A2
*G�i�i

�. Fig. 10�a� shows the influence of
the drag force to the damping ratios in which coupling between
these modes is not considered. It is noted that while the additional
damping associated with the lateral motion is small, it apparently
increases the onset velocity of the torsional flutter initiated from
the single Mode 10 from 74.3 to 86.8 m/s. However, it has al-
most no influence on the torsional flutter initiated from the single
Mode 13. The influence of drag force on flutter becomes negli-
gible when the intermodal coupling of these two modes is further
considered, as shown in Fig. 10�b�.

This relative significance of different force components/flutter
derivatives can be easily clarified based on Eqs. �6� and �7� and
the framework presented in this study. The drag force may be-
come relatively important such as in the case of soft-type flutter
as demonstrated in Fig. 10�a� for Mode 10. However, the contri-
bution of drag force will remain insignificant in the cases of hard-
type flutter where aerodynamic damping generated by lift and
pitching moment rapidly develops as wind velocity increases, as
demonstrated in Fig. 10�a� for Mode 13 and in Fig. 10�b� for both
Modal Branches 10 and 13. It is important to note that the flutter
analysis framework, which offers information concerning changes
in modal frequencies and damping ratios and associated mode
shapes with increasing wind velocity, provides more valuable in-
sight into the physics of multimode coupled flutter in comparison
with the analysis that only focuses on the evaluation of flutter
onset velocity. This information also helps to better understand
the multimode coupled buffeting response of the bridge.

The importance of drag force to bridge flutter as experienced
in the Akashi Kaikyo Bridge was as a result of the unique aero-
dynamic feature of this bridge with a truss deck section. This
bridge experienced large negative angles of attack at the high
wind velocity region due to its large static drag force coefficient.
Around this statically displaced position, the lift and pitching
moment were small and the attendant aerodynamic damping

Fig. 10. Influence of drag force on flutter: �a� damping ratio �without
coupling�; �b� damping ratio �with coupling�
was low. In contrast, the drag force induced by torsional motion
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was relatively large, and its negative damping effect considerably
affected the flutter performance. However, for bridges with deck
sections that have low static drag force and large self-excited lift
and pitching moment, the contribution of self-excited drag force
is likely to be less important.

Concluding Remarks

A new analysis framework that offers closed-form expressions for
estimating modal characteristics of bimodal coupled bridge sys-
tems and for estimating onset of flutter was presented. The flutter
analysis of a cable-stayed bridge demonstrated the accuracy and
effectiveness of the proposed framework comparable to the
conventional framework using numerical complex eigenvalue
analysis. The only assumption made in the proposed framework
was low level of damping, which has also been implicitly invoked
in the modeling of the self-excited forces and analysis of bridge
flutter using conventional numerical approaches. Hence, this as-
sumption is by no means restrictive, thus the proposed framework
is applicable to a variety of bimodal coupled systems. At the
flutter onset velocity with zero damping, the proposed framework
gives the exact solution of flutter as the conventional eigenvalue
analysis because the invoked approximation vanishes.

The proposed framework offered intuitive and valuable insight
into the significance of structural and aerodynamic characteristics
of coupled bridge flutter without performing extensive numerical
parametric studies as needed in the traditional framework. It
clearly pointed to the dominant role of coupled self-excited forces
in the generation of negative damping that led to bridge flutter
instability. These insights aided in better understanding the under-
lying physics of bridge flutter and offered better measures for
tailoring of bridge deck sections and effective selection of struc-
tural systems for superior flutter performance.

The proposed framework also helped to guide in the selection
of critical structural modes in a multimode flutter analysis. A
mode comprised of large values of coupled aerodynamic stiffness
and damping terms with the fundamental torsional mode is more
likely to be important to bridge flutter. This intermodal coupling
will be enhanced when its damping is low and its frequency is
close to the torsional modal frequency. Some modes may become
locally important to flutter at a certain wind velocity region when
their frequencies fall close to the torsional mode frequency. The
understanding of modes that play a major role in flutter equally
offers valuable information for the design and interpretation of
wind tunnel studies using full aeroelastic bridge models where
only limited modes of vibration can be physically modeled.

The flutter analysis of a cable-stayed bridge with a relatively
bluff section pointed out the potential importance of intermodal
aerodynamic coupling in the prediction of torsional flutter. The
intermodal coupling may meaningfully affect the flutter onset
velocity, particularly, in soft-type flutter cases where the aero-
dynamic damping generated by the lift and pitching moment
slowly builds up with increasing wind velocity. This necessitates
the use of a multimode coupled analysis framework for the
prediction of even torsional flutter, which has been customarily
analyzed by using the traditional mode-by-mode approach.

Clear insight into the significance of different force
components/flutter derivatives such as drag force to flutter was
provided. The drag force may become relatively important for
soft-type flutter cases. However, its contribution will remain in-
significant for hard-type flutter cases where aerodynamic damping

caused by the self-excited lift and pitching moment rapidly devel-
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ops as the wind velocity increases. It was emphasized that the
flutter analysis framework that offered information concerning
delineation of changes in modal frequencies and damping ratios
and associated mode shapes with increasing wind velocity
provided more valuable insights into the underlying physics
of multimode coupled flutter as compared to the analysis that
only focused on the determination of flutter onset velocity. This
information also helps to better understand the multimode
coupled buffeting response of the bridge.
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