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1 Introduction

Starting with the pioneering work of Son and Wingate [1], diffeomorphism invariance has

emerged as a powerful new tool to constrain the low-energy dynamics in Galilean invariant

non-relativistic (NR) quantum systems even in the presence of strong interactions. This

class of theories includes systems of obvious importance such as strongly correlated elec-

trons. Already in [1], these considerations were used to derive new constraints on transport

in the unitary Fermi gas, but since then the same approach has been successfully applied

to systems as diverse as Hall states [2–5] or chiral [6, 7] and standard [8] superfluids.

In a quantum field theory, we should regard the background metric, gauge fields,

and other sources as coupling constants. Then coordinate reparameterizations (which are

usually referred to as diffeomorphisms) are a spurionic symmetry transformation, under
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which the couplings change but the action is left invariant. See e.g. [9] for a discussion.

From this one can derive powerful constraints on how these coupling constants appear in

the low energy effective action. This is particularly useful in gapped phases, where the low

energy effective action solely depends on the background parameters. Of course, most of

the low-derivative terms in said effective action are unphysical, as they are indistinguishable

from local counterterms. In this regard, Chern-Simons terms and other topological terms

are special, as local counterterms can only shift their couplings in a discrete way. In this

setting, the authors of [2] showed that for the Hall effect, the standard electromagnetic

Chern-Simons term is not invariant under the “non-relativistic diffeomorphisms” of [1],

and so must be accompanied by other terms in the action that in principle give rise to

measurable effects.

In a relativistic quantum field theory, these background coupling constants are just the

spacetime metric and, when the theory has a conserved charge, a background gauge field.

We can think of the background metric and gauge field as sources for energy-momentum and

global symmetry currents. The analogous structure for a Galilean-invariant non-relativistic

theory has only been understood recently. The authors of [4, 5] have argued that, for a

Galilean-invariant theory, the sources for energy, momentum &c, comprise a version of

“Newton-Cartan” (NC) geometry, which we review in more detail below. That is, Galilean

theories ought to couple to a NC structure, rather than a usual metric. The fields in a NC

structure are all tensors, and so it is easy to couple these sources to a Galilean theory in

a way that manifests the coordinate reparameterization and gauge invariances. The full

symmetries however include one more crucial new ingredient [10], the so-called Milne boosts

(so-called in segments of the NC literature, e.g. [11]). The Milne boosts ensure that there

is some redundancy in the NC data, and its Ward identity equates momentum and particle

number currents. Fixing the Milne symmetry leads to the “diffeomorphism invariance” of

Son and Wingate [1] and [4, 5]. Correspondingly, the “non-relativistic diffeomorphisms”

appearing in those papers acted in a somewhat unusual fashion which explicitly depended

on a choice of coordinates, as they always had to be accompanied by a compensating Milne

boost to retain the Milne-fixing condition.1

In this note, we show how NC geometry and the Milne boosts naturally arise from a

non-relativistic limit. We start with a gapped relativistic parent with a conserved charge,

and couple it to an ordinary spacetime metric as well as a background gauge field. We

then take a NR limit by turning on a chemical potential equal to the rest energy of the

lightest charged relativistic particles, followed by a c → ∞ limit, where c is the speed of

light. We find that the NC data naturally arises from the relativistic background. Even

the connections for NC geometry, the analogues of the Levi-Civita connection built from

an ordinary metric, emerge in the c → ∞ limit. The Milne boost invariance also arises

naturally. In order to perform our non-relativistic limit, we split our relativistic metric

and gauge field into a leading and a subleading term. For example, in the relativistic

background gauge field the leading piece is the O(c2) chemical potential mc2. The O(c0)

1Some alternative proposals for coupling non-relativistic field theories to Newton-Cartan geometry may

be found in [12–14]. Their relation to the formulation in [1, 5, 10] is not entirely clear at this time.
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part of the relativistic gauge field becomes the background gauge field that couples to the

particle number current of the NR daughter theory. This split, however, is not unique.

We can always redefine the coefficient of the O(c2) term by a small O(c−2) correction, and

then redefine the order O(c0) NR gauge field by an equal opposite amount, which just

leaves the relativistic gauge field unchanged. This reshuffling freedom between leading and

subleading terms gives rise to the Milne boost invariance.

We focus on two examples for which we perform this limit: free scalar field theory, and

relativistic hydrodynamics. In each case our limit is very similar in spirit to the standard

large c limits. NC geometry and Milne boosts emerge in the NR limit of both examples,

and we expect that this is true more generally. One should note that the results from

our limiting procedure are non-trivial when applied to hydrodynamics. Hydrodynamics

completely captures the dynamical content of the theory in the low-energy limit. For a

NR theory with a relativistic parent, the dynamical transport coefficients, for example the

viscosities, are completely determined in terms of those of the relativistic parent. With our

simple strategy we are able to reproduce the form of the NR hydro equations in general

backgrounds, which only very recently had been obtained in [15], and are able to correct

some inaccuracies in the existing literature on this topic.

An additional motivation for our work is to better understand non-relativistic ‘t Hooft

anomalies. In relativistic theories, anomalies provide a window into non-perturbative

physics; they must be matched across scales and so place strong constraints on renor-

malization group flow. Anomalies are also robust against strong correlations and even

disorder. The understanding of anomalies in non-relativistic theories, certainly relevant for

the edges of topologically non-trivial phases, is still emerging. To properly classify those

anomalies, as well as to deduce whether they are robust, one must first understand the

potentially anomalous symmetries.

This note is organized as follows. In the next section we review the essentials of

NC geometry and Milne boosts, and then show how to obtain them from the NR limit

of free scalar field theory. In section 3 we then study free scalars in d = 2 + 1 space-

time dimensions, where a magnetic moment is allowed by both the relativistic and non-

relativistic symmetries. Such terms have played a prominent role in recent work on NC

geometry [4, 5, 10], since they facilitate a massless limit of a Hall system, whereby the lowest

Landau level decouples from the others. For us the main role they play is that they give an

interesting testing ground for our construction. In the NR theory, the magnetic moment

necessitates a modification of the Milne symmetry. We derive these modified transformation

rules, for a particular form of the magnetic moment, from a relativistic parent following

the same procedure as in section 2. This exercise also helps us to shed some light on

the limitations of our approach: not every NR action consistent with the symmetries of

the NC geometry can be realized by a relativistic parent following our prescription. In

section 4 we study the NR limit of relativistic hydrodynamics in some detail. We show

how to systematically obtain the NR constitutive relations, Ward identities, and entropy

current from those of the relativistic parent, and in so doing our construction naturally

matches the recent covariant presentation of NR hydrodynamics in [15]. We conclude with

some questions for the future in section 5.

– 3 –



J
H
E
P
0
4
(
2
0
1
5
)
1
5
5

2 The non-relativistic limiting procedure

2.1 Newton-Cartan from a relativistic parent

One way to describe Newton-Cartan (NC) geometry in d spacetime dimensions is in terms

of three pieces of data [10] (see also [16, 17])

Aµ , nµ , hµν . (2.1)

Here, Aµ is a U(1) gauge field which couples to particle number and hµν is a symmetric,

positive semi-definite rank d− 1 tensor. nµ and hµν are almost arbitrary: we require that

γµν ≡ nµnν + hµν , (2.2)

is a positive-definite, rank−d tensor. The NC data transform under diffeomorphisms and

gauge transformations in the standard way. In addition, Aµ and hµν shift under Milne

boosts as we explain below.

Since hµν has a single zero eigenvalue, we can introduce the unique corresponding

eigenvector vµ such that

hµνv
ν = 0 , nµv

µ = 1 . (2.3)

Roughly speaking, nµ and vµ define the time direction and hµν is the spatial metric. vµ

allows us to formulate two auxiliary quantities

Pµν = δµν − vµnν , hµρhρν = Pµν . (2.4)

Note that hµν is not the inverse of hµν . hµν is defined by the second equation in (2.4).

Let us see how this data naturally arises in the NR limits of relativistic theories. The

relativistic theory couples to a background metric gµν as well as of a background gauge

field Cµ. As in [9] we will start with a free complex scalar,

S = −
∫
dd−1xdt

√
−g

(
1

2
gµνDµΦ∗DνΦ +

c2m2

2
|Φ|2

)
. (2.5)

The covariant derivative is defined as usual as DµΦ = ∂µΦ − iCµΦ. If we start in flat

Minkowski space,

gµνdx
µdxν = −c2dt2 + d~x2 , (2.6)

the procedure to get a NR limit can be accomplished by three simple steps.

1. Turn on a background chemical potential via Cµ = mc2δtµ + mAµ, where Aµ is the

NR gauge field.

