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ABSTRACT 

 

Given the large body of research addressing exchange rate predictability, the inability of the non-

linear model by Diebold and Nason (Journal of International Economics 1990; 28: 315-332) to 

forecast better than a random walk is puzzling. This paper examines the forecasting performance 

of Diebold and Nason’s non-parametric model for six major spot Canadian dollar exchange rates 

for the period 1987-2004. The findings suggest that a more flexible non-parametric estimation 

technique (artificial neural networks) is required and draw into question the choice of lagged 

dependent variables as explanatory factors. This paper also proposes a pure microstructure 

exchange rate model as an alternative to non-linear autoregressive models. Such a model sheds 

new light on the current evidence on linear/non-linear exchange rate predictability based on 

market microstructure variables. 

 

Keywords:  Exchange Rates; Market Microstructure; Artificial Neural Networks; Nearest-neighbors Regression; 

Forecasting. 

 

 

1.  INTRODUCTION 

 

 major challenge to international economic theory is to produce a short-run exchange rate model 

that would be more accurate than a simple random walk in out-of-sample forecasting. As the 

literature shows, initially, the efforts were focused on linking the macroeconomic (fundamental) 

variables to exchange rates at medium to long forecast horizons. For example, Meese and Rogoff (1983) showed 

that a simple random walk model performed no worse than any of the standard macroeconomic exchange rate 

models. Even after including ex-post data on the fundamentals, out-of-sample forecasting performance at 1-, 6- and 

12-month horizons was surprisingly low. These findings were reinforced by a number of authors such as Baxter and 

Stockman (1989), Meese and Rose (1991), Flood and Rose (1995), Frankel and Rose (1995) and, very recently, Qi 

and Wu (2003). Contrary to this literature, a more favorable evidence was found in Mark (1995), Chinn and Meese 

(1995), Kilian and Taylor (2003) and Mark and Sul (2001). While there has been a significant criticism related to the 

statistical robustness of these results (e.g., Kilian, 1999), it has become apparent that some of the gains in the 

forecasting performance were due to accounting for non-linearities in the data (e.g., Kilian and Taylor, 2003). 

Noteworthy, Meese and Rose (1991) and Qi and Wu (2003) did not find non-linearities and market fundamentals 

useful for lower frequency forecasting. Obstfeld and Rogoff (2000) referred to this kind of weak relationship 

between the exchange rate and market fundamentals as the “exchange rate disconnect puzzle.” 

 

Recently, a new approach attempted to shed more light on this puzzle. Instead of focusing solely on the 

macroeconomic fundamentals, “New Micro Exchange Rate Economics” (Lyons, 2001) calls attention to 

imperfections of financial markets: incomplete markets, sticky prices and various deviations from rational 

expectations due to over-reaction to news, noise or technical trading. This idea was pioneered by Kyle (1985) and 

extended by many other authors.
1
 In the foreign exchange market context, Flood and Rose (1995) suggested that 

more microeconomic detail should be taken into account. Similarly, Cheung and Wong (2000) conducted a survey 

of practitioners in the interbank foreign exchange markets and reported significant deviations from rational 

expectations: only 1% of the traders look at macroeconomic fundamentals to determine short-run exchange rate 

movements. Further, when Jeanne and Rose (2002) incorporated noise traders into the general equilibrium 

framework, they showed that, for a fixed level of volatility of fundamentals, based on different levels of noise 

A 
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trading, different levels of exchange rate volatility can occur. Within the partial equilibrium framework, Lyons and 

Evans (2002) included a variable reflecting the microeconomics of asset pricing to an exchange rate model. They 

introduced “order flow” as the proximate determinant of the exchange rate (using daily data over a four-month 

period) and were able to significantly improve on existing macroeconomic models. More precisely, they managed to 

capture about 60% of the daily exchange rate changes using a linear model. However, the model was unable to 

generate statistically significant forecasts due to small sample size (and possibly because of misspecification and/or 

the linearity assumption).
2
 More recently, Payne (2003) showed that 40% of the variation in the USD/DEM 

exchange rate was order flow driven. 

 

A number of other scholars have pursued exchange rate modelling and forecasting using various 

methodologies, but with mixed success. To model the observed conditional heteroskedasticity of exchange rates, 

ARCH (Hsieh, 1989) and GARCH (Bollerslev, 1990) models were employed, but the results were very 

discouraging. For instance, in Gençay (1999), GARCH model generated insignificant directional and mean-squared 

prediction error forecast improvements over a simple random walk. Baillie and McMahon (1989), Hsieh (1988), 

Boothe and Glassman (1987) and Diebold and Nerlove (1989) reported that exchange rate changes are leptocurtic 

and might be non-linearly dependent. Kuan and Liu (1995) used backpropagation and recurrent artificial neural 

networks (ANNs) and detected non-linearities in the daily Japanese yen and British pound time series for the period 

1980-1985. Some other studies involving ANNs such as Zhang and Hu (1998) and Hu et al. (1999) showed similar 

results: non-linear exchange rate forecasting based on its lagged values can be fruitful. Alternatively, technical 

trading signals can be constructed from the time series of spot exchange rates and used as forecasting variables in 

both linear and non-linear models. This intriguing possibility was researched and documented in Gençay (1999), 

Lisi and Medio (1997), Lo, Mamaysky and Wang (2000) and Levich and Thomas (1993). In all of these studies, the 

results contradicted the weak form of market efficiency. 

