
Citation: Parrilla, L.; García, A.;

Castillo, E.; López-Villanueva, J.A.;

Meyer-Baese, U. Revisiting Multiple

Ring Oscillator-Based True Random

Generators to Achieve Compact

Implementations on FPGAs for

Cryptographic Applications.

Cryptography 2023, 7, 26.

https://doi.org/10.3390/

cryptography7020026

Academic Editors: Josef Pieprzyk

and Cheng-Chi Lee

Received: 13 March 2023

Revised: 27 April 2023

Accepted: 8 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Revisiting Multiple Ring Oscillator-Based True Random
Generators to Achieve Compact Implementations on FPGAs
for Cryptographic Applications
Luis Parrilla 1,* , Antonio García 1 , Encarnación Castillo 1 , Juan Antonio López-Villanueva 1

and Uwe Meyer-Baese 2

1 Departamento de Electrónica y Tecnología de Computadores, Centro de Investigación en Tecnologías de la
Información y las Telecomunicaciones CITIC-UGR, Universidad de Granada, 18071 Granada, Spain;
grios@ugr.es (A.G.); encas@ugr.es (E.C.); jalopez@ugr.es (J.A.L.-V.)

2 Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering,
Tallahassee, FL 32310-6046, USA; umb@eng.famu.fsu.edu

* Correspondence: lparrilla@ditec.ugr.es; Tel.: +34-958240482

Abstract: The generation of random numbers is crucial for practical implementations of cryptographic
algorithms. In this sense, hardware security modules (HSMs) include true random number generators
(TRNGs) implemented in hardware to achieve good random number generation. In the case of
cryptographic algorithms implemented on FPGAs, the hardware implementation of RNGs is limited
to the programmable cells in the device. Among the different proposals to obtain sources of entropy
and process them to implement TRNGs, those based in ring oscillators (ROs), operating in parallel and
combined with XOR gates, present good statistical properties at the cost of high area requirements.
In this paper, these TRNGs are revisited, showing a method for area optimization independently of
the FPGA technology used. Experimental results show that three ring oscillators requiring only three
LUTs are enough to build a TRNG on Artix 7 devices from Xilinx with a throughput of 33.3 Kbps,
which passes NIST tests. A throughput of 50 Kbps can be achieved with four ring oscillators, also
requiring three LUTs in Artix 7 devices, while 100 Kbps can be achieved using an structure with
four ring oscillators requiring seven LUTs.

Keywords: random numbers; hardware TRNGs; FPGAs; ring oscillators

1. Introduction

Random number generation is crucial for the security and applicability of crypto-
graphic algorithms and protocols. In this sense, the generation of good random numbers
has been a recurrent issue from the beginning of the development of secret- and public-key
cryptosystems, and it has become critical nowadays due to the increasing computing power
available to any attacker. From the initial development of computers, they have been a
useful tool for generating such numbers, first for scientific and statistical uses [1], and later
for cryptographic purposes [2]. Nevertheless, true random numbers cannot be generated
by means of programming, and it is required to obtain entropy sources, initially from pe-
ripherals [3] and later through the proposals of external hardware generators [4]. Currently,
computers make use of true random number generators (TRNGs) combined with determin-
istic random bit generators (DRBGs) included in external chips such as Trusted Platform
Modules (TPMs) [5,6]. In the case of embedded systems implemented on reconfigurable
logic, such as FPGAs or systems-on-chips, the usual solution is similar, combining a TRNG
followed by a pseudorandom number generator (PRNG) (or a DRBG) in order to obtain
a good trade-off between randomness, area resources, and power consumption [7,8]. In
this sense, several designs of TRNGs [9–13] and PRNGs [14–16] to be implemented on
FPGAs have been proposed. Among these proposals, those based on the use of ring oscilla-
tors (ROs) as sources of entropy combined with XOR gates to generate the final random

Cryptography 2023, 7, 26. https://doi.org/10.3390/cryptography7020026 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7020026
https://doi.org/10.3390/cryptography7020026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-8126-1146
https://orcid.org/0000-0003-3533-4660
https://orcid.org/0000-0001-6476-8105
https://orcid.org/0000-0003-0334-0863
https://orcid.org/0000-0001-8130-9963
https://doi.org/10.3390/cryptography7020026
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7020026?type=check_update&version=1

Cryptography 2023, 7, 26 2 of 14

bitstream seem to present the best statistical properties, although at the cost of high area
requirements [10]. In this work, we will analyze and propose some variants to these TRNG
implementations that are suitable to be used in cryptographic applications on FPGAs, and
we will provide a method to optimize the area and throughput of the implementation
independently of the programmable device technology/manufacturer. The rest of the
article is organized as follows: Section 2 revises previous work in the literature regarding
TRNGs implemented on FPGAs, Section 3 provides the study of bitstream generation of
basic sample ring oscillators, and Section 4 revisits multiple XORed ring oscillators in order
to achieve ultracompact TRNGs. Finally, Section 5 compares these structures to other work
in the literature, and the conclusions are provided in Section 6.

2. Previous Work

The implementation of TRNGs requires sources of entropy as generators of random-
ness, along with a distillation process to avoid weaknesses in these sources. Taking into
account the structure of FPGAs [17], the sources of entropy are usually based on ROs. In
this sense, a simple RO is built using one NOT gate, connected as in Figure 1a. This feed-
back structure oscillates at a frequency that varies significantly depending on the process
variations of the transistors in the cells where the ROs are placed when implementing the
circuit [18].

Figure 1. Single RO (a) and single RO with FF for output sampling (b).