2. Rescale the field as φ =
√
mcΦ to remove all overall factors of c.

3. Send c→∞.
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We implicitly study field configurations where Φ and Aµ vary of length scales which do

not scale with c. In this limit the |∂tΦ|2 term drops out as gtt = −1/c2. The gttCtCt term

is O(c2), but cancels against the rest mass: indeed, we chose the chemical potential to

compensate the rest energy. Particles have a kinetic energy p2/(2m), anti particles have

energy 2mc2 + . . . and completely decouple. The theory reduces to the standard NR action

lim
c→∞

S =

∫
dd−1xdt

[
i

2
(φ∗Dtφ− φDtφ

∗)− δij

2m
Diφ

∗Djφ

]
. (2.7)

The NR covariant derivative Dµ involves the NR gauge field Aµ, Dµφ = ∂µφ − imAµφ.

This procedure of getting NR theories from relativistic ones by canceling the rest mass

via a chemical potential, and then sending c → ∞, has also recently been implemented

successfully in hydrodynamics [18].

We now show that if we instead start with the most general relativistic background that

allows for a NR limit, we obtain exactly the NC structure as defined in (2.1). In the limit

above, it was important that the dt2 piece in the metric came with an extra prefactor of

c2, so that in the inverse metric the corresponding 1/c2 term killed the two-time derivative

term in the action (2.5). If we introduce a covariant vector nµ in order to pick the time

direction, we write the relativistic metric as2

gµν = −c2nµnν + hµν , (2.8)

where hµν has rank d − 1 so we do not overcount. Correspondingly, we can introduce all

the quantities vµ, hµν and Pµν as above. The inverse metric is

gµν = − 1

c2
vµvν + hµν . (2.9)

This already has the correct feature that the only two derivative terms in (2.5) that survive

the c → ∞ limit will come with hµν , as the terms with vµ are suppressed by an inverse

power of c2. In order to cancel the rest mass, we need to introduce a background gauge

field, but now we allow the mc2 term to be along a covector bµ

Cµ = mc2bµ +mAµ . (2.10)

Demanding that S is regular under our c→∞ limit, we find that

hµνbν = 0 , bµv
µ = ±1 , (2.11)

and taking the + convention, by (2.3) and (2.4) this fixes

bµ = nµ . (2.12)

Plugging in the forms (2.8) and (2.10) for gµν and Cµ back into the action, rescaling

Φ to φ and taking the c→∞ limit we arrive at

lim
c→∞

S =

∫
dd−1xdt

√
γ

[
ivµ

2
(φ∗Dµφ− φDµφ

∗)− hµν

2m
Dµφ

∗Dνφ

]
. (2.13)

2A somewhat different approach to obtain NR theories as a limit of relativistic parents has recently been

put forward in [19].
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where
√
γ =

√
−g/c =

√
det(γµν) and γµν is defined in (2.2). This is exactly the right

action of a NR scalar field on an arbitrary NC geometry, as argued in [10]. It was shown

there that
√
γ is the correct volume element for a general NC geometry.

2.2 Transformation properties and Milne boosts

Since nµ, hµν and Aµ were all defined as ordinary covariant tensors, they transform in

the usual way under coordinate reparameterizations. In addition, Aµ shifts under gauge

transformations. So all the NC data transforms exactly as it should. In order to complete

the comparison to [10], all we need to do is to obtain the Milne boosts.

What is the physical origin of the Milne boost invariance? In our NR limit this is

very clear. We needed to split the relativistic fields, gµν and Cµ, into a leading O(c2) part

determined by nµ, and subleading O(1) pieces hµν and Aµ. Clearly this split is ambiguous.

We can always redefine nµ by an O(c−2) term, which can be compensated by an equal

opposite shift in hµν and Aµ so as to leave gµν and Cµ unchanged. With this insight, we

can identify the Milne shift as

nµ → nµ −
Ψµ

c2
, Aµ → Aµ + Ψµ, hµν → hµν − (nµΨν + nνΨµ) +

1

c2
ΨµΨν , (2.14)

which in the c→∞ limit reduces to

Aµ → Aµ + Ψµ, hµν → hµν − (nµΨµ + nνΨµ) . (2.15)

In order to ensure that hµν remains rank d− 1, we require

Ψµ = ψµ −
1

2
nµψ

2 , (2.16)

where ψµ is spatial, vµψµ = 0, and

ψ2 = hµνψµψν . (2.17)

The new hµν still has a zero eigenvalue, and the new corresponding eigenvector is

vµ → vµ + hµνψν . (2.18)

These transformation rules exactly reproduce the ones derived for Milne boosts in [10].

This shows that the full NR action, with all background fields in the NC formalism, as well

as their transformation laws, can be nicely understood from a relativistic parent theory

in the c → ∞ limit. Any NR action that arises as a NR limit along these lines from

a relativistic parent is automatically invariant under Milne boosts, since the latter were

engineered to leave the relativistic sources invariant. They simply amounted to a shift of

some of the leading O(c2) pieces into the subleading O(1) pieces in the NR limit.

2.3 The connection

The connection is an important ingredient in NC geometry. In our Lagrangian (2.13) all

fields were scalars and so we did not have to commit to a connection. But in order to
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define covariant derivatives of general NC tensors, or to efficiently express the partition

function Z, one needs to also define a connection. In Riemannian geometry, there is a

unique connection which can be defined just using the metric. In NC geometry, there are

many connections that can be built from (nµ, hµν , Aµ). According to [5, 10] there is a

natural choice whereby one requires that the NC data nµ and hµν are covariantly constant

and the spatial torsion vanishes. The corresponding connection reads

Γµνρ = vµ∂ρnν + (Γh)µνρ + hµσn(νGσ)ρ . (2.19)

Here (. . .) denotes symmetrization with weight 1/2, Gµν is an arbitrary two-form, and

(Γh)µνρ =
1

2
hµσ(∂νhρσ + ∂ρhνσ − ∂σhνρ) , (2.20)

can be thought of as the analog of the standard Christoffel symbols on hµν . If we only use

the NC data to define the connection, there are two natural choices for Gµν : 0, which was

taken in [5], or Fµν , the field strength of Aµ, which was taken in [10]. We follow [10] and

take Gµν = Fµν .

Note that the first term in the connection is not symmetric under exchange of ρ and

ν. So the price one had to pay for constancy of the NC data is the temporal torsion

Tµνρ = Γµνρ − Γµρν = vµFnρν , Fnµν = ∂µnν − ∂νnµ . (2.21)

We regard Fnµν as the analogue of a field strength for nµ. By construction, this connection

is gauge-invariant. It is however not Milne-invariant. As shown in [10], it is possible to

define a manifestly Milne-invariant connection at the price of giving up gauge invariance.

This Milne but not gauge-invariant connection ΓA is

(ΓA)µνρ ≡ Γµνρ + hµσ
(
−Aσ∂[ρnν] +Aν∂[ρnσ] +Aρ∂[νnσ]

)
, (2.22)

where [. . .] denotes anti-symmetrization with weight 1/2. Of course in the end we are

interested in theories which are both gauge and Milne invariant, but at the level of the

connection it is only possible to manifest one or the other. Last but not least, we can shift

the connection by a term proportional to vµFnνρ to obtain the torsionless version of the

gauge but not Milne-invariant NC connection, and a similar shift can be applied to the

Milne but not gauge invariant connection to obtain its torsionless version. It is this latter,

torsionless Milne invariant connection that naturally arises when embedding the NC data

into a lightlike reduction of a d+ 1-dimensional metric [10] (see also [17]).

We would like to see how this set of closely related connections arises from the NR limit.

Our starting point is the standard Levi-Civita connection associated to the metric (2.8).

We refer to this relativistic connection as ΓR. Since ΓR is torsionless, we naturally obtain

a torsionless connection from its NR limit. We presently demonstrate that we naturally

obtain both the gauge-invariant and Milne-invariant torsionless connections from the c→
∞ limit.

Organizing the terms in ΓR order by order in c2, we find that the O(c2) term is

(ΓR)µνρ = −c2hµσn(ρFnν)σ +O(1) . (2.23)

– 7 –
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To take the c → ∞ limit, we need to make a tensorial redefinition of ΓR that eliminates

this O(c2) piece. There are at least two ways we can accomplish this. One is to add a

tensor involving the relativistic vector potential Cµ and its field strength

Fµν = ∂µCν − ∂νCµ = mc2Fnµν +mFµν , (2.24)

which gives a manifestly Milne invariant connection, as all relativistic sources are manifestly

invariant under Milne boosts. Of course the price to pay is that the resulting NR connection

is not gauge-invariant. Instead, we can add a tensor involving nµ and Fµν . In this case

the tensorial redefinition is not Milne-invariant, but instead is gauge-invariant. That is,

we define(
Γ
(1)
R

)µ
νρ = (ΓR)µνρ +

1

m
gµσn(ρFν)σ ,

(
Γ
(2)
R

)µ
νρ = (ΓR)µνρ +

1

m2c2
gµσC(ρFν)σ .