 

Given the above findings, it appeared as though the optimal strategy for short-run forecasting was to 

employ non-linear autoregressive or technical trading exchange rate models. Surprisingly, Meese and Rose (1990), 

Diebold and Nason (1990), and, more recently, Cao and Soofi (1999) strongly rejected the existence of non-

linearities and could not forecast better than a simple random walk in out-of-sample exchange rate predictions.  

 

This paper focuses on Diebold and Nason (1990) (D&N from hereafter) and looks for explanations for their 

model‟s poor forecasting performance. Specifically, for the post-D&N period (1987-2004), a nearest-neighbors 

(NN) technique called locally-weighted regression (LWR) is applied to six daily spot exchange rates (vis-à-vis the 

Canadian dollar): U.S. dollar, Japanese yen, Swiss franc, British pound, Australian dollar and Euro.
3
 Thus, in 

addition to a different sample period, this paper also differs from the study by D&N in the number of exchange rates 

that are considered and the numeraire currency. D&N focused on the U.S. dollar and ten major exchange rates 

(1973-1987).  

 

The most important findings of this paper are: 

 

1. For the post-D&N period, the original NN approach could not improve upon the random walk model, i.e., 

the performance pattern is very similar as for the 1973-1987 period. 

2. Allowing for more flexibility in the modeling technique (while fixing the input variables) produces 

forecasts that are superior to those from the random walk model. More precisely, the inputs from D&N 

were fed into the backpropagation ANN model and this substantially improved its out-of-sample 

performance for the Japanese yen, Swiss franc and Australian dollar. This result contradicts Gençay (1999) 

who found no significant difference in forecasting performance between ANN and NN models. It is 

worthwhile to mention, however, that the variables used in Gençay (1999) were fundamentally different. 

3. The results of fusing a set of market microstructure variables for the Canada/U.S. dollar exchange rate with 

the NN technique demonstrate forecasting superiority of the non-linear microstructure model at a daily 

frequency. Thus, the evidence suggests that the NN model captures non-linearities created by the 

microstructure of the foreign exchange market on a daily basis. On average, the NN microstructure model 

accounts for 5.4% of the daily returns variance. 

4. When the data are aggregated to a lower frequency (weekly), the advantages from using a non-linear model 

diminish. That microstructure variables drive currency returns in a linear fashion at the growth frequencies 
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was suggested in Evans and Lyons (2005), but, using a rich data set from the Bank of Canada, this paper 

provides a broader insight into their findings. Sub-section 3.4 compares the data set from this paper to the 

one used by Evans and Lyons (2005). Some new evidence also arises from the weekly data: across the three 

out-of-sample data sets the microstructure model explains on average almost 10% of the exchange rate 

movements. This is substantially higher than the result from Evans and Lyons (2005) who received the best 

estimate of 5.7% for the same forecasting horizon. In addition, the findings indicate that the forecasting 

power of the linear microstructure model is linked to controlling for the day-of-the-week effect.
4
 

5. The nature of the informational content of the microstructure effects observed in this paper is such that they 

are relevant only for one-step-ahead forecasting, which is also found in Gradojevic (2006) for a linear 

microstructure model. 

 

The remainder of the paper has three sections. Section 2 explains estimation techniques. Section 3 briefly 

describes the data and provides the results of the in-sample and out-of-sample empirical exercises. Conclusions and 

some recommendations for future research follow in Section 4. 

 

2.  ESTIMATION TECHNIQUES 

 

2.1 NN Method 

 

The NN method is based on an assumption that geometric patterns in the past of the time series, similar by 

some measure to the currently observed variables, can be used for forecasting the dependent variable (see, e.g., 

Yakowitz 1987, Cleveland 1979, Cleveland and Devlin 1988). Specifically, as in D&N, LWR is used to estimate 

one-step-ahead exchange rate returns from a weighting scheme in which weights are functions of the Euclidean 

distances. This approach is a philosophical departure from the Box-Jenkins methodology where the forecasts are 

extracted from lagged observations and error terms (or external variables as in ARMAX model), rather than from 

the set of „related‟ observations of independent variables - nearest neighbors. 

 

 Suppose one is interested in forecasting yt one-period-ahead and xt is a (m1) vector of explanatory 

variables. Then, the non-linear model is 

 

yt =  (xt-1) + t,     E(t| xt-1) = 0;    t =1,...,T (1) 

 

where  (.) is an arbitrary but fixed non-linear function. 