In [19], a simplified model to estimate the delay of an RO is proposed:

dRO = dAVG + dPV + dNOISE (1)

where dAVG is the average delay of the RO, dPV is the delay component due to process
variations, and dNOISE is the delay component due to the noise generated in the logic
element. Note that dNOISE depends on multiple factors, such as temperature, humidity,
circuit activity, or side effects from the activity of neighboring cells. Therefore, this dynamic
delay is the main source of the entropy originating from the RO. The values generated at
the output of the RO need to be sampled to generate a random bitstream. The simplest
method to perform this sampling is to place a flip-flop (FF) at the output, as shown in
Figure 1b, which corresponds to the so-called SRO-FF structure. In this case, the clock
input of the FF acts as a sampling signal, at frequency fsamp, being fRO >> fsamp. If the
clock signal is decorrelated from the output of the RO, dNOISE presents enough variability
(the other delays will remain relatively invariant, as the SRO-FF is implemented in only
one logic element, LE), a random bitstream will be obtained. However, the variability of
dNOISE may be not enough to avoid pattern repetitions due the periodicity of the clock
and RO output signals. A proposal to overcome this issue is presented in [20], where
a second RO (RO2) is used to generate the sampling signal. The output signal of RO2
(rclock) feeds a frequency divider in order to maintain the relation fRO >> fsamp. This
structure is known as ERO-TRNG [10], and it should be noted that it presents a limitation
in the throughput of the RNG, as the output of the frequency divider is used as the clock
signal for the system processing the bitstream. Another alternative consists of the structure
shown in Figure 2, where the sampling clock signal is generated from two ROs [21], but
it has strict requirements in the maximum delay between the two RO feed signals, thus
making it necessary to manually place and route them [10]. The use of several ROs acting in

Cryptography 2023, 7, 26 3 of 14

parallel and feeding a XOR gate is proposed in [22] and reproduced in Figure 3. This is an
interesting proposal, because the use of several ROs in parallel introduces more variability,
as we will also have different dAVG and dPV values for each RO. On the other hand, in [23];
it is reported that a problem can arise if the XOR gate cannot change its output at the same
rate that ROs are changing their states. In this same work, the introduction of a flip-flop
between each RO and the input of the XOR gate, thus controlling the input rate to the XOR
gate, is proposed to overcome this issue. Other solution was recently proposed in [13],
consisting of introducing a latch in the feedback path of each RO. Although these solutions
introduce some limitations in the throughput, the additional variability provided by the
parallelism of the structure enables compact implementations of TRNGs, as will be studied
in Section 4.

Figure 2. TRNG generator proposal from [21] (COSO-TRNG).

Figure 3. TRNG generator proposal from [22], without latches.

3. Study of a Basic Sampled RO

As a previous step to building compact TRNGs with multiple ring oscillators, we
will carry out a detailed study of a basic RO sampled with a D flip-flop. As in the rest of
studies presented in this work, the sampled outputs of the entropy source will be sent to a
microprocessor-based platform, named Dracon [24]. This platform is in charge of collecting
and sending the generated numbers to a personal computer (PC) to be statistically analyzed,
as shown in Figure 4. Additionally, as the developed TRNGs are intended to be part of
a more complex system integrated into an FPGA device, we will add an xenable input
for switching off the RNG when it is not used, in order to reduce the power consumption.
Indeed, in [25], the high power consumption generated by ROs is shown, where they are
even used to generate power noise or to extract information from the inside of FPGAs [26].
The resulting structure is presented in Figure 5, and it has a single source of entropy: an
RO with two elements (the AND and NOT gates), a so-called SARO(1) (single-ANDed
ring oscillator with 1 inverter). The complete structure is then named SARO(1)-FF. For
our implementations, we used an Artix 7 device from Xilinx [27], which includes six-input
LUTs as basic logic elements, and the Vivado 2020.2 software. The exact device was an Artix
7 XC7A35T-1CPG236C on a Cmod A7-35T board from Digilent Inc., powered at 5 V from a
laboratory power supply. All the experiments were carried out at a temperature of 26 ◦C

Cryptography 2023, 7, 26 4 of 14

and a relative humidity of 33%. Since the objective was to achieve a compact TRNG with a
reasonable throughput, a sampling frequency of fsamp = 50 kHz was considered. Indeed,
50 Kbps suffices to generate the required random numbers in secure IoT applications or
other cryptographic implementations over low-cost FPGA devices, and it implies a period
long enough to accumulate the required jitter with a reduced number of inverting elements
in the RO [10]. In order to validate our results, we have generated a set of bitstreams and
have analyzed the statistical properties for their use in cryptography by means of the SP
800-22 suite [28], developed by the National Institute for Standardization (NIST). This suite
includes a set of tests to analyze the randomness of bitstreams. The purpose, parameters,
and interpretation of these tests are briefly described in the following [29]:

• Frequency test (Frequency): Analyzes the proportion of ‘0’s and ‘1’s for the entire
sequence. This proportion should be 1/2, and each sequence to be tested should have
n ≥ 100 bits.

• Frequency Test within a Block (Block Frequency): Analyzes the proportion of ‘0’s and
‘1’s within M-bit blocks. In this case, n should be n ≥ 100 bits, and the block size M
should be such that M ≥ 20, M > 0.01n, and N < 100, where n = M · N.

• Cumulative Sums Test (Cumulative Sums): This test analyzes whether the cumulative
sum of the partial sequences occurring in the tested sequence is too large or too small
relative to the expected behavior. This test has two modes, depending on whether it is
applied forward or backward through the input sequence. In this test, n should be
n ≥ 100 bits.

• Runs Test (Runs): Analyzes the total number of “runs” in the sequence, where a run
is a sequence of k identical bits. The purpose of this test is to determine whether the
oscillation between ‘0’s and ‘1’s is too fast or too slow. The length of the sequence to
analyze should be n ≥ 100 bits.