(2.25)

Both Γ
(1)
R and Γ

(2)
R are engineered to be O(1) at large c and so have good NR limits,

which we refer to as Γ(1) and Γ(2). Γ(1) is manifestly gauge-invariant, but is not invariant

under Milne boosts. Γ(2) is manifestly Milne-invariant, but not gauge-invariant. These

connections are now straightforward to calculate,(
Γ(1)

)µ
νρ = vµ∂(ρnν) + (Γh)µνρ + hµσn(νFσ)ρ ,(

Γ(2)
)µ

νρ =
(

Γ(1)
)µ

νρ + hµσ
(
Aν∂[ρnσ] +Aρ∂[νnσ]

)
,

(2.26)

which we can easily recognize as the torsion-free parts of the gauge-invariant connec-

tion (2.19) and the Milne invariant connection (2.22) respectively. To obtain the tor-

sionful connections, we can always further shift Γ(1) or Γ(2) by terms proportional to either

gµσFνρnσ or gµσFnνρCσ respectively, where the former preserves manifest gauge and the

latter manifest Milne invariance.

3 Magnetic moments

3.1 The g-factor

In two spatial dimensions, there is another term that can be introduced in the NR action

for a free field which has a nice description in terms of NC geometry [4, 5]. In flat space it is

Sg,flat =
g

8

∫
d2xdt εij Fij |φ|2 = −i g

4m

∫
d2xdt εijDiφ

∗Djφ . (3.1)

Here εij is the purely spatial epsilon tensor and the two equivalent forms of the term are

related by integration by parts. This term is not invariant under the “non-relativistic

diffeomorphisms” of [1], but said transformation laws can be augmented by terms propor-

tional to g in such a way that the theory is invariant under them [4]. In [10] it was shown

that these modified transformation laws can be completely reproduced and accounted for

by a modified action of the Milne boost on Aµ. All other fields retain their transformation

– 8 –



J
H
E
P
0
4
(
2
0
1
5
)
1
5
5

properties in the presence of the g-term, in particular they still transform as standard ten-

sors under reparameterizations. In order to make these statements manifest, we write (3.1)

in a manifestly covariant form. There are two terms which reduce to (3.1) in flat space,

Sg1 =
g1
8

∫
d2xdt

√
γ εµνρ nµ Fνρ |φ|2 ,

Sg2 = − ig2
4m

∫
d2xdt

√
γ εµνρ nµDνφ

∗Dρφ .

(3.2)

One interesting aspect of the covariant formulation (3.2) is that these two terms are no

longer equivalent. If we perform the integration by parts that gave us the two equivalent

forms in (3.1), we pick up an extra term proportional to εµνρnµF
n
νρ|φ|2. So in a general

NC geometry, there are two independent magnetic moments, g1 and g2. In flat space only

g = g1 + g2 . (3.3)

appears. Only the g2 term was considered in [4, 5, 10]. It was shown in [10] that while Sg2
alone is not Milne-invariant, the full NR action we obtain by adding the g2 term to the

free action from (2.13) is Milne-invariant if we modify the Milne variation of Aµ to be

Aµ → Aµ + ψµ −
1

2
nµψ

2 + nµ
g2
4m

ενρσ∂ν (nρψσ) . (3.4)

Since the new term in the variation is proportional to nµ, the only place where it contributes

is the variation of vµAµ; its coefficient is fixed to cancel the variation of the g2 term. Instead,

we can add the g1 term and cancel its Milne transformation. It is easy to confirm that for

Aµ → Aµ + ψµ −
1

2
nµψ

2 + nµ
g1
4m

ενρσnρ ∂νψσ , (3.5)

the action including the g1 term is Milne invariant as long as we demand

Bn ≡ εµνρnµ∂νnρ = 0 . (3.6)

If (3.6) is not satisfied, then the action of the Milne boost is more complicated and be-

comes non-analytic in background fields.3 The condition (3.6) has been argued in [5] to be

crucial in order to maintain NR causality. By the Frobenius theorem, any two points in

a neighborhood in which Bn 6= 0 can be reached by a curve whose tangent vector satisfies

tµnµ > 0, and so this smells like a violation of causality. We will have more to say about

this shortly. For now let us just note that having imposed (3.6), we can add both magnetic

moment terms to the action and get a Milne invariant theory as long as Aµ varies as

Aµ → Aµ + ψµ −
1

2
nµψ

2 + nµ
g1
4m

ενρσnρ ∂νψσ + nµ
g2
4m

ενρσ∂ν (nρψσ) . (3.8)

3The full Milne boost when Bn is nonzero is

Aµ → Aµ + ψµ −
1

2
nµψ

2 + nµ
g1
4m

ενρσnρ ∂ν(ψσ − 1
2
nσψ

2)

1 + g1
4m
Bn . (3.7)
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3.2 Relativistic parent

Instead of the two independent magnetic moments we can add in the NR theory, there is

only one relativistic magnetic moment

Sg,R =
igR

16mc

∫
d2xdt

√
−g εµνρFµν (Φ∗DρΦ− ΦDρΦ∗) . (3.9)

This scalar magnetic moment only exists in d = 3. Similar parity odd terms will exist in

other dimensions, but their properties obviously depend on the dimension. The prefactor

of 1/mc is needed to make sure that we get the correct NR magnetic moment terms at

order 1; it follows on dimensional grounds.

There is also a new contribution at O(c2) piece proportional to Bn. As we mentioned

above, [5] stated that Bn = 0 is required for causality in the NR theory. It would be

desirable to understand the status of this constraint in more detail. Exactly what goes

wrong if Bn 6= 0? For relativistic theories formulated on spacetimes with closed time-like

curves, one can clearly see that the theory has intrinsic sicknesses. But non-zero Bn seems

to be perfectly healthy in the relativistic parent. It also seems to be healthy for NR theories

obtained by DLCQ [10]. Any sickness in the NR theory at non-zero Bn would have to

arise from the c→∞ limit.

Setting aside this important question, we return to magnetic moments. If we set

Bn = 0, the NR magnetic moment terms as written arise naturally from a relativistic

parent. If Bn 6= 0, we get terms similar to the g1 and g2 terms above, but with extra

powers of Bn, as we discuss below. Since we get the NR magnetic moment terms as they

stand at Bn = 0, we would like derive the modified transformation law (3.8) from a NR

limit of this relativistic parent even in this restricted case. Once we impose Bn = 0 we easily

see that in the c→∞ limit our relativistic parent descends to a sum of Sg1 and Sg2 with

g1 = 2gR , g2 = −gR . (3.10)

We should however note that even after imposing Bn = 0 our troubles are not over. One of

the main motivations for starting out with the relativistic parent is that it automatically

generates Milne-invariant actions. All relativistic fields are manifestly Milne invariant.

However nµ, and hence Bn, and bµ are not. They are just the leading O(c2) pieces in

the metric and gauge field. We can set to zero the term proportional to Bn in the action

simply by postulating that the constraint (3.6) be obeyed. This does, however, not ensure

that its Milne variation vanishes. The Bn term in the relativistic action will generate a

new contribution to the Milne variation to the action even when we set it to zero in the

end. There is one easy way to deal with this: we keep Bn nonzero when determining the

Milne variation of all fields and only set Bn = 0 in the very end. In fact, it is easy to

see that the O(c2) contribution the magnetic moment term makes to the action can even

be cancelled at non-zero Bn by modifying the relation (2.12) between nµ and bµ. In this

case we can still take a consistent NR limit, that is the action has a good large c limit.

It just doesn’t reduce to the simple magnetic moment terms Sg1 and Sg2 . We will derive

the Milne transformations of Aµ by studying this theory at non-zero Bn and then, in the
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end, will set Bn = 0 to get the simple transformation rules (3.8) for the theory with Sg1
and Sg2 . But before we do so, we briefly want to discuss why there is a single relativistic

parent term even though there are two non-trivial NR terms.

3.3 A note on gauge invariance

Eq. (3.9) is the unique gauge-invariant relativistic magnetic moment we can add to the

scalar action. How then can we understand that in the NR limit we can have two inde-

pendent terms? Shouldn’t each NR term have an individual parent? We can answer this

question by focusing on the putative parent of the g1 term. We can write

S ∼
∫
d2xdt

√
−g εµνρCµFνρ|Φ|2 , (3.11)

which reduces to Sg1 in the large c limit, provided we set the leading Bn = 0. Note that

C ∧F is the standard 2+1 dimensional Chern-Simons (CS) term, which is of course gauge-

invariant on its own right. Even though C appears explicitly, the gauge variation of the

CS term is a total derivative and so its integral is gauge-invariant. This however fails in

the magnetic moment above. Integrating by parts will leave a non-trivial variation of the

action proportional to derivatives of |Φ|2. Note however that if we replace Cµ with c2bµ,

its leading part, the action suddenly is gauge-invariant in the NR sense.