 

 LWR estimates  (x
*
), i.e., the estimate of  at the specific value x=x

*
. This is performed in several steps as 

follows: 

 

1. Let y
*
 =  (x

*
) denote the forecast of interest and x

*
 the point where we estimate  (.). Then, the xt-1 (t = 

1,...,T) series is organized into h-histories defined by: 

 

xt-1
h
=(xt-h+1,...,xt-1) (2) 

 

The parameter h is also called the embedding dimension.  

 

2. The next step is to choose k h-histories “closest” to x
*
 called the nearest neighbors (xk). Let  be a 

smoothing constant such that 0< 1, and let k=int (T), where int (.) extracts the integer part of its 

argument. The LWR uses k observations nearest to x
*
, where the proximity is measured with the most 

commonly used distance measure, Euclidean distance: 
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According to the Euclidean distance, xt-1
h
 are ranked and assigned specific weights. Observations not considered to 

be x
*
‟s nearest neighbors are assigned a weight of zero. 

 

3. In this step, a tricube weighting function is constructed: 
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4. The forecast is computed as: 

 

ˆ( )y x x      (5) 
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2
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The tricube weighting scheme is smooth in applying more confidence to the first nearest neighbor than the 

second nearest, and more to the second than to the third, and so forth. Thus, the weights are set inversely 

proportional to the Euclidean distances.  Various weighting schemes other than Euclidean are presented in 

Robinson (1987). Stone (1977) proved the consistency (in the statistical sense) of NN estimators for different 

weighting schemes. Consistency of NN estimators (and therefore LWR) requires that the number of employed 

nearest neighbors goes to infinity with sample size, but at a slower rate, that is, as T  , k  , but (k/T)  0. 

Clearly, consistency depends on the choice of . As  increases, the bias in Ø(x
*
) increases and the sampling 

variability decreases. Thus, one needs to choose  to balance the trade-off between bias and variance. 

 

Initially, to keep the methodology comparable to D&N, when xt is a vector of lagged dependent variables,  

is varied, but, when xt is a vector of lagged microstructure variables, the optimal  is found through in-sample cross-

validation that minimizes the mean-squared prediction error (MSPE) on the in-sample data. This paper follows a 

cross-validation procedure from Gençay (1999). Essentially, based on the in-sample data (training set), all out-of-

sample (testing) y
*
‟s are recursively estimated.  

 

In the implementation of the cross-validation, first, the 50 most recent training set observations (1/8 of the 

training set size) are selected. At this point, all the remaining training set observations are treated as “testing data.” 

Then, the MSPE statistic is calculated from these “testing data” until the optimal  is determined, i.e., the one that 

yields the lowest MSPE. This  is recorded and the cross-validation proceeds by adding one more observation from 

the past to the initial training data. Again, the optimal  is recorded for a new smaller “testing set” and this 

procedure is applied until the size of a “testing set” is zero. Finally, the  related to the lowest overall MSPE is 

chosen and held fixed for estimating the first forecast observation in the actual testing set. Note that this method also 

determines the in-sample data length that is used for estimation. This procedure is then performed for each out-of-

sample observation until the whole testing set is exhausted.   
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2.2 Backpropagation ANNs 

 

ANNs represent a general class of non-parametric, non-linear models that had been originally 

conceptualized for pattern recognition and system control purposes, but subsequently found applications in finance 

and economics.
5
 

 

Suppose that a single hidden layer ANN is composed of s input and q hidden nodes whereas the i
th

 

independent variable is denoted by xit (i=1,...,s). The hidden and the output layers are characterized by two arbitrary 

types of non-linearities:  and , respectively. Backpropagation learning algorithm requires continuous 

differentiable non-linearities and the most commonly used type is the sigmoid logistic (or logsig) function:
 
 

 

1
( )

1 x
f x

e-
=

+
 (7) 

 

The dependent variable (yt) is written as 
 

0 0
1 1

q s
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 
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where αij and j denote appropriate connection weights between the adjacent layers. Subscripts 0 for α and  stand 

for ANN biases. Other types of transfer functions used in this paper are hyperbolic sigmoid tangent and linear. 

 

 Studies by Cybenko (1989) and Funahashi (1989) show that the non-linear representation given by 

equation (8), with  given by equation (7) can approximate a large number of mappings between xt‟s and yt 

reasonably well. 

 

 In the first step of the implementation of the ANN model, the data is divided into training, validation, and 

testing parts, roughly in the ratio 6:3:1. The selection of the number of hidden layers and nodes in them is guided by 

the ANN‟s performance on the validation data with respect to the MSPE. The optimal number of hidden layers is 

found to be {1,2} and the number of hidden nodes {3,5}, depending on the forecasted exchange rate. The parameters 

are estimated using the standard Levenberg-Marquardt algorithm. Overfitting is prevented by early stopping, i.e., 

stopping the training process when the validation set error starts to increase. To control for data snooping biases, as 

in Garcia and Gençay (2000), the robustness of the ANN model is explored from the aspect of repeating the 

parameter estimation from five different sets of starting values.  