• Test for the Longest Run of Ones in a Block (Longest Run): This test analyzes the
longest run of ones within MLR-bit blocks, thus determining whether the length of the
longest “run” of ‘1’s within the tested sequence corresponds to what is expected in a
random sequence. It uses three preset values for M in terms of the number of bits n of
the sequence: MLR = 8 when 128 ≤ n < 6272, MLR = 128 when 6272 ≤ n <750,000,
and MLR = 104 when n ≥ 750,000.

• Binary Matrix Rank Test (Rank): This test analyzes the linear dependence among
fixed-length subsequences by determining the rank of disjoint submatrices of the
entire sequence. The length of the sequence to analyze should be n ≥ 38,912 bits.

• Discrete Fourier Transform Test (FFT): This test detects periodic features in the se-
quence by applying the Discrete FFT. The length of the sequence to be analyzed should
be n ≥ 1000 bits.

• Non-overlapping Template Matching Test (Non Overlapping): This test analyzes
the number of occurrences of prespecified subsequences in order to detect too many
occurrences of a given nonperiodic pattern. If the pattern is not found, the window
slides one bit. For this test, the length of the templates should be mNO = 9 or
mNO = 10, and the length of the entire sequence, n, should be such that NNO ≤ 100
(NNO = 8 is recommended), MNO > 0.01n, and NNO = bn/MNOc.

• Overlapping Template Matching Test (Overlapping): This test is similar to the previous
one, but in this case, the window slides when the pattern is found. For this test, the
length of the templates should be mO = 9 or mO = 10, and the length of the entire
sequence should be n ≥ 106.

• Maurer’s “Universal Statistical” Test (Universal): This test analyzes whether the
sequence can be significantly compressed without loss of information. In that case, the
sequence is considered not random. For this test, the sequence is divided into L-bit
blocks, recommended to be 6 ≤ L ≤ 16, and n ≥ 387,840. The concrete value of L
depends on n, as specified in [29].

Cryptography 2023, 7, 26 5 of 14

• Approximate Entropy Test (Approximate Entropy): This test analyzes the frequency
of all possible overlapping me-bit patterns across the entire sequence. For this test, n
and me should be such that me < blog2(n)c − 5.

• Random Excursions Test (Random Excursions): This test analyzes the number of
cycles having a given number of visits in a cumulative sum random walk. A cycle
of a random walk consists of a sequence of random steps of unit length that begin at
and return to the origin. This test is composed of a series of eight tests, and it requires
n ≥ 106.

• Random Excursions Variant Test (Random Excursions Variant): This test analyzes the
total number of times that a particular state is visited in a cumulative sum random
walk. This test is composed of a series of eighteen tests, and it requires n ≥ 106.

• Serial Test (Serial): In this test, the frequency of all possible overlapping mS-bit patterns
across the entire sequence is analyzed. n and ms should be such that ms < blog2(n)c − 2.

• Linear Complexity Test (Linear): In this test, linear-feedback shift registers (LFSRs)
of length ML are built to check the linear complexity of the generated sequence. For
this test, ML must be in the range of 500 ≤ ML ≤ 5000, and the length of the entire
sequence should be n ≥ 106.

Additionally, in [29], it is established that the p-value must be >0.01 to accept the
hypothesis of randomness, and a minimum of “55 bitstreams should be processed to derive
statistically meaningful results for the uniformity of p-values”. Taking all of the above
into account, we generated 125 bitstreams of 1,500,000 bits, each with the following set of
values for the required parameters: n = 1.5× 106, M = 30,000, mNO = 9, mO = 9, me = 10,
ms = 16, ML = 500.

Table 1 presents the results obtained for SARO(1)-FF, showing that it does not pass
NIST tests when operating at a sampling frequency of fsamp = 100 kHz. The limited
variability introduced by only one RO and the high sampling frequency used produce a
significant difference between the number of ‘1’s and ‘0’s generated, thus not passing the
frequency-based tests. Moreover, a high sampling frequency generates a series of repeated
‘0’s and ‘1’s, thus not passing tests such as “Runs”. If we decrease the sampling frequency,
it is possible to improve the test performance, thus obtaining the results in Table 2 for
fsamp = 50 kHz.

Figure 4. Experimental setup for testing different TRNG structures.

Figure 5. Single-ANDed RO with enable and flip-flop for sampling.

Cryptography 2023, 7, 26 6 of 14

Table 1. NIST SP800-22A test results for SARO(1)-FF at fsamp = 100 kHz.

Test Name p-Value Pass-Rate 1 Result

Frequency 0.000000 0% 8

Block Frequency 0.000000 1% 8

Cumulative Sums 2 [0.000000, 0.000000] [0, 0]% 8

Runs 0.000000 0% 8

Longest Run 0.000000 0% 8

Rank 0.153763 99% 3

FFT 0.000000 68% 3

Non Overlapping 2 [0.000000, 0.911413] [0, 100]% 8

Overlapping 0.000000 2% 8

Universal 0.017912 98% 3

Approximate Entropy 0.000000 89% 8

Random Excursions 2 — — 8

Random Excursions Variant 2 — — 8

Serial 2 [0.000000, 0.699313] [89, 98]% 8

Linear Complexity 0.137282 98% 3

1 Worst allowed pass rate is 96%. 2 These tests are compounds of several subtests; the range of p-values and pass
rates is provided.

Table 2. NIST SP800-22A test results for SARO(1)-FF at fsamp = 50 kHz.

Test Name p-Value Pass-Rate 1 Result

Frequency 0.000000 6% 8

Block Frequency 0.000000 66% 8

Cumulative Sums 2 [0.000000, 0.000000] [6, 6]% 8

Runs 0.000000 38% 8

Longest Run 0.330628 98% 3

Rank 0.311542 99% 3

FFT 0.199580 96% 3

Non Overlapping 2 [0.000006, 0.980883] [93, 100]% 8

Overlapping 0.000003 100% 8

Universal 0.013808 98% 3

Approximate Entropy 0.000398 98% 3

Random Excursions 2 — — 8

Random Excursions Variant 2 — — 8

Serial 2 [0.151616, 0.894201] [98, 98]% 3

Linear Complexity 0.739918 100% 3

1 Worst allowed pass rate is 96%. 2 These tests are compounds of several subtests; the range of p-values and pass
rates is provided.