The reason for this is that NR gauge-invariance is a much weaker requirement than

the full relativistic gauge-invariance. In the relativistic theory we can expand the gauge

parameter itself in a power series in c:

Λ = Λ0c
2 + Λ1 + . . . . (3.12)

Relativistic gauge invariance requires that we are invariant under all gauge transformations,

including those parametrized by Λ0. Performing a Λ0 gauge transformation however is not

consistent with the NR limit. The leading piece in the gauge field is tied by (2.12) to

the metric. In the NR theory, O(c2) gauge transformations are no longer allowed and the

standard NR gauge transformations are generated by Λ1. The Sg1 term in the action is

perfectly gauge invariant under O(1) gauge transformations in the large c limit, and so

allowed in the NR theory. It is however forbidden in the relativistic parent.

This is a very important lesson to draw from this simple example. Our procedure of

obtaining NR actions and transformation laws from relativistic parents gives a very physical

way of interpreting the NC data. It gives a natural way to understand the role of Milne

boosts. It automatically generates Milne and gauge-invariant actions. It does, however,

not give the most general NR terms allowed. Requiring relativistic gauge invariance is a

stronger constraint than NR gauge invariance.

3.4 The modified Milne boost

Without any further ado, let us now proceed to deriving the modified Milne boost (3.8) for

the special case g1 = 2gR, g2 = −gR, from the relativistic parent theory. As we discussed

above, we need to work at non-zero Bn for now and only will, in the very end, set Bn = 0. In
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order to cancel the O(c2) terms in the action, we need to modify the relation (2.12) between

nµ and bµ. Avoiding O(c4) terms still requires hµνbµbν = 0, which implies bµ = nµ/α.

Demanding that the O(c2) terms also vanishes fixes

α =

√
1 +

gR
2m
Bn . (3.13)

Note that once we set Bn = 0 we will be back to α = 1, but to derive the Milne trans-

formation rules of the theory with a magnetic moment we need to track the non-trivial

factors of α and only set it to 1 in the end. Plugging bµ = nµ/α with (3.13) back into

the relativistic magnetic moment action and then taking c→∞ does give us a consistent

NR magnetic moment that is Milne-invariant for any value of Bn (just like the g2 term

by itself was as well), but this theory will have factors of α in it and with it non-analytic

dependence4 on Bn.

As in (2.14) we now can simply read of the transformation of the various fields under

the Milne boost. The transformations of hµν , vµ and nµ are as before, but for bµ we have

δbµ =
δnµ
α
− nµ
α2
δα . (3.15)

Evaluating these variations and then setting α = 1 (that is Bn = 0) we get

c2bµ → c2bµ −Ψµ +
gR
4m

nµε
νρσ [Ψν∂ρnσ + nν∂ρΨσ] +O

(
c−2
)
. (3.16)

This change has to be compensated, as before, by Aµ → Aµ − c2δbµ. Recalling that

Ψµ was constrained to take the form (2.16) to ensure that hµν remains degenerate this

finally yields5

δAµ = P νµψν −
1

2
nµψ

2 − gR
4m

nµε
νρσ [ψν∂ρnσ + nν∂ρψσ] . (3.18)

Here we used that Bn = 0, which allows us to simply replace Ψµ with ψµ in both of the

terms contracted with ενρσ. Amazingly this final answer (3.17) agrees exactly with the

NR rules for the modified Milne boosts in the presences of magnetic moment terms, (3.8),

when we specialize it to the case of g1 = 2gR, g2 = −gR that we inherit from our limit,

see (3.10).

4For the sake of concreteness let us spell out the action at non-zero Bn:

S =

∫
d2xdt

√
γ

{
ivµ

2α
(φ∗Dµφ− φDµφ∗)− h

µν

2m
Dµφ

∗Dνφ+
gR
4m

εµνρ
nµ
α

(
mFνρ |φ|2 + iDνφ

∗Dρφ
)}
. (3.14)

Note that this action is an equally valid NR magnetic moment-like term that has all the same symmetries

as the original g1 and g2 terms. It involves, however, an infinite number of higher derivative terms hiding

in α and so, from the point of view of low energy effective theory, looks rather unnatural.
5It is also straightforward to keep track of non-zero Bn in this expression. In this case we would get

Aµ → Aµ +
Ψµ

α
− gR

4mα2
nµε

νρσ
[
Ψν∂ρ

(nσ
α

)
+
nν
α
∂ρΨσ

]
. (3.17)

This is similar to the transformation law we would get in the NR theory with g1 = 2gR, g2 = −gR, with

the full non-linear transformation law of the previous footnote (3.7). The fact that the appearances of α do

not quite match is due to the fact that already on the level of the action what we get from the relativistic

parent, (3.14), is really not the same as the NR magnetic moment terms from (3.2) but differs by factors

of α, the higher derivative modification we pointed out in the previous footnote.

– 12 –



J
H
E
P
0
4
(
2
0
1
5
)
1
5
5

4 Hydrodynamics

The second setting where we revisit the non-relativistic limit is hydrodynamics. Hydro-

dynamics is a low-energy, long-wavelength effective description of field theory at nonzero

temperature, encoding the dynamics of the relaxation of conserved quantities. See [20] for

an excellent review. As emphasized in the introduction, applying our limiting procedure to

hydrodynamics and seeing the correct NR structures emerge gives evidence that the limit is

consistent with the underlying dynamics of the theory, which is completely incorporated in

the hydrodynamic equations. For a system with relativistic parent, transport coefficients

of the daughter will be calculated in terms of those of the parent. Incorporating the Milne

boosts the way we derived in this work helps us avoid pitfalls plaguing earlier attempts to

derive NR hydro from a relativistic parent such as [18], which incorrectly lead to non-Milne

invariant equations for the NR daughter theory.

The basic ingredients of relativistic hydrodynamics with a global U(1) symmetry are:

1. Thermal equilibria in flat space are specified by a temperature T , chemical potential

µr, and normalized velocity Uµ satisfying U2 = −c2. In hydrodynamics one promotes

these parameters to classical fields. The (T, µR,Uµ) are the fluid variables in the

hydrodynamic description.

2. Unlike Wilsonian effective field theory, one continues by specifying the one-point

functions of the stress tensor tµν and U(1) current jµ in terms of the fluid variables

and the background fields (gµν , Cµ). One does so in a gradient expansion, wherein the

background fields are taken to be O(∂0). The term nth order hydrodynamics refers

to fluid mechanics where the constitutive relations have been specified to O(∂n).

3. Enforce the Ward identities

Dνtµν = Fµνjν , Dµjµ = 0 , (4.1)

as equations of motion which fix the fluid variables (T, µR,Uµ).

4. Demand a local version of the second Law of thermodynamics. More precisely, one

demands the existence of an entropy current Sµ whose divergence is non-negative for

physical fluid flows, i.e. those which satisfy (4.1). In subsection 4.1 we show how the

non-relativistic fluid variables come from the relativistic ones,

A similar itemized list exists for non-relativistic hydrodynamics, although it takes some

work to ensure invariance under Galilean boosts. The fluid variables of the non-relativistic

fluid mechanics are a local temperature T , chemical potential µ for particle number, and

a Milne boost-invariant velocity uµ satisfying uµnµ = 1. See [15] for the details.

Below, we take the non-relativistic limit of relativistic hydrodynamics in the same way

as we did for perturbative scalar field theory in the previous two sections. In that case,

we directly had the effective action and so it was relatively easy to manifest the regularity

of the c→∞ limit. Hydrodynamics is slightly more complicated insofar as we work with

the one-point functions rather than the partition function itself. This complication has led
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to some confusion in the literature which we resolve. The essential point is that a certain

combination of O(c−1) terms in tµν and jµ must vanish. See subsection 4.2.1 for details.

We will show how the large c limit maps each of the items above into the correspond-

ing item for non-relativistic hydrodynamics. The non-relativistic fluid variables emerge

from the relativistic ones in subsection 4.1. We obtain the non-relativistic stress tensor

and Milne boost-invariant energy current from the relativistic stress tensor and current

in subsection 4.2.1. The relativistic Ward identities imply the non-relativistic ones, and

the relativistic entropy condition implies the non-relativistic one, as we show in subsec-

tions 4.2.3 and 4.3.

4.1 Some preliminaries

To proceed efficiently we need a few basic results.