 

2.3 Empirical Measures Of Forecasting Performance 

 

The out-of-sample performance of the non-linear (and linear) models is measured based on the significance 

of the difference of the forecasting performance relative to the random walk model. The random walk model is 

summarized as: 
 

1t t ty y e-= +  (9) 
 

 In the first part of the empirical analysis the Diebold and Mariano (1995) statistic is utilized. However, due 

to the possible unreliability of the Diebold-Mariano statistic (West, 1996), a new test statistic, called the “projection 

statistic” is constructed. Evans and Lyons (2005) show that this statistic can be obtained from the following 

regression: 
 

t̂ h t t h t hr ra b e+ + += + +  (10) 
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where rt+h=log(St+h)-log(St) are the actual returns, t̂ h tr +  denotes the forecast of rt+h based on the information 

available at time t and h is the forecasting horizon. If the considered models are unable to significantly improve 

upon the random walk, the estimate of β will be insignificant. As in Evans in Lyons (2005), the variance of β is 

estimated with the Newey-West (1987) estimator and the number of lags is set to h-1. 

 

 By definition, the estimate of β can be written as: 

ˆ( , )
ˆ

( )

t h t h t

t h

Cov r r

Var r


 



  (11) 

 

 Therefore, the estimate of β can also be viewed as the percentage of the currency returns variance that is 

explained by the model over the forecasting period. 
 

3.  EMPIRICAL RESULTS 
 

3.1 The Data 
 

 All exchange rate data are at a daily frequency and are obtained from the Bank of Canada. The following 

six nominal spot rates vis-à-vis the Canadian dollar are studied: U.S. dollar (USD), Japanese yen (JY), Swiss franc 

(SF), British pound (BP), Australian dollar (AD) and Euro (EU). Following D&N, to control for the day-of-the-

week effects, the sample is composed of Wednesdays, 12:00 p.m. from 29 September 1987 to 26 October 2004. This 

represents a total of 886 observations of daily returns (rt). If St denotes an exchange rate at time t, then rt=log(St)-

log(St-1). The last 86 observations are held out-of-sample and estimated using the NN and ANN methodologies. 
 

 In the final empirical exercise, the variables from the field of microstructure are utilized to find the non-

parametric conditional mean estimates for the Canada/U.S. exchange rate. Due to data unavailability at present time, 

the microstructure model is not applied to other exchange rates. For the same reason, the sample is shorter: from 

January 1990 to July 2000, and covers 494 observations (initially, 370 in-sample and 124 out-of-sample, for a daily 

frequency). The order flow data were obtained from the Bank of Canada and they are daily trading flows (in 

Canadian dollars) for six major Canadian commercial banks:  
 

 Commercial client transactions (CC) include all transactions with resident and non-resident non-financial 

customers. 

 Foreign institution transactions (FD) include all transactions with foreign financial institutions, such as FX 

dealers. 

 Interbank transactions (IB) include transactions with other chartered banks, credit unions, investment 

dealers, and trust companies in the interbank market. 
 

According to the Bank of Canada, these trading flows represent approximately 60% of all Canada/U.S. 

dollar transactions. Using the definition from Lyons (2001), individual order flows (CC, FD, IB) are measured as the 

difference between the number of currency purchases (buyer-initiated trades) and sales (seller-initiated trades). 
 

3.2 D&N: Revisited 
 

The explanatory variables in D&N are lagged dependent variables and, thus, the forecasting model 

becomes a non-linear autoregressive one:  
 

1( , ..., ) , {1, 3, 5}t t t p tr r r pf e- -= + Î  (12) 

 

Table 1 reports the ratio of the smallest in-sample and out-of-sample MSPEs to the random walk model‟s 

MSPE when p=1 for all of the studied exchange rates. 
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Table 1. In-sample and out-of-sample performance of the NN model, p=1. 

 USD JY SF BP AD EU 

In-sample MSPE ratio 0.9743 0.9678 0.9794 0.9537 0.9728 0.9314 

Optimal in-sample  0.5 0.9 0.1 1.0 1.0 0.6 

Out-of-sample MSPE ratio 1.0071 0.9878 0.994 0.9752 1.0037 0.9526 

Optimal out-of-sample  0.3 0.7 0.5 0.3 0.2 1.0 

DM 0.41 -0.60 -0.24 -1.13 0.17 -0.57 

Notes: Rows (1) and (3) are the ratios of the NN model‟s MSPE to that of the random walk model. Rows (2) and (4) are optimal 

values for , corresponding to the smallest MSPE. DM denotes the Diebold and Mariano (1995) test statistic. Its one-sided 

critical values are -2.33, -1.645 and -1.282 for confidence levels of 99%, 95% and 90%, respectively. 
 