The situation has thus been improved, but the asymmetry of the signal generated by a
single RO makes it impossible to pass any frequency-based test. Moreover, the behavior of
each RO depends on the process parameters of each transistor, which are different for each
LUT used for its implementation and, of course, for each device. In this sense, we performed
experiments with different placements in the same device, as well as using different devices,
obtaining significant deviations in the probability of generating ‘0’s and ‘1’s by a SARO.
These deviations sometimes imply P(0) > P(1), and others P(1) > P(0). The maximum
deviation we measured for SARO(1)-FF at 50 kHz was ∆P(0) = |P(0)− 1/2| = 0.0034,
i.e., 0.34%, as shown in Table 3. Note that since P(0) + P(1) = 1, ∆P(1) = ∆P(0). This
deviation can be alleviated by using two SAROs in parallel and combining the two outputs
by means of an XOR gate [22], as will be studied in the next section. Regarding the number
of inverting elements k in a SARO(k)-FF, we observed that SARO(0)-FF (just a NAND gate)
provides bad results in terms of frequency tests due to the lack of stabilization of high
and low levels at the NAND output. If the length is increased, the results in Table 3 show
better values for ∆P(0), at the cost of a lower throughput (the oscillation frequency of the
resulting RO is lower). In column k, the type of gate used for enabling or disabling each

Cryptography 2023, 7, 26 7 of 14

RO (AND or NAND), as well as the number of NOT gates in the ROs, are specified in
parentheses. Note that SARO(k)-FF requires k + 1 LUTs and 1 FF to be implemented in an
Artix-7 device, as pointed out in the LUTs+FF column in Table 3.

Table 3. Probability deviation for SARO(k)-FF ring oscillators at fsamp = 50 kHz (k is the number of
inverting elements).

Design k LUTs + FFs ∆P(0) E(∆P(0))

SARO(0)-FF 0 (1 NAND, 0 NOT) 1 + 1 21.1× 10−3 20.4× 10−3

SARO(1)-FF 1 (1 AND, 1 NOT) 2 + 1 3.4× 10−3 2.1× 10−3

SARO(2)-FF 2 (1 NAND, 2 NOT) 3 + 1 3.5× 10−3 2.0× 10−3

SARO(3)-FF 3 (1 AND, 3 NOT) 4 + 1 3.7× 10−3 3.6× 10−3

On the other hand, at a sampling frequency of fsamp = 50 kHz, SARO(2)-FF or SARO(3)-
FF do not present advantages with respect to SARO(1)-FF, thus SARO(1)-FF will be the basic
RO that we will be consider for building multiple SAROs in order to carry out compact
structures passing NIST tests.

4. Multiple XORed Ring Oscillators

As outlined in the previous section, asymmetry in the probabilities of obtaining a ‘0’
or a ‘1’ at the output of a SARO(k)-FF can be compensated using an XOR gate. Indeed, if
we consider a two-input XOR gate and let P(i0 = 0) and P(i1 = 0) be the probabilities
of having a ‘0’ at inputs i0 and i1 of the XOR gate, respectively, while P(i0 = 1) and
P(i1 = 1) are the probabilities of having ‘1’ at those same inputs, respectively, we find that
the probabilities of obtaining a ‘0’ at the output will be

P(o = 0) = P(i0 = 0)P(i1 = 0) + P(i0 = 1)P(i1 = 1) (2)

As an example, if P(i0 = 0) = P(i1 = 0) = 0.6, we will have P(o = 0) = 0.52, which
improves the tendency of generating more ‘0’s than ‘1’s by the two SAROs feeding a 2-input
XOR gate. The expected deviation is then ∆P2(o = 0) = 0.02, a 2%, which is excessive for
passing any frequency test. In the case of considering a N-input XOR gate, and assuming
that P(i0 = 0) = P(i1 = 0) = . . . = P(iN−1) , P(0), consequently (P(i0 = 1) = P(i1 = 1) =
. . . = P(iN−1 = 1) , P(1), and then the probability PN(o = 0) can be computed as

PN(o = 0) =
b(N−1)/2c

∑
k=0

(
N

(N − 2k)

)
· P(0)(N−2k)P(1)2k (3)

If we represent the deviation ∆PN(o = 0) = |PN(o = 0)− 1/2| as a function of N for
P(0) = 0.60, the graph in Figure 6a is obtained.

Figure 6b presents the same graph, but in logarithmic scale, showing a clear linear
relationship. As a consequence, it can be written as:

∆PN(o = 0) = aebN (4)

where a and b can be determined by linear regression or analytically. Indeed,

a =
∆P2

1 (o = 0)
∆P2(o = 0)

b = ln
(

∆P2(o = 0)
∆P1(o = 0)

) (5)

Cryptography 2023, 7, 26 8 of 14

where

∆P1(o = 0) = |P(0)− 1/2| , ∆P(0)

∆P2(o = 0) = |P2(o = 0)− 1/2| = |2P(0)2 − 2P(0) + 1/2|
(6)

(a) (b)
Figure 6. ∆PN(0) as a function of N for P(0) = 0.6 in linear (a) and logarithmic (b) scales.

The exponential dependency of ∆PN(o = 0) with N implies that an XOR gate with
a high number of inputs (and therefore, a high number or SAROs) is not required to
compensate for the generation probabilities of the ‘0’s and ‘1’s. The structure for building
and testing such TRNGs for different values of N is shown in Figure 7. This structure is
basically the one presented in [10], where it is called MURO, and which, in turn, is based
on [22]. Only one difference is introduced: sampling is performed by a well-defined clock
source instead of using a RO for this task, as in [23] (however, this structure does not
include the enable signal). Although it reduces variability at the output of the structure, it
enables its behavior to be studied in terms of the sampling frequency.