The relativistic stress tensor and U(1) current are defined by variations of the gener-

ating functional as

δWR =

∫
ddx
√
−g
{
δCµj

µ +
1

2
δgµνt

µν

}
. (4.2)

We consider relativistic fluid mechanics coupled to the same background spacetime and

gauge field we considered in section 2,

gµν = −c2nµnν + hµν ,

Cµ = mc2nµ +mAµ .
(4.3)

Correspondingly, the relativistic chemical potential is

µR = mc2 +mµ , (4.4)

where µ is regular as c→∞. We also separate the relativistic fluid velocity into components

which are longitudinal and transverse to nµ,

Uµ = γ uµ = γ(vµ + wµ) , γ =

(
1− w2

c2

)− 1
2

, (4.5)

where nµw
ν = 0. Here, γ is the usual relativistic kinematic factor ensuring that U2 = −c2.

It is not the determinant of γµν , but we hope this is clear from the context. It then

follows that uµnµ = 1. We consider fluid flows for which uµ and T are regular as c → ∞.

Ultimately, (T, µ, uµ) will become the fluid variables of the non-relativistic hydrodynamics

we find in the c→∞ limit. We will also use that

Uµ = γ
(
−c2nµ + wµ

)
, (4.6)

where wµ = hµνw
ν .

Recall from section 2 that the non-relativistic Milne boosts come from a redundancy

in the relativistic description. The boosts are O(c−2) redefinitions of nµ, compensated by

O(1) redefinitions of hµν and Aµ in such a way as to keep gµν and Cµ in (4.3) fixed. The

relativistic fluid velocity Uµ, and so uµ, are invariant under any such redundancy, which

gives that the uµ defined here is Milne-invariant.
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In Galilean theories coupled to Newton-Cartan geometry, there is a spatial stress tensor

Tµν , a momentum current Pµ, a number current Jµ, and an energy current Eµ. Taken

together, these currents define a sort of “stress tensor complex” for the non-relativistic

theory, which are described with constitutive relations in non-relativistic hydrodynamics.

They are defined by functional variation [5, 10]

δW =

∫
ddx
√
γ

{
δAµJ

µ − δv̄µPµ − δnµEµ −
1

2
δh̄µνTµν

}
. (4.7)

Here we have let W depend on the overcomplete set of background fields (nµ, v
µ, hµν , Aµ)

(recall that nµ is algebraically determined by vµ and hµν), and taken variations in such a

way as to keep nµv
µ = 1 and hµνnν = 1. We work in a convention where the variations of

nµ are arbitrary, so that the variations of vµ and hµν are partially fixed as

δvµ = −vµvνδnν + Pµν δv̄
ν ,

δhµν = − (vµhνρ + vνhµρ) δnρ + Pµρ P
ν
σ δh̄

ρσ ,
(4.8)

where δv̄µ and δh̄µν are arbitrary. Note that due to (4.8), Pµ and Tµν are spatial insofar

as Pµvµ and Tµνv
ν both vanish.

The symmetries of the problem yield Ward identities [5, 10] for the stress tensor and

currents: the Milne Ward identity equates momentum and particle number currents,

Pµ = hµνJ
ν , (4.9)

while U(1) gauge and coordinate reparameterization invariance imply conservation equa-

tions. These are most concisely written in terms of Milne boost-invariant data. These

include a spacetime stress tensor T µν [10] and energy current Ẽµ [15]

T µν = Tµν + vµPν + vνPµ + vµvνnρJ
ρ ,

Ẽµ = Eµ −
(
uν −

1

2
nνu

2

)
T µν ,

(4.10)

where indices are raised with hµν , uµ = hµνu
ν , and u2 = uµu

µ. Note that

T µνnν = Jµ , (4.11)

by virtue of (4.9). We also use the fluid velocity to define a Milne boost-invariant version

of hµν ,

h̃µν = hµν − (nµuν + nνuµ) + nµnνu
2 , (4.12)

for which h̃µνu
ν = 0, and a new U(1) and gravitational connection [15]

Γ̃µνρ = uµ∂ρnν +
hµσ

2

(
∂ν h̃ρσ + ∂ρh̃νσ − ∂σh̃νρ

)
+ hµσn(νFρ)σ ,

Ãµ = Aµ + uµ −
1

2
nµu

2 .

(4.13)

– 15 –



J
H
E
P
0
4
(
2
0
1
5
)
1
5
5

We denote the corresponding covariant derivative as D̃µ. In terms of it and G̃µ = −Fnµνuν =

−Enµ , the Ward identities are then [15](
D̃µ − G̃µ

)
Ẽµ = GµEµ − h̃ρ(µD̃ν)u

ρT̃µν ,(
D̃ν − G̃ν

)
T µν = −(Fn)µν Ẽν .

(4.14)

The appearance of G̃µ in the covariant divergences is just due to the torsion, and it is easy

to see that, for vector fields, the covariant divergence is just the usual one(
D̃µ − G̃µ

)
vµ =

1
√
γ
∂µ (
√
γvµ) , (4.15)

with a volume element
√
γ. The longitudinal component of the stress tensor Ward identity

is just the conservation of number, (
D̃µ − G̃µ

)
Jµ = 0 . (4.16)

4.2 The large c limit

4.2.1 The non-relativistic stress tensor and energy current

Now let us relate the one-point functions of the relativistic theory to those of the NR theory

attained in the large c limit. As usual, we assume that the relativistic WR evaluated for

the background fields (4.3) is regular as c→∞,

lim
c→∞

WR

[
gµν = −c2nµnν + hµν , Cµ = mc2nµ +mAµ

]
= W [nµ, hµν , Aµ] . (4.17)

Putting the definition of the relativistic (4.2) and non-relativistic currents (4.7) and the

relativistic background fields (4.3), we see that

Jµ =
1
√
γ

δW

δAµ
= lim

c→∞

{(√
−g
√
γ

)
m√
−g

δWR

δCµ

}
= m lim

c→∞
c jµ ,

(4.18)

where we have used
√
−g = c

√
γ ,

δCµ
δAν

= mδνµ . (4.19)

The mighty chain rule also gives

Pµ = lim
c→∞

c hµνt
νρnρ ,

Tµν = lim
c→∞

c hµρhνσt
ρσ ,

Eµ = lim
c→∞

c3 (tµνnν −mjµ) .

(4.20)

In general, the relativistic stress tensor and current are O(c−1) at large c. To get a well-

defined energy current Eµ from the large c limit, we obviously need that the O(c−1) term

in tµνnν −mjµ vanishes,

0 = lim
c→∞

c (tµνnν −mjµ) , (4.21)
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Note that this automatically implies the Milne Ward identity,

0 = hµν

(
lim
c→∞

c {tνρnρ −mjν}
)

= Pµ − hµνJν . (4.22)

A proper discussion of hydrodynamic field redefinitions (as in [15]) is beyond the scope

of what we do here, however, we observe that the r.h.s. of (4.21) is a combination of the

constitutive relations which is invariant under redefinitions of (T, µR,Uµ) which are regular

as c→∞.

This is essentially the only non-trivial component in the large c limit of relativistic

hydrodynamics. Regularity of the limit requires (4.21), which in turn enforces the Milne

Ward identity on the resulting non-relativistic constitutive relations.6

Comparing (4.18) and (4.20) with (4.10), we see that the spacetime stress tensor T µν

is just the limit of the relativistic stress tensor,

T µν = lim
c→∞

c tµν . (4.23)

What of the Milne boost-invariant energy current in (4.10)? Using that

lim
c→∞

(
Uµ + c2nµ

)
= uµ −

1

2
nµu

2 , (4.24)

we find

Ẽµ = − lim
c→∞

c
(
tµνUν +mc2jµ

)
. (4.25)

4.2.2 The non-relativistic velocity

By assumption, we study fluid flows for which the relativistic fluid velocity Uµ = γuµ is

regular at large c,

lim
c→∞

Uµ = uµ .

What about the derivative of Uµ? Here, we digress on the relation between DµUν and

D̃µu
ν . This will prove necessary when we recover the energy Ward identity (4.14) from the

relativistic Ward identities in the next subsubsection.

We begin by defining the relativistic projector

∆µν = gµν +
UµUν
c2

, (4.26)

which satisfies ∆µνUν = 0 and ∆ρ
µ∆ν

ρ = ∆ν
µ. ∆ has a regular large c limit,

lim
c→∞

∆µν = h̃µν , lim
c→∞

∆ν
µ = P̃ νµ = h̃µρh

νρ , lim
c→∞

∆µν = hµν . (4.27)

6The standard large c limit of relativistic hydrodynamics, nicely reviewed in Kaminski and Moroz [18], is

in the same spirit as ours. Applied to viscous hydrodynamics in flat space, that limit indeed satisfies (4.21).