 

Similarly, Tables 2 and 3 show the above ratio when p=3 and 5. The optimal  is not determined through a 

cross-validation procedure. Rather, as in D&N, a range of values for  is tested until the one that minimizes the 

MSPE is found. These optimal MSPEs are also reported in Tables 1, 2 and 3. In addition, for the out-of-sample 

MSPEs, the Diebold and Mariano (1995) statistics are listed. In Table 1, when p=1, the MSPE for each exchange 

rate is minimized for  taking different values, without any clear pattern of variation. This holds for both in-sample 

and out-of-sample estimations, and, also, for p=3 and 5. This contradicts D&N in that they find the in-sample 

performance linked to high values of  (0.9 and 1.0). Nonetheless, the in-sample performance for all exchange rates 

is similar, i.e., the MSPE is consistently higher than the random walk‟s MSPE. The in-sample MSPE improvements 

are more substantial when p increases. For example, for p=5, the in-sample MSPE for the EU is almost 50% lower. 
 

 

Table 2. In-sample and out-of-sample performance of the NN model, p=3. 

 USD JY SF BP AD EU 

In-sample MSPE ratio 0.9165 0.8944 0.9065 0.886 0.9082 0.7844 

Optimal in-sample  0.1 0.3 0.5 0.5 0.5 0.4 

Out-of-sample MSPE ratio 1.0341 1.0025 1.0146 1.0087 1.027 1.0433 

Optimal out-of-sample  0.8 0.3 0.3 0.6 0.8 0.2 

DM 0.51 0.07 0.29 0.13 1.72 0.57 

Notes: Rows (1) and (3) are the ratios of the NN model‟s MSPE to that of the random walk model. Rows (2) and (4) are optimal 

values for , corresponding to the smallest MSPE. DM denotes the Diebold and Mariano (1995) test statistic. Its one-sided 

critical values are -2.33, -1.645 and -1.282 for confidence levels of 99%, 95% and 90%, respectively. 
 

 

As many authors, including D&N, have found, a successful in-sample performance is never a guarantee 

that the out-of-sample performance will be comparable. From Tables 1-3, it is quite obvious that, if present, the 

forecast improvements are indeed modest and statistically insignificant according to the Diebold and Mariano 

(1995) statistic in almost all of the cases. 
 

 

Table 3. In-sample and out-of-sample performance of the NN model, p=5. 

 USD JY SF BP AD EU 

In-sample MSPE ratio 0.7993 0.7628 0.8054 0.7846 0.8093 0.5382 

Optimal in-sample  0.1 0.4 0.4 0.2 1.0 0.6 

Out-of-sample MSPE ratio 1.0556 0.9896 0.9999 1.0312 1.0231 1.0027 

Optimal out-of-sample  0.2 0.8 0.8 0.7 0.2 0.6 

DM 1.18 -0.27 -0.00 0.46 0.61 0.00 

Notes: Rows (1) and (3) are the ratios of the NN model‟s MSPE to that of the random walk model. Rows (2) and (4) are optimal 

values for , corresponding to the smallest MSPE. DM denotes the Diebold and Mariano (1995) test statistic. Its one-sided 

critical values are -2.33, -1.645 and -1.282 for confidence levels of 99%, 95% and 90%, respectively. 
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It is important to stress that the fact the optimal  is not chosen ex-ante signifies the inability of the 

autoregressive NN models to forecast better than a random walk. To conclude, the results for the Canadian dollar for 

1987-2004 data strongly support the findings of D&N. 

 

3.3 The ANN Model 

 

 The ANN model employs the same data and explanatory variables as the NN model from the previous sub-

section. The objective is to improve upon the NN model in the out-of-sample part of the data. The forecasts are 

estimated using equation (8) with yt=rt and vector xt=(rt-1,…,rt-p). As in the case of the NN model, it is found that 

ANNs produce considerable in-sample gains for p=1, 3, 5 and insignificant out-of-sample MSPE improvements for 

p=1.
6
 

 

Table 4. Out-of-sample performance of the ANN model, p=3 and 5. 