Figure 7. Multiple XORed SARO(1)-FF with enable and sampling flip-flop.

Using this structure, which we have named Multiple XORed SARO(k)-FF with N ROs
(MX-N-SARO(k)), we performed the generation of bitstreams for different values of N. In
our experiments, the maximum deviation measured with a single SARO at 50 kHz was
∆P(0) = 3.34× 10−3, and in this case, theoretically, from Equations (4) and (6) for N = 2,
it would be ∆P2(o = 0) = 2.31× 10−5. However, the maximum measured deviation was
∆P2(o = 0) = 3.34× 10−3 (E(∆P2(o = 0)) = 2.2× 10−4) at 50 kHz. This indicates that a
single SARO(1)-FF can present a deviation of around 3.5% in Artix 7 devices. Therefore,

Cryptography 2023, 7, 26 9 of 14

we consider ∆P(0) = 0.1 for our estimations. Figure 8 shows deviations for several values
of ∆P(0), where it can be noted that considering a maximum deviation in a SARO(1)-FF
of ∆P(0) ≤ 0.1, minimum values of N of 4 or 5 are required in order to obtain acceptable
statistical results. It is also interesting to note that an increase of 5% in ∆P(0) implies a
significant increase in the number of inputs of the XOR gate required for achieving the
deviations below 10−3. Indeed, Figure 9 shows an exponential dependence of N with
∆P(0) for maintaining a maximum deviation PN(o = 0) ≤ 10−3. As ∆P(0) depends on
the characteristic delay of LUTs, and this delay depends on the FPGA technology used,
different types of FPGA can lead to quite different minimum N values for passing NIST
tests at a given sampling frequency. As an example, Spartan 6 (45nm technology) grade-3
devices from Xilinx report a delay of 0.21 ns from An-Dn LUT inputs to A-D outputs [30],
while Artix 7 (28 nm technology) grade-3 devices report a delay of 0.10 ns between the
same points [31]. This directly affects the time required for generating variability in these
delays at a given sampling frequency, and consequently, ∆P(0) at this frequency.

Figure 8. Deviation for different ∆P(0) values.

Figure 9. Plot of N against ∆P(0) to achieve ∆PN(0) ≤ 10−3.

In order to pass NIST tests for the Artix 7 device used in this work, if we introduce
the experimental values obtained for P(0) and introduce them in Equations (4)–(6), we
can see that N = 3 implies a deviation of ∆P3(0) = 5× 4× 10−3 at fsamp = 50 KHz, which
is in the limit of passing NIST frequency-based tests. In the case of N = 4, we obtain

Cryptography 2023, 7, 26 10 of 14

∆P4(0) = 1.1× 10−3 at fsamp = 50 kHz, while theoretically, it should be around 0.8× 10−3.
Table 4 shows the NIST test results for this sampling frequency and parameters.

Table 4. NIST SP800-22A test results for MX-4-SARO(1) at fsamp = 50 kHz.

Test Name p-Value Pass-Rate 1 Result

Frequency 0.001112 100% 3

Block Frequency 0.289667 98% 3

Cumulative Sums 2 [0.249284, 0.834308] [100, 100]% 3

Runs 0.987896 99% 3

Longest Run 0.383827 99% 3

Rank 0.798139 99% 3

FFT 0.319084 99 % 3

Non Overlapping 2 [0.000134, 0.991468] [96, 100]% 3

Overlapping 0.678686 99% 3

Universal 0.637119 98% 3

Approximate Entropy 0.334538 98% 3

Random Excursions 2 [0.009535, 0.924076] [96, 100]% 3

Random Excursions Variant 2 [0.055361, 0.946308] [98, 100]%% 3

Serial 2 [0.040108, 0.739918] [99, 100]% 3

Linear Complexity 0.145326 100% 3

1 Worst allowed pass rate is 96%. 2 These tests are compounds of several subtests; the range of p-values and pass
rates is provided.

As has been presented, increasing the values of N will improve frequency-based tests,
but at the cost of an area increase. In order to achieve more compact implementations,
we have explored decreasing N and k. To achieve an implementation passing NIST tests
with N = 3, the sampling frequency needs to be decreased. Table 5 shows different
implementations and sampling frequencies for MX-N-SARO(k). Note that it is possible
to build a TRNG with N = 3 using SARO(1)-FF at a 33 kHz sampling frequency, and that
N = 4 enables there to be TRNGs with a throughput of 100 Kbps (MX-4-SARO(1)) and a
compact implementation requiring only four LUTs (MX-4-SARO(0)) in Artix 7 devices.

Table 5. Implementation results MX-NSARO(k) of for different values of N and fsamp.

Design fsamp N LUTs FFs Slices NIST Tests

MX-3-SARO(0) 50 kHz 3 3 4 1 8

MX-3-SARO(0) 40 kHz 3 3 4 1 8

MX-3-SARO(1) 33 kHz 3 3 4 1 3

MX-4-SARO(0) 50 kHz 4 3 5 2 3

MX-4-SARO(1) 50 kHz 4 7 5 2 3

MX-4-SARO(1) 100 kHz 4 7 5 2 3

The area results regarding MX-4-SARO(0) from Table 5 require a detailed explanation.
Indeed, since a SARO(0)-FF includes a NAND gate, MX-4-SARO(0) is expected to require
at least five LUTS: one LUT per two-input NAND gate and one LUT for the four-input
XOR gate. Nevertheless, in seven-series devices from Xilinx, each six-input LUT has
two independent outputs, named O5 and O6 [32], thus being possible to implement the
four SARO(0)-FFs in only two LUTs, as well as the four-input XOR in an additional LUT.
Figure 10 shows the mapping of MX-4-SARO(0) requiring three LUTs and five FFs. Similarly,
MX-4-SARO(1) can be implemented using seven LUTs. Note that MX-3-SARO(1) fits in
one slice, while MX-SARO(0) and MX-4-SARO(1) require two slices due to the five FFs to
be placed.