The authors of [18] also take the large c limit of parity-violating first-order hydrodynamics in two spatial

dimensions [21]. However, upon converting the conventions of [18] to ours, their large c limit of the parity-

violating hydrodynamics does not satisfy (4.21). That is, Kaminski and Moroz scale one of the parity-

violating response coefficients with c in such a way that the c→∞ limit is not regular. This explains the

result obtained in the appendix of [15] that the parity-violating hydrodynamics obtained by Kaminski and

Moroz is inconsistent with Galilean boost invariance.
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In terms of ∆µν , the symmetric part of DµUν is

D(µUν) =
∆µν

d− 1
ϑR + σRµν − U(µaRν) , ϑR = DµUµ , aRµ =

1

c2
UνDνUµ , (4.28a)

and

(σR)µν = ∆µρ∆νσ

(
D(ρUσ) −

ϑR

d− 1
∆ρσ

)
=

∆µρ∆νσ

2
£U∆ρσ −

ϑR

d− 1
∆µν , (4.28b)

where ϑR, σR and aR are the relativistic expansion, shear and acceleration. The non-

relativistic velocity uµ has a similar decomposition of its derivative [15],

D̃µu
ν = −nµEν +

1

2
Bµ

ν + h̃µρσ
νρ +

ϑ

d− 1
hµν , ϑ = D̃µu

µ , (4.29a)

Eµ = F̃µνu
ν , Bµν = P̃ ρµ P̃

σ
ν F̃ρσ . (4.29b)

and

σµν =
1

2

(
hµρD̃ρu

ν + hνρD̃ρu
µ − 2ϑ

d− 1
hµν
)

=
hµρhνσ

2
£uh̃ρσ −

ϑ

d− 1
hµν . (4.29c)

Using that

ϑR =
1√
−g

∂µ(
√
−gUµ) , ϑ =

1
√
γ
∂µ(
√
γuµ) ,

along with the expressions for σR and σ in terms of Lie derivatives, it immediately fol-

lows that the relativistic expansion and shear just become the non-relativistic expansion

and shear

lim
c→∞

ϑR = ϑ , lim
c→∞

(
σR
)µν

= σµν , (4.30)

There are other one-derivative tensor structures which frequently appear in hydrody-

namics. The background electromagnetic field and anti-symmetric derivative of Uµ have

large O(c2) pieces,

lim
c→∞

Fµν
c2

= mFnµν , lim
c→∞

∂µUν − ∂νUµ
c2

= −Fnµν . (4.31)

This implies that the rest-frame electric field FµνUν and acceleration aµ obey

lim
c→∞

FµνUν

c2
= mEnµ , lim

c→∞
aµ = Enµ . (4.32)

Similarly, the magnetic field ∆ρ
µ∆σ

νFρσ and vorticity ωµν = ∆ρ
µ∆ρ

µ(∂ρUσ − ∂σUρ) give the

magnetic part of Fn in the c→∞ limit.

Another tensor structure that frequently appears in hydrodynamics is FµνUν −
T∆µν∂ν

(µR
T

)
. It is also O(c2) at large c, and its limit is

lim
c→∞

1

c2

{
FµνUν − T∆µν∂ν

(µR
T

)}
= mhµν

(
(En)ν +

∂νT

T

)
, (4.33)

by virtue of µR = mc2 +mµ.
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We conclude this subsubsection with an observation. While Cµ and Uµ both have large

O(c2) pieces, there is a linear combination Cµ +mUµ which has a regular c→∞ limit,

lim
c→∞

(Cµ +mUµ) = m

{
Aµ + uµ −

1

2
nµu

2

}
= mÃµ , (4.34)

where Ãµ is the Milne boost-invariant U(1) connection in (4.13). Its field strength F̃µν
yields the Milne boost-invariant electric and magnetic fields appearing in (4.29a).

4.2.3 The non-relativistic Ward identities

Intuitively, the relativistic conservation of charge and energy-momentum ought to imply

that the non-relativistic number, energy, &c are conserved. In flat space with no back-

ground electromagnetic field, this is almost immediate, but we would like to see how this

works in general. That is, here we will show that the curved space relativistic Ward iden-

tities imply the curved space non-relativistic Ward identities upon taking c→∞.

Here and throughout the rest of this section, we assume that spacetime derivatives

commute with the large c limit. This is reasonable in the backgrounds we study, where

(nµ, hµν , Aµ) vary over spacetime in a way that does not scale with c. Under this assump-

tion,

0 = m lim
c→∞

cDµjµ =
m
√
γ
∂µ

(√
γ
{

lim
c→∞

cjµ
})

=
(
D̃µ − G̃µ

)
Jµ , (4.35)

i.e. the large c limit of the relativistic U(1) Ward identity implies the non-relativistic Ward

identity (4.16) for particle number. Similarly, the large c limit of the relativistic stress

tensor Ward identity gives

lim
c→∞

c {Dνtµν −Fµνjν} =
1
√
γ
∂ν(
√
γT µν)+ΓµνρT νρ+ lim

c→∞
c
{((

ΓR
)µ

νρ−Γµνρ

)
tνρ−Fµνjν

}
= (Dν − Gν)T µν +

1

m
lim
c→∞

cFµν {tνρnρ −mjν} (4.36)

= (Dν − Gν)T µν + (Fn)µνEν , Gµ = −Fnµνvν ,

which is equal to the Milne boost-invariant version in (4.14) upon adding zero in the right

way [15]. In going from the second to the third line we have used

(
ΓR
)µ

νρ − Γµνρ =
1

m
n(νFµρ) +O(c−2) + (torsion) .

To obtain the Ward identity for the energy current, we need recall our results for DµUν .

We first simplify

Uµ (Dνtµν −Fµνjν) +mc2Dµjµ = Dµ
(
tµνUν +mc2jµ

)
− tµνDµUν + FµνjµUν , (4.37)
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and then using (4.25), (4.28), (4.30), and (4.32) we find

− lim
c→∞

c
{
Uµ (Dνtµν −Fµνjν) +mc2Dµjµ

}
= − 1
√
γ
∂µ

(√
γ lim
c→∞

c
{
tµνUν +mc2jµ

})
+ lim
c→∞

c {tµνDµUν −FµνjµUν}

=
(
D̃µ − G̃µ

)
Ẽµ + Enµ Ẽµ +

(
σµν +

ϑ

d− 1
h̃µν

)
T µν − EµJµ

=
(
D̃µ − 2G̃µ

)
Ẽµ + h̃ρ(µD̃ν)u

ρT µν ,

(4.38)

where the indices of σµν have been lowered with h̃µν and we have used that T µνnν = Jµ.

Of course, the last line is the energy Ward identity in (4.10).

4.2.4 Ideal hydrodynamics

Now let us see how ideal non-relativistic hydrodynamics emerges from the large c limit of

relativistic ideal hydrodynamics. As we justify more properly in subsection 4.4, regularity

of the large c limit requires that the relativistic pressure p satisfies

lim
c→∞

c p(T, µR) = P (T, µ) , (4.39)

where P will be the non-relativistic pressure. That is, the relativistic pressure goes as

O(c−1). The relativistic energy density εR, entropy density S and charge density N are all

determined from p via

εR = −p+ TS + µRN , S =

(
∂p

∂T

)
µR

, N =

(
∂p

∂µR

)
T

. (4.40)

Using µR = mc2 + mµ, these are related to the non-relativistic energy density ε, entropy

density s, and charge density ρ via

lim
c→∞

c S = s , m lim
c→∞

cN = ρ , (4.41)

lim
c→∞

εR
c

= ρ , lim
c→∞

c(εR −mc2N) = ε = −P + Ts+ µρ .

The constitutive relations of ideal relativistic hydrodynamics are

tµν =
εR
c2
UµUν + p∆µν , jµ = NUµ . (4.42)

Using the thermodynamic limits above together with (4.23), (4.25), and (4.27) we find

T µν = lim
c→∞

c tµν = lim
c→∞

(εR
c
UµUν + cp∆µν

)
= ρ uµuν + Phµν ,

Ẽµ = − lim
c→∞

c
(
tµνUν +mc2jµ

)
= lim

c→∞
c
(
εR −mc2N

)
Uµ

= εuµ ,

(4.43)

which are the constitutive relations of ideal non-relativistic hydrodynamics [22], recast

covariantly [15].
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4.2.5 Beyond ideal hydrodynamics

We conclude this subsection with some schematic comments about how the large c limit

works beyond ideal hydrodynamics.