(a) U.S. dollar  

USD  MSPE ratio β p-value 

p=3     

 Experiment (1) 0.926 0.091 0.066 

 Experiment (2) 0.972 0.010 0.118 

 Experiment (3) 0.978 0.063 0.311 

 Experiment (4) 0.988 0.007 0.493 

 Experiment (5) 0.977 0.028 0.154 

p=5     

 Experiment (1) 0.955 0.038 0.052 

 Experiment (2) 0.988 0.011 0.603 

 Experiment (3) 0.991 0.027 0.218 

 Experiment (4) 0.983 0.011 0.305 

 Experiment (5) 0.969 0.022 0.291 
 

(b) Japanese yen  

JY  MSPE ratio β p-value 

p=3     

 Experiment (1) 0.976 0.015 0.174 

 Experiment (2) 0.975 0.023 0.151 

 Experiment (3) 0.959 0.027 0.044 

 Experiment (4) 0.991 0.021 0.249 

 Experiment (5) 0.979 0.029 0.187 

p=5     

 Experiment (1) 0.938 0.045 0.041 

 Experiment (2) 0.946 0.054 0.060 

 Experiment (3) 0.947 0.048 0.043 

 Experiment (4) 0.943 0.038 0.011 

 Experiment (5) 0.978 0.022 0.066 
 

(c) Swiss franc  

SF  MSPE ratio β p-value 

p=3     

 Experiment (1) 0.977 0.019 0.273 

 Experiment (2) 0.988 0.012 0.407 

 Experiment (3) 0.983 0.012 0.259 

 Experiment (4) 0.984 0.013 0.350 

 Experiment (5) 0.997 0.003 0.496 

p=5     

 Experiment (1) 0.951 0.065 0.051 

 Experiment (2) 0.947 0.051 0.021 

 Experiment (3) 0.969 0.032 0.136 

 Experiment (4) 0.964 0.028 0.037 

 Experiment (5) 0.957 0.036 0.026 



The Journal of Applied Business Research – March/April 2009 Volume 25, Number 2 

87 

(d) British pound  

BP  MSPE ratio β p-value 

p=3     

 Experiment (1) 1.004 0.003 0.748 

 Experiment (2) 0.999 0.000 0.899 

 Experiment (3) 1.009 -0.004 0.224 

 Experiment (4) 0.991 0.013 0.323 

 Experiment (5) 1.016 -0.003 0.760 

p=5     

 Experiment (1) 0.999 0.008 0.474 

 Experiment (2) 0.984 0.014 0.178 

 Experiment (3) 0.993 0.006 0.425 

 Experiment (4) 1.017 0.002 0.889 

 Experiment (5) 0.985 0.017 0.305 

 

(e) Australian dollar  

AD  MSPE ratio β p-value 

p=3     

 Experiment (1) 0.987 0.012 0.099 

 Experiment (2) 0.975 0.017 0.022 

 Experiment (3) 0.947 0.036 0.040 

 Experiment (4) 0.981 0.032 0.040 

 Experiment (5) 0.955 0.032 0.101 

p=5     

 Experiment (1) 0.985 0.011 0.372 

 Experiment (2) 0.983 0.013 0.229 

 Experiment (3) 0.987 0.009 0.290 

 Experiment (4) 0.963 0.030 0.053 

 Experiment (5) 0.958 0.034 0.087 

 

(f) Euro  

EU  MSPE ratio β p-value 

p=3     

 Experiment (1) 0.997 0.000 0.958 

 Experiment (2) 0.983 0.018 0.254 

 Experiment (3) 0.997 0.002 0.871 

 Experiment (4) 0.982 0.009 0.505 

 Experiment (5) 0.999 0.000 0.940 

p=5     

 Experiment (1) 0.931 0.060 0.210 

 Experiment (2) 0.968 0.029 0.198 

 Experiment (3) 0.969 0.052 0.175 

 Experiment (4) 0.968 0.089 0.120 

 Experiment (5) 0.963 0.017 0.161 

Notes:  Experiment (1)-(5) denotes that the out-of-sample MSPEs are obtained from ANNs for which the parameters 

were estimated from five random seeds. The MSPE ratios column are the ratios of the ANN model‟s MSPE to that of the random 

walk model. The estimate of the slope coefficient from the projection regression (Evans and Lyons, 2005) is denoted by β. The p-

value is for the significance of β where its variance is estimated using the Newey-West (1987) estimator with h (forecasting 

horizon) – 1 lags. 

 

 

For some exchange rates, the findings are different for p=3 and 5. The performance of the ANN model for 

all six exchange rates is presented in Table 4 (a, b, c, d, e, f). The significant forecast improvements in MSPEs can 

be observed for the JY (p=5), SF (p=5) and AD (p=3) exchange rates. These improvements range from about 2-6% 

and are robust to different starting values. The estimates of statistically significant β‟s are correctly signed and show 

that the ANN model can explain from 1.2% to 6.5% of the daily returns variance. A noteworthy result is that the 

findings indicate predictability power that contradicts the weak form of market efficiency. Not surprisingly, in 

general, the forecast improvements are more substantial when p=5. More lags enable the ANN model to extract 
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more information from the past data. Thus, the out-of-sample results strongly favor the ANN autoregressive model 

over the NN autoregressive model. 

 

 As noted earlier, to control for possible data snooping, the robustness of the performance of the ANN 

model is also evaluated and presented in Table 4. Similar to the approach by Garcia and Gençay (2000), the ANNs 

are estimated over five experiments that involve five different (random) sets of initial parameter values. These 

experiments show that, when the estimates of β are insignificant, the forecasting performance of the non-linear ANN 

autoregressive models is quite sensitive to different starting values. Taken together, the results of the robustness 

exercise indicate that either the model is misspecified or that more lags of the dependent variable have to be 

included in vector xt. Increasing p to values greater than five is beyond the scope of this paper, but several 

alternative model specifications will be explored in the next sub-section. 

 

3.4 The Microstructure Model 

 

This part of the paper is motivated by Evans and Lyons (2005) and Gradojevic and Yang (2005) who 

employed microstructure variables – order flows – and find that they have a significant short-run predictive power. 