Cryptography 2023, 7, 26 11 of 14

Figure 10. Place and route for MX-4-SARO(0) in Artix-7 devices.

From the results above, and taking into account Equations (4) and (6), it is possible to for-
mulate a procedure to design and implement a TRNG based on the MX-N-SARO(k) structure:

1. Implement a SARO(1)-FF ring oscillator operating at the target sampling frequency
corresponding to the desired throughput, following the scheme in Figure 5.

2. Capture a bitstream with a statistically significant size (n ≥ 106), and analyze the
frequency of ‘0’s and ‘1’s. The frequency test from the NIST suite can be used for this
purpose. From this analysis, estimate the deviation probability of ‘0’s, ∆P(0).

3. Use Equations (4)–(6) to estimate N.
4. Implement MX-N-SARO(1) and perform NIST tests following the recommendations

described in [29] and summarized in Section 3.
5. In case NIST tests are not passed, increment N and go to 4.

This procedure enables compact TRNGs to be implemented on different FPGA tech-
nologies, optimizing the number of tries to achieve a low-cost design passing NIST tests.

5. Comparison to Other TRNGs for FPGAs

As commented in Section 2, there are several proposals of TRNGs in the literature,
mainly oriented to achieve high-throughput figures. In the case of systems with restrictions
on area and/or performance, as is the case for Internet of Things (IoT) devices implemented
on low-cost FPGAs, including cryptographic operations, the generation of 50 Kbps random
streams is enough for the majority of applications. In this sense, our designs provide very
compact TRNGs while ensuring randomness of the generated bitstreams. Table 6 presents
a comparison of MX-N-SARO(k) to other compact implementations in the literature. In
all cases, although they show contained area requirements, they are oriented to high-
performance systems, where a large number of random numbers are required to be available
continuously.

In this sense, the design in [33] proposes the use of a set of multiple XORed ROs,
followed by postprocessing based on a von Neumann corrector to improve entropy and
statistical figures. As a result, it can achieve a throughput of 6 Mbps on a Spartan 3A
device, from Xilinx Inc. at the cost of 528 LUT4s (Spartan 3A devices include 4-input
LUTS). In the case of [34], a different approach is used based on self-timed rings (STRs),
and controlling dephases with the digital clock management (DCM) features included
in Xilinx’s FPGAs. The results show a high throughput, 100 Mbps, with contained area

Cryptography 2023, 7, 26 12 of 14

requirements of 56 LUTs and 16 FFs on a Virtex 6 device, but in any case, this is far from the
area figures presented in this work. Regarding [35], this is also a high-throughput oriented
TRNG, based on the use of DCMs to generate metastability, and bit-flipping postprocessing,
which enables the improvement of throughput and area with respect to [34], requiring
around 38 LUTs on Zynq devices. The work in [23] proposes two designs based on multiple
XORed ROs, one with 25 ROs and the other one with 50 ROs, both implemented on Cyclone
II devices from Intel. These designs can operate with a throughput of 100 Mbps, at the cost
of more area requirements. In addition to the designs presented in Table 6, the proposal
in [13] reports area requirements of four LUTs, similar to our proposal, but the required
control logic is not included in those results, and it does not pass NIST tests in all cases [35].
For these reasons, it has not been included in Table 6. Regarding power consumption, the
reduced number of ROs required by our proposal enables a contained power consumption
of only 25 mW in the case of MX-3-SARO(1), and around 40 mW in the case of our designs
with four ROs. These figures are clearly better than those carried out by the other works in
Table 6, except in the case of [34]. Nevertheless, it should be noted that our results were
obtained through a detailed analysis of the synthesized circuits using a N6705C DC Power
Analyzer from Keysight, while the result in [34] is an estimation provided by the ISE design
tools from Xilinx. This estimation may be not reliable due to the difficulty that software
tools have to estimate power consumption in feedback structures, as is the case of ROs.

Table 6. Comparison to other TRNGs on FPGAs passing NIST tests.

Design Throughput LUTs Power
Consumption Device

[33] 6 Mbps 528 (LUT4) - Spartan 3A
[34] 100 Mbps 56 1.5 mW * Virtex 6
[35] 300 Mbps 38 119 mW Zynq 7000

[23] (25 ROs) 100 Mbps 83 (LUT4) - Ciclone II
[23] (50 ROs) 100 Mbps 167 (LUT4) - Ciclone II

MX-4-SARO(1) 100 Kbps 7 41 mW Artix 7
MX-4-SARO(0) 50 Kbps 3 40 mW Artix 7
MX-3-SARO(1) 33 Kbps 3 25mW Artix 7

* Estimation carried out by ISE design tools by Xilinx.

6. Conclusions

In this work, the design of true random number generators for FPGAs based on
multiple XORed ring oscillators has been revisited. Traditionally, in this type of design,
a large quantity of parallel ring oscillators are used to achieve enough entropy and to
pass the NIST SP 800-22 test suite, thus resulting in high area requirements. Our proposal
shows that it is possible to pass NIST tests with a low number of ring oscillators when
the sampling frequency is reduced, thus enabling the implementation of ultracompact
TRNGs on low-cost FPGAs. Concretely, a design with three ring oscillators, requiring only
three LUTs in Xilinx’s Artix 7 devices and providing a random bitstream at 33 Kbps, was
implemented. With four ring oscillators of the MX-4-SARO(0) type, which also require
three LUTs on Artix 7 devices, it is possible to achieve a throughput of 50 Kbps, while
MX-4-SARO(1) achieves 100 Kbps, requiring only seven LUTs. Moreover, a procedure
to migrate the designs to other FPGA technologies, optimizing the number of designs to
test, was carried out. Finally, it should be noted that although the throughput presented
by our designs is lower than other proposals in the literature, the area requirements are
minimal, thus enabling their implementation on low-cost FPGAs for implementing secure
IoT devices, including cryptographic algorithms.