The most general relativistic constitutive relations can be parameterized as

tµν = ERUµUν + PR∆µν + UµQν + UνQµ + T µν ,

jµ = NRUµ + V µ ,
(4.44)

where Qµ,V µ, and T µν are transverse to Uµ = 0 and T µν is traceless. Regularity of the

large c limit requires that

ER =
1

c
N +

1

c3
(E +N2) + . . . , PR =

1

c
P + . . . ,

NR =
1

mc
N +

1

mc3
N2 + . . . , Qµ =

1

c
qµ +

1

c3
(ηµ + qµ2 ) + . . . , (4.45)

V µ =
1

mc
qµ +

1

mc3
qµ2 + . . . , T µν =

1

c
τµν + . . . ,

where the dots indicate terms that vanish faster than the last power of c, and the various

scalars, vectors, and tensors here do not depend on c. The non-relativistic constitutive

relations (4.23) and (4.25) are then

Ẽµ = Euµ + ηµ , T µν = Nuµuν + Phµν + uµqν + uνqµ + τµν . (4.46)

As we mentioned in (4.30) and (4.32), the relativistic expansion, shear, and acceleration

just become the non-relativistic expansion, shear, and “energy electric field” Enµ in the

c→∞ limit. However, owing to the large O(c2) terms in Cµ and Uµ, the electromagnetic

fields and vorticity are typically O(c2). One must then take care to ensure that the large c

limit is regular, that is that the non-relativistic energy current (4.25), &c, are well-defined.

Let us illustrate with two examples.

First, consider ordinary viscous hydrodynamics for a particular choice of the fluid

variables known as Landau frame, with constitutive relations

tµν =
εR
c2
UµUν +

(
p− ζRϑR

)
∆µν − ηR

(
σR
)µν

,

jµ = NUµ + σR
{
FµνUν − T∆µν∂ν

(µR
T

)}
.

(4.47)

Using that the relativistic expansion and shear become the non-relativistic expansion and

shear, we see that we demand

lim
c→∞

c ζR = ζ , lim
c→∞

c ηR = η , (4.48)

and then (4.23) gives

T µν = ρUµUν + (P − ζϑ)hµν − ησµν . (4.49)

The tensor structure multiplying the relativistic conductivity σR is O(c2), (4.33). In order

to have a well-defined energy current, (4.21) implies that σR is at least O(c−5), and then

we find that the Milne boost-invariant energy current (4.25) is

Ẽµ = εUµ −m2σ

(
(En)µ +

∂µT

T

)
, lim

c→∞
c5σR = σ , (4.50)
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from which we find that the thermal conductivity, the transport coefficient multiplying

−∂µT , is κ = m2σ/T . This is just covariant first-order non-relativistic hydrodynamics in

Eckhart frame [15]. One can work in an arbitrary relativistic fluid frame provided that the

large c limit is regular, in which case one will get first-order non-relativistic hydrodynamics

in an arbitrary fluid frame.

Our second example involves parity-violating first-order hydrodynamics in 2 + 1 di-

mensions [21]. A complete treatment of the non-relativistic limit of this hydrodynamics is

beyond the scope of this work, but here we simply want to give a taste of how the analysis

should work by focusing on the potential contributions of pseudoscalars. At one-derivative

order, there are two pseudoscalars,

B = −1

2
εµνρUµFνρ , Ω = −εµνρUµ∂νUρ . (4.51)

At large c, both are O(c3),

lim
c→∞

B

c3
= mεµνρnµ∂νnρ , lim

c→∞

Ω

c3
= −εµνρnµ∂νnρ . (4.52)

So one simple option is that the response coefficients multiplying B and Ω are O(c−4), so

that ctµν and cjµ are regular as c→∞. Then there is only one independent non-relativistic

pseudoscalar one finds in the large c limit, namely

Bn = εµνρnµ∂νnρ .

The other simple possibility is that B and Ω appear together through the O(c) combination

B +mΩ, in which case the corresponding response coefficients ought to be no larger than

O(c−2). The most general option is that B and Ω appear in tµν and jµ through

1

mc2

{
f1(T, µ) +

f2(T, µ)

c2
+ . . .

}
B +

1

c2

{
f1(T, µ) +

f3(T, µ)

c2
+ . . .

}
Ω ,

where the dots vanish vanish faster than O(c−2). The c→∞ limit then gives

f1B + (f2 − f3)Bn , B =
1

2
εµνρnµF̃νρ .

In non-relativistic first-order hydrodynamics, B and Bn are the two one-derivative pseu-

doscalars. So we see that an appropriate large c limit of B and Ω yields an arbitrary linear

combination of B and Bn.

In any case, we hope that the moral is clear: one must carefully scale the powers of c

appearing in transport coefficients in order to ensure that there is a large c limit.

4.3 Entropy

In the beginning of this section, we mentioned that the constitutive relations of hydrody-

namics are not arbitrary: they must be consistent with a local version of the second Law.

That is, for fluid flows which solve the hydrodynamic equations, there is an entropy current

Sµ which in the flat-space equilibrium is Sµ = SUµ and which satisfies

DµSµ ≥ 0 . (4.53)
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It is of course equivalent to demand (see e.g. [23])

TDµSµ + µRDµjµ + Uµ (Dνtµν −Fµνjν) ≥ 0 , (4.54)

as we have just added the Ward identities which vanish “on-shell.” It is implicit in writ-

ing (4.54) that one solves (4.54) without using the hydrodynamic equations. For various

reasons, (4.54) is a more useful version of the entropy criterion.

There is of course a non-relativistic version of this story [15]. We demand the existence

of an entropy current sµ satisfying

T
(
D̃µ − G̃µ

)
sµ + µ

(
D̃µ − G̃µ

)
Jµ −

(
D̃µ − 2G̃µ

)
Ẽµ − h̃ρ(µD̃ν)u

ρT µν ≥ 0 . (4.55)

As above, we have just added a linear combination of the particle number and energy Ward

identities to the divergence of the entropy current.

Earlier, we showed that the relativistic Ward identities imply the non-relativistic Ward

identities in the c → ∞ limit. One might then expect that if the relativistic entropy

criterion (4.54) is satisfied, then the non-relativistic one will be too. Indeed, using (4.38)

and µR = mc2 + µ, we see that this is the case with

lim
c→∞

c Sµ = sµ . (4.56)

4.4 The hydrostatic partition function

The local second Law, as described above, imposes constraints on the transport coefficients

which appear in the constitutive relations of hydrodynamics. The constraints fall into two

types, equality-type and inequality-type. A simple example of an equality-type constraint

is already visible in the constitutive relation for the current in (4.47): the local electric

field FµνUν only appears through the combination FµνUν − T∆µν∂ν
(µR
T

)
, which amounts

to the Einstein relation between electric and thermal conductivities. An inequality-type

relation is just that the electric conductivity σR must be non-negative.

Recently, it has been understood how the equality-type relations are a consequence

of symmetries. As explained in [24, 25] for relativistic thermal field theory (see also [26])

and [15] for Galilean systems, the thermal partition function of a theory on a hydrostatic

spacetime background simplifies dramatically compared to the full partition function. By

hydrostatic, we mean that the background metric and gauge fields are time-independent,

but vary slowly over long distances. The hydrostatic partition function is just the functional

integral on an appropriate Euclidean version of the time-independent spacetime, in which

case the thermal circle is much smaller than the variations on the spatial slice. One can

imagine reducing on the thermal circle. When the microscopic theory has finite correlation

length, which is almost always the case at T > 0, the effective description on the spatial slice

is a gapped field theory. It immediately follows that the hydrostatic partition function can

be written locally on the spatial slice in a gradient expansion of the spacetime background.

Each term in the gradient expansion is an integral of a gauge-invariant scalar.

One can then classify the terms that appear in the thermal partition function to any

fixed order in gradients. Varying the partition function, one finds all Euclidean zero-

frequency correlators. Matching these correlators to hydrodynamics, one finds in every
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example considered thus far that the two can be matched only if the equality-type relations

are satisfied. See also [27] for strong evidence that this is always the case.

It will probably not shock the reader that we can also obtain the NR hydrostatic

partition function from a large c limit. Let us sketch how it works. Rather than working

with a gradient expansion on the spatial slice, we use the covariant analysis of [15, 24], in

which the partition function is written in a gradient expansion on the Euclidean spacetime,

and the scalars appearing therein are built from the background and the symmetry data.

The covariant version of the statement that the background is time-independent is that

there is a timelike vector field Kµ and gauge transformation ΛK which generate a symmetry

of the background. Denoting them as K = (Kµ,ΛK), we mean that

δKgµν = £Kgµν = 0 , δKCµ = £KCµ +m∂µΛK = 0 . (4.57)

Picking coordinates and a gauge so that Kµ = δµt and ΛK = 0, (4.57) just means that gµν
and Aµ are independent of t. Let us normalize Kµ and ΛK so that they are O(1) in the

large c limit. The Euclidean spacetime is just built from Wick-rotating the affine parameter

along the integral curves of Kµ, and compactifying with imaginary periodicity β. From Kµ

and ΛK we can construct a local temperature T , fluid velocity Uµ, and chemical potential

µR via

T =
c

β
√
−K2

, Uµ =
cKµ

√
−K2

,
βµR
T

= KµCµ +mΛK . (4.58)

The relativistic hydrostatic partition function can then be written down in a gradient

expansion of gauge-invariant scalars built from the background fields, (T,Uµ, µR), and the

covariant derivative.