In line with these papers, out-of-sample forecasts are estimated recursively, relying only on information actually 

available. The forecasts are generated for daily and weekly frequencies. 

The non-linear (NN) microstructure-only model for the Canada/U.S. exchange rate returns is specified as 

follows:
7
 

 

1 1 1( , ..., , , ..., , , ..., ) , {1,2, 3}t t t p t t p t t p tr CC CC IB IB FD FD pf e- - - - - -= + Î  (13) 

 

 In the traditional microstructure literature the price is linked to order flow in a linear manner. The rationale 

behind using a non-linear model is to allow for the possibility that market participants could act strategically and 

pursue more complex trading strategies (O‟Hara, 1995).  

 

To compare the forecasting performance of equation (13) to a linear forecasting model by Evans and Lyons 

(2005), the following linear regression is estimated for p=1: 

 

1 1 2 1 3 1t t t t tr CC IB FDa b b b e- - -= + + + +      (14) 

 

 Note that there are fundamental differences between equation (14) and the model by Evans and Lyons 

(2005). In this study, the forecasted exchange rate is the Canada/U.S. dollar, the Bank of Canada data account for 

85% of the transactions for 1990-2000 data and the order flow types are as defined in sub-section 3.1. In contrast, 

Evans and Lyons (2005) forecast the USD/Euro exchange rate using 1993-1999 data, while accounting for only 10-

15% of the transactions (six market segments covered by Citibank). In addition, the size of their out-of-sample part 

is roughly the second part of the data set. 
 

 

Table 5. One-day-ahead forecasting performance of the microstructure-only models, p=1. 

  Out-of-sample size  

 124 94 74 

MSPE ratio -NN model 

β 

p-value 

0.9597 

0.072 

(0.136) 

0.9498 

0.054 

(0.151) 

0.9608 

0.035 

(0.061) 

MSPE ratio -Linear model 

β 

p-value 

1.0010 

0.004 

(0.744) 

1.0111 

-0.000 (0.988) 

1.0178 

0.001 

(0.869) 

Notes: MSPE ratio is the ratio of the MSPE of the NN (and the linear) model to that of the random walk model. The estimate of 

the slope coefficient from the projection regression (Evans and Lyons, 2005) is denoted by β. The p-value is for the significance 

of β where its variance is estimated using the Newey-West (1987) estimator with h (forecasting horizon) – 1 lags. 
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 The results for one-day-ahead forecasting and p=1 are presented in Table 5. Relative to the random walk 

model, the NN model provides robust improvements that range from 4% to 5% across three different out-of-sample 

sizes (74-124 observations). On average, the NN model is able to explain about 5.4% of the daily returns variance. 

For the linear model there are no forecast improvements relative to the random walk. Although the performance of 

the NN model is not impressive, the comparison of the NN and the linear models shows that, for a daily frequency, a 

non-linear model is superior.  
 

 

Table 6. One-week-ahead forecasting performance of the microstructure-only models, p=1. 

  Out-of-sample size  

 150 100 80 

MSPE ratio -NN model 

β 

p-value 

0.9459 

0.087 

(0.000) 

0.9802 

0.073 

(0.003) 

0.9840 

0.129 (0.003) 

MSPE ratio -Linear model 

β 

p-value 

0.9235 

0.093 (0.000) 

0.9053 

0.083 

(0.000) 

0.8564 

0.116 

(0.000) 

Notes: MSPE ratio is the ratio of the MSPE of the NN (and the linear) model to that of the random walk model. The estimate of 

the slope coefficient from the projection regression (Evans and Lyons, 2005) is denoted by β. The p-value is for the significance 

of β where its variance is estimated using the Newey-West (1987) estimator with h (forecasting horizon) – 1 lags. 

 

 

Moving to a longer, weekly forecasting horizon (5 trading days) gives quite a different picture (Table 6; 

p=1). For this exercise, utilizing 480 observations, the in-sample size varies from 330 to 400 observations 

(consequently, the out-of-sample size is from 150 to 80). The dependent variable rt is now a weekly returns series 

(from Wednesday to Wednesday) and the order flows are cumulative over five trading days. To clarify, the weekly 

returns for the week t are forecasted based on the aggregated transactions from the week t-2 to t-1. Table 6 shows 

that the forecast improvements of both the linear and the NN models are significantly superior to the random walk 

model. For all of the considered out-of-sample sizes, the MSPE ratio is smaller than one. The average forecast 

improvement across four out-of-sample sets is about 10% for the linear model and for the NN model it is about 3%. 

In addition, the forecasts from the linear model account for almost 10% of the returns variance. Therefore, there is 

no forecast gain from applying a non-linear model at a lower frequency. 

 

Increasing p to values greater than 1 deteriorates the forecasting performance of both the linear and the NN 

models. This suggests that the predictive ability of the microstructure model is limited to one-step-ahead forecasting 

and the information extracted from the time series of transactions may not be useful. In other words, the impact of 

the information, regardless if fully private or not, contained in order flow is quickly reflected in spot prices. This is 

an important and novel finding that, to the authors‟ best knowledge, has not been researched by both linear and non-

linear methods in any previous studies.  