Cryptography 2023, 7, 26 13 of 14

Author Contributions: Conceptualization, L.P. and A.G.; methodology, L.P., A.G. and U.M.-B.; soft-
ware, L.P. and J.A.L.-V.; validation, L.P., E.C. and A.G.; formal analysis, L.P. and J.A.L.-V.; investigation,
L.P.; resources, L.P. and E.C.; data curation, L.P. and J.A.L.-V.; writing—original draft preparation,
L.P., A.G. and U.M.-B.; writing—review and editing, L.P., A.G., E.C. and U.M.-B.; visualization, L.P.
and A.G.; supervision, L.P.; project administration, L.P.; funding acquisition, L.P. and E.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by FEDER/Junta de Andalucía-Consejería de Transformación
Económica, Industria, Conocimiento y Universidades/Proyecto B-TIC-588-UGR20.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hull, T.E.; Dobell, A.R. Random number generators. SIAM Rev. 1962, 4, 230–254. [CrossRef]
2. Bright, H.S.; Enison, R.L. Quasi-random number sequences from a long-period TLP generator with remarks on application to

cryptography. Acm Comput. Surv. (CSUR) 1979, 11, 357–370. [CrossRef]
3. Gutmann, P. Software Generation of Practically Strong Random Numbers. In Proceedings of the Usenix Security Symposium

1998, San Antonio, TX, USA, 26–29 January 1998.
4. Jun, B.; Kocher, P. The Intel Random Number Generator. Cryptography Research, Inc. White Paper Prepared for Intel

Corporation. 1999; Volume 27, pp. 1–8. Available online: https://www.rambus.com/wp-content/uploads/2015/08/IntelRNG.
pdf (accessed on 9 May 2023).

5. Raj, H.; Saroiu, S.; Wolman, A.; Aigner, R.; Cox, J.; England, P.; Fenner, C.; Kinshumann, K.; Loeser, J.; Mattoon, D.; et al. ftpm: A
Firmware-Based tpm 2.0 Implementation. Microsoft Research 2015. 23p. Available online: https://www.microsoft.com/en-us/
research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/ (accessed on 9 May 2023).

6. Tidrea, A.; Korodi, A.; Silea, I. Cryptographic considerations for automation and SCADA systems using trusted platform modules.
Sensors 2019, 19, 4191. [CrossRef]

7. Morán, A.; Parrilla, L.; Roca, M.; Font-Rosselló, J.; Isern, E.; Canals, V. Digital implementation of Radial Basis Function Neural
Networks based on Stochastic Computing. IEEE J. Emerg. Sel. Top. Circuits Syst. 2023, 13, 257–269. [CrossRef]

8. Parrilla, L.; Castillo, E.; López-Ramos, J.A.; Álvarez-Bermejo, J.A.; García, A.; Morales, D.P. Unified compact ECC-AES co-
processor with group-key support for IoT devices in wireless sensor networks. Sensors 2018, 18, 251. [CrossRef]

9. Fischer, V.; Bernard, F.; Bochard, N.; Varchola, M. Enhancing security of ring oscillator-based TRNG implemented in FPGA.
In Proceedings of the 2008 International Conference on Field Programmable Logic and Applications, Heidelberg, Germany,
8–10 September 2008; pp. 245–250.

10. Petura, O.; Mureddu, U.; Bochard, N.; Fischer, V.; Bossuet, L. A survey of AIS-20/31 compliant TRNG cores suitable for
FPGA devices. In Proceedings of the 2016 26th International Conference on Field Programmable Logic and Applications (FPL),
Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–10.

11. Sivaraman, R.; Rajagopalan, S.; Amirtharajan, R. FPGA based generic RO TRNG architecture for image confusion. Multimed.
Tools Appl. 2020, 79, 13841–13868. [CrossRef]

12. Xu, X.; Wang, Y. High speed true random number generator based on FPGA. In Proceedings of the 2016 International Conference
on Information Systems Engineering (ICISE), Los Angeles, CA, USA, 20–22 April 2016; pp. 18–21.

13. Della Sala, R.; Bellizia, D.; Scotti, G. A novel ultra-compact FPGA-compatible TRNG architecture exploiting latched ring oscillators.
IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 1672–1676. [CrossRef]

14. Syafalni, I.; Jonatan, G.; Sutisna, N.; Mulyawan, R.; Adiono, T. Efficient homomorphic encryption accelerator With integrated
PRNG using low-cost FPGA. IEEE Access 2022, 10, 7753–7771. [CrossRef]

15. Bakiri, M.; Guyeux, C.; Couchot, J.F.; Oudjida, A.K. Survey on hardware implementation of random number generators on FPGA:
Theory and experimental analyses. Comput. Sci. Rev. 2018, 27, 135–153. [CrossRef]

16. Isaacs, J.C.; Watkins, R.K.; Foo, S.Y. Cellular automata PRNG: Maximal performance and minimal space FPGA implementations.
Eng. Appl. Artif. Intell. 2003, 16, 491–499. [CrossRef]

17. Amano, H. Principles and Structures of FPGAs; Springer: Cham, Switzerland, 2018.
18. Vasyltsov, I.; Hambardzumyan, E.; Kim, Y.S.; Karpinskyy, B. Fast digital TRNG based on metastable ring oscillator. In Proceedings

of the Cryptographic Hardware and Embedded Systems–CHES 2008: 10th International Workshop, Washington, DC, USA,
10–13 August 2008; Springer: Cham, Switzerland, 2008; pp. 164–180.