Taking the large c limit of (T, µR,Uµ), we find

lim
c→∞

T =
1

β nµKµ
= TNR , lim

c→∞
Uµ =

Kµ

nνKν
= uµ , (4.59)

where we abuse notation and refer to the large c limits of Kµ and ΛK as Kµ and ΛK .

These are exactly the local temperature and fluid velocity identified in [15] for a Galilean

field theory coupled to a Newton-Cartan background. We also have

µR = mc2 +mµ , lim
c→∞

µ =
KµÃµ + ΛK

nνKν
= µNR , (4.60)

where µNR is exactly the local chemical potential for a Galilean theory. Henceforth, we

drop the ‘NR’s and simple refer to the NR temperature and chemical potential as T and µ.

The hydrostatic generating functional

WR
hydrostat = −i lnZRhydrostat , (4.61)

can be “un-Wick-rotated” in such a way that it can be written as a functional of the original

background,

WR
hydrostat = WR

0 +WR
1 + . . . , WR

n =

∫
ddx
√
−gLn , (4.62)
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where Ln is a gauge-invariant O(∂n) scalar, and the integral is understood to be performed

over the Euclidean spacetime.7 The zeroth order term is just

WR
0 =

∫
ddx
√
−gp(T, µR) , (4.63)

and its variations give the stress tensor and current of ideal hydrodynamics (4.42). Regu-

larity of the large c limit means that limc→∞W
R
0 must exist, in which case p must scale

as O(c−1). That is, the limit only exists if (4.39) holds, which derives that condition, in

which case

lim
c→∞

WR
0 = W0 =

∫
ddx
√
γP (T, µ) , (4.64)

which is indeed the zero derivative term in the NR hydrostatic generating functional [15].

It turns out that WR
1 vanishes in parity-preserving theories, which corresponds to the

fact that there is no parity-preserving, dissipationless transport in first-order hydrody-

namics. The same is true in NR theories [15]: W1 vanishes in parity-preserving theories,

which matches first-order hydrodynamics. When parity is broken, W1 may be nonzero.

In two spatial dimensions, there are two pseudoscalars one can form from the spacetime

background and symmetry data, B and Ω, and so in that case

WR
1 =

∫
d3x
√
−g
{
f̃1(T, µR)B + f̃2(T, µR)Ω

}
. (4.65)

As we discussed in subsection 4.2.5, B and Ω are O(c3) at large c, but the combination

B +mΩ is O(c). Consequently, the large c limit implies that

f̃1 =
1

mc2

{
f1(T, µ) +

1

c2
f2(T, µ) + . . .

}
, f̃2 =

1

c2

{
f1(T, µ) +

1

c2
f3(T, µ) + . . .

}
,

(4.66)

where the dots vanish faster than O(c−2). Then

lim
c→∞

WR
1 = W1 =

∫
d3x
√
γ {f1(T, µ)B + (f2(T, µ)− f3(T, µ))Bn} , (4.67)

where B = 1
2ε
µνρnµF̃νρ and Bn = εµνρnµ∂νnρ are the NR boost-invariant magnetic field

and “energy magnetic field.” These are two allowed one-derivative terms that can appear

in the NR W1 [15], and so one can obtain the most general one-derivative term in the NR

W from a limit of the most general relativistic WR
1 . We do not know if it is always the

case that a general NR hydrostatic W can be obtained from a large c limit, or if the limit

places constraints on other transport allowed by NR symmetry.

5 Conclusions

In this work we have demonstrated how to obtain the full NC data describing a NR theory

on a generic curved background from a NR limit of a relativistic parent. Most importantly,

7The reason for the gymnastics with analytic continuation is simply that writing WR
hydrostat this way

makes it easy to compute the real-time hydrostatic response. One simply varies WR
hydrostat with respect to

the background fields, without having to introduce any factors of i.
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the Milne redundancy of the NC data naturally arises from this limit. We have also

confirmed that our construction nicely reproduces the known modifications of the Milne

boosts in the presence of magnetic moment terms.

We have focused on two simple examples of a relativistic parent, perturbative scalars

and hydrodynamics. It would be very interesting to implement our procedure for different

Lagrangians. In particular, in order to describe the low energy effective action of gapped

systems in 2+1 dimensions it would be imperative to take an NR limit of the gauge and

gravitational Chern-Simons terms see [3] for such a computation when nµ is constant).

Another possible generalization of interest is to study the NR limit of Dirac fermions in

curved space. While technically somewhat cumbersome, these exercises should be straight

forward given the tools developed here.

One further potential application of our results is holographic. In [9] it was argued

that if a relativistic parent has a dual description in terms of standard Einstein gravity, the

same large c limit outlined here can also be implemented in the gravity dual. One turns on

a background gauge field Cµ in an asymptotically anti-de Sitter (AdS) background whose

boundary value is given by the same Ct = mc2 used in this work for the special case that

nµ points only in the time direction. As argued in [9], a constant Ct in the bulk cannot be

gauged away at non-zero charge density. If we now take the c→∞ limit in the bulk, most

degrees of freedom decouple. [9] used symmetries to argue that the resulting theory is a

variant of Horava gravity [28]. If we insist to only mod out by diffeomorphisms in the bulk

that leave the leading O(c2) term in Ct invariant, we are left with time-dependent spatial

diffeomorphisms as well as time reparametrizations, the defining symmetries of Horava

gravity. Standard Horava gravity can be rewritten as Einstein gravity coupled to a scalar

field, the khronon [29, 30], whose time gradient picks a preferred time direction. Instead of

this scalar, the preferred time direction in holographic construction described in [9] is fixed

by Ct, so that theory was referred to as Horava gravity with a “vector khronon.” An explicit

string theory embedding of this scenario is just a null reduction of pure AdS [31]. Of course

we can restore the full relativistic diffeomorphism invariance if we let the leading term in

Cµ, which on the boundary gives nµ, transform non-trivially. The field theory analysis

performed in this work shows that in this case the boundary theory is best described in

terms of NC data redundant under Milne boosts, and so the same is true about the bulk

theory dual to this limiting procedure. However, it is not clear to us how or even if the

Milne invariance is realized in Horava gravities apart from this limit.

Other than the physical interpretation of the Milne boosts, maybe the most important

insight gained from our construction is an answer to the question of when a NR theory

should have a good relativistic parent. At least, we found an answer when the NR theory

is just realized as the large c limit of a perturbative relativistic theory. We saw that de-

manding that a NR theory comes from a limit from a relativistic parent restricted the NR

couplings beyond what is imposed by the NR symmetries. For example, in two spatial di-

mensions, there are two NR magnetic moments that are consistent with the NR symmetries.

However, only one of them is realized from the large c limit. We traced this difference to the

fact that in the NR theory one does not demand invariance under gauge transformations

that shift the leading O(mc2) term in the relativistic background gauge field.
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As all NR systems in our world do in fact follow as NR limits of an underlying rel-

ativistic theory, one may wonder if they should obey the strong requirement of following

from a reduction procedure as outlined here. However, we note that we only performed

our construction at the free field level as well as in the hydrodynamic limit. We can only

argue for this more stringent constraint on the daughter theory in the case that both the

parent and the daughter are free theories (or small perturbations thereof) or within the

hydrodynamic regime. If our results were to continue to hold in the case of generic interact-

ing theories, this would put additional strong constraints on, say, the low energy effective

action of Hall systems that can appear in nature. Not every Galilean boost invariant low

energy effective action that can be written on a piece of paper would actually be realizable

as a physical theory.
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their holographic Hořava gravity duals, Phys. Rev. Lett. 110 (2013) 081601

[arXiv:1211.0010] [INSPIRE].

– 29 –

http://dx.doi.org/10.1088/1126-6708/2009/09/060
http://arxiv.org/abs/0906.1201
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1201
http://dx.doi.org/10.1088/1126-6708/2009/10/029
http://arxiv.org/abs/0906.3046
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3046
http://dx.doi.org/10.1103/PhysRevLett.110.081601
http://arxiv.org/abs/1211.0010
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0010

	Introduction
	The non-relativistic limiting procedure
	Newton-Cartan from a relativistic parent
	Transformation properties and Milne boosts
	The connection

	Magnetic moments
	The g-factor
	Relativistic parent
	A note on gauge invariance
	The modified Milne boost

	Hydrodynamics
	Some preliminaries
	The large c limit
	The non-relativistic stress tensor and energy current
	The non-relativistic velocity
	The non-relativistic Ward identities
	Ideal hydrodynamics
	Beyond ideal hydrodynamics

	Entropy
	The hydrostatic partition function

	Conclusions