 

4.  CONCLUSIONS 

 

This paper has analyzed why the exchange rate model by D&N shows a poor forecasting performance 

relative to the random walk model. In light of the findings from this analysis, the results suggest that improvements 

in predicting exchange rate movements might be realized through further market microstructure research.  

 

The evidence from the post-D&N sample for the Canadian dollar price of the six major currencies is 

consistent with the findings by D&N that a non-linear autoregressive (NN) model is unable to forecast exchange rate 

returns at a daily frequency better than a random walk. Two possible causes for this performance were further 

investigated: the first related to the non-parametric modelling technique and the second related to the selection of 

inputs. It was shown that an ANN autoregressive model outperformed the random walk model and that the daily 

exchange rate returns were to some extent predictable. Thus, the results do not support the claims by D&N that non-

linearities cannot be used for improved short-run point prediction. 
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Building on the recent empirical success of the microstructure-based models for exchange rate 

determination and forecasting, a model in the spirit of Evans and Lyons (2005) was constructed. A rich data set from 

the Bank of Canada provided an alternative panel of explanatory variables for the model. Although the variables of 

the model were not identical to those from Evans and Lyons (2005), based on the definitions of individual order 

flows, a significant degree of overlap is present. The results, in general, support Evans and Lyons (2005) and offer 

more insight into building microstructure models for forecasting. The results strongly favor microstructure-only 

forecasting models, especially at lower frequencies. The significant improvements over the simple random walk 

model are present at both daily and weekly frequencies. At a daily frequency, a non-parametric model performed 

superior to a linear model while this was not the case at a weekly frequency, where a linear model yielded a lower 

average MSPE. Finally, the findings signify that microstructure models are useful only for one-step-ahead 

forecasting. 

 

There have been numerous concerns raised about microstructure models. The main one concerns their 

relationship to fundamental as well as general equilibrium models and endogeneity of order flow variables. It should 

be noted that the goal of this paper is not to test the usefulness of additional fundamental variables, but to test if the 

very short-run Canada/U.S. dollar exchange rate can be forecasted by a pure microstructure model.
8
 Consequently, 

this paper does not investigate whether fundamental variables, or, more generally, public information is aggregated 

and channelled through order flows. This paper also does not study the implications of private information (noise 

traders), reflected in order flows, for exchange rates and macroeconomic fundamentals in a general equilibrium 

framework. More detailed examination along all of these research avenues is left to a future paper. As for the 

concern related to endogeneity, Granger causality tests were performed and it was found that the causality ran 

strictly from order flows to the price.
9
 One possible extension to the current study could be a market microstructure 

and time series combined approach which might improve the forecasting performance further.  

 

Finally, as order flow represents a proxy for private (and to a certain extent public) information flow, 

looking beyond what drives order flow is a research direction that can undoubtedly help resolving the “exchange 

rate disconnect puzzle.” Within the macroeconomic announcements context, order flows may be viewed as a gauge 

for how market participants perceive the arrival of new information to the market. Order flows reflect the actual 

market sentiment, i.e., aggregate expectations about the future direction of the economy. Investigating the surprise 

effect of macroeconomic announcements on order flows could be a promising research direction. Further, a number 

of papers show that technical trading rules can be useful for generating excess profits in the FX market, even after 

adjusting for transaction costs (Neely et al., 1997). However, the question to what extent FX traders employed 

technical indicators in their trading still remains. Examining order flows and determining the technical trading 

content in actual trades can undoubtedly answer this question. 
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Footnotes 

                                                 
1
 See O‟ Hara (1995) for more information on this approach, generally known as market microstructure theory. 

2
 In a very recent paper (Evans and Lyons, 2005), using a linear model on different data, they managed to generate statistically 

significant forecast improvements. 
3
 The sample for the Euro is 1999-2004. 

4
 By utilizing the whole sample, Gradojevic (2007) reports inferior predictive ability for the weekly forecasting horizon. 

5
 More extensive review of various applications of ANNs in finance and economics can be found in Qi (1996). 

6
 These results are not presented and are available upon request from the author. 

7
 For the pure microstructure non-linear model no significant difference in the forecasting performance was found between the 

NN and the ANN models, i.e., unlike in the D&N‟s model, the nature of the non-linearity 

is found to be invariant to the choice of estimation method. Noteworthy, the term “pure” refers to a model that contains only 

microstructure explanatory variables. 
8
 Interest rate differential and crude oil price were found to be informative in Gradojevic and Yang (2006). 

9
 In a recent paper that covers the period 1990-2005, we have investigated the causality issue further. This paper estimates 

VECM/VAR systems to capture the dynamics of order flow and exchange rates. We find that CD and FD contemporaneously 

drive the exchange rate while we identify periods when CC and IB order flows seem to respond to exchange rate movements. 

This can be viewed as an evidence that commercial customers and home dealers occasionally act as passive liquidity providers. 
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