19. Maiti, A.; Casarona, J.; McHale, L.; Schaumont, P. A large scale characterization of RO-PUF. In Proceedings of the 2010 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 13–14 June 2010; pp. 94–99.

20. Baudet, M.; Lubicz, D.; Micolod, J.; Tassiaux, A. On the security of oscillator-based random number generators. J. Cryptol. 2011,
24, 398–425. [CrossRef]

21. Kohlbrenner, P.; Gaj, K. An embedded true random number generator for FPGAs. In Proceedings of the 2004 ACM/SIGDA 12th
International Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2004; pp. 71–78.

http://doi.org/10.1137/1004061
http://dx.doi.org/10.1145/356789.356795
https://www.rambus.com/wp-content/uploads/2015/08/IntelRNG.pdf
https://www.rambus.com/wp-content/uploads/2015/08/IntelRNG.pdf
https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/
https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/
http://dx.doi.org/10.3390/s19194191
http://dx.doi.org/10.1109/JETCAS.2022.3231708
http://dx.doi.org/10.3390/s18010251
http://dx.doi.org/10.1007/s11042-019-08592-z
http://dx.doi.org/10.1109/TCSII.2021.3121537
http://dx.doi.org/10.1109/ACCESS.2022.3143804
http://dx.doi.org/10.1016/j.cosrev.2018.01.002
http://dx.doi.org/10.1016/j.engappai.2003.08.005
http://dx.doi.org/10.1007/s00145-010-9089-3

Cryptography 2023, 7, 26 14 of 14

22. Sunar, B.; Martin, W.J.; Stinson, D.R. A provably secure true random number generator with built-in tolerance to active attacks.
IEEE Trans. Comput. 2006, 56, 109–119. [CrossRef]

23. Wold, K.; Tan, C.H. Analysis and enhancement of random number generator in FPGA based on oscillator rings. Int. J.
Reconfigurable Comput. 2009, 2009, 4. [CrossRef]

24. Parrilla, L.; García, A.; Castillo, E.; Álvarez-Bermejo, J.A.; López-Villanueva, J.A.; Meyer-Baese, U. Dracon: An Open-Hardware
Based Platform for Single-Chip Low-Cost Reconfigurable IoT Devices. Electronics 2022, 11, 2080. [CrossRef]

25. Parrilla, L.; García, A.; Castillo, E.; Rodríguez-Bolívar, S.; López-Villanueva, J.A. Time-and Amplitude-Controlled Power Noise
Generator against SPA Attacks for FPGA-Based IoT Devices. J. Low Power Electron. Appl. 2022, 12, 48. [CrossRef]

26. Parrilla, L.; Castillo, E.; Todorovich, E.; Morales, D.; Botella, G.; Garcia, A. Improvements for the applicability of power-
watermarking to embedded IP cores protection: E-coreIPP. Digit. Signal Process. 2015, 44, 110–122. [CrossRef]

27. Xilinx Inc. 7 Series FPGAs Family Overview. Available online: https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview
(accessed on 18 April 2022).

28. Pareschi, F.; Rovatti, R.; Setti, G. On statistical tests for randomness included in the NIST SP800-22 test suite and based on the
binomial distribution. IEEE Trans. Inf. Forensics Secur. 2012, 7, 491–505. [CrossRef]

29. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications; Technical Report; Booz-Allen and Hamilton Inc.: Mclean, VA, USA, 2001.

30. Xilinx Inc. Spartan-6 FPGA Data Sheet: DC and Switching Characteristics. Available online: https://docs.xilinx.com/v/u/en-
US/ds162 (accessed on 18 April 2023).

31. Xilinx Inc. Artix-7 FPGAs Data Sheet: DC and AC Switching Characteristics. Available online: https://docs.xilinx.com/v/u/en-
US/ds181_Artix_7_Data_Sheet (accessed on 18 April 2023).

32. Xilinx Inc. 7 Series FPGAs Configurable Logic Block. Available online: https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
(accessed on 18 April 2023).

33. Anandakumar, N.N.; Sanadhya, S.K.; Hashmi, M.S. FPGA-based true random number generation using programmable delays in
oscillator-rings. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 570–574. [CrossRef]

34. Wang, X.; Liang, H.; Wang, Y.; Yao, L.; Guo, Y.; Yi, M.; Huang, Z.; Qi, H.; Lu, Y. High-throughput portable true random number
generator based on jitter-latch structure. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 68, 741–750. [CrossRef]

35. Frustaci, F.; Spagnolo, F.; Perri, S.; Corsonello, P. A High-Speed FPGA-based True Random Number Generator using Metastability
with Clock Managers. IEEE Trans. Circuits Syst. II Express Briefs 2022, 70, 756–760. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TC.2007.250627
http://dx.doi.org/10.1155/2009/501672
http://dx.doi.org/10.3390/electronics11132080
http://dx.doi.org/10.3390/jlpea12030048
http://dx.doi.org/10.1016/j.dsp.2015.05.007
https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview
http://dx.doi.org/10.1109/TIFS.2012.2185227
https://docs.xilinx.com/v/u/en-US/ds162
https://docs.xilinx.com/v/u/en-US/ds162
https://docs.xilinx.com/v/u/en-US/ds181_Artix_7_Data_Sheet
https://docs.xilinx.com/v/u/en-US/ds181_Artix_7_Data_Sheet
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
http://dx.doi.org/10.1109/TCSII.2019.2919891
http://dx.doi.org/10.1109/TCSI.2020.3037173
http://dx.doi.org/10.1109/TCSII.2022.3211278

	Introduction
	Previous Work
	Study of a Basic Sampled RO
	Multiple XORed Ring Oscillators
	Comparison to Other TRNGs for FPGAs
	Conclusions
	References

