
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Revisiting Projection-Free Optimization for Strongly Convex Constraint Sets

Jarrid Rector-Brooks
2260 Hayward St

Ann Arbor, MI, 48104
University of Michigan, Ann Arbor

jrectorb@umich.edu

Jun-Kun Wang*

226 Ferst Drive NW
Atlanta, GA, 30332

Georgia Institute of Technology
jimwang@gatech.edu

Barzan Mozafari
2260 Hayward St

Ann Arbor, MI, 48104
University of Michigan, Ann Arbor

mozafari@umich.edu

Abstract

We revisit the Frank-Wolfe (FW) optimization under strongly
convex constraint sets. We provide a faster convergence rate
for FW without line search, showing that a previously over-
looked variant of FW is indeed faster than the standard variant.
With line search, we show that FW can converge to the global
optimum, even for smooth functions that are not convex, but
are quasi-convex and locally-Lipschitz. We also show that,
for the general case of (smooth) non-convex functions, FW
with line search converges with high probability to a stationary
point at a rate of O( 1

t
), as long as the constraint set is strongly

convex—one of the fastest convergence rates in non-convex
optimization.

1 Introduction

A popular family of optimization algorithms are so-called
gradient descent algorithms: iterative algorithms that are com-
prised of a gradient descent step at each iteration, followed
by a projection step when there is a feasibility constraint. The
purpose of the projection is to ensure that the update vector
remains within the feasible set.

In many cases, however, the projection step may have
no closed-form and thus requires solving another optimiza-
tion problem itself (e.g., for l1.5 norm balls or matroid poly-
topes (Hazan and others 2016; Hazan and Kale 2012)), the
closed-form may exist but involve an expensive computation
(e.g., the SVD of the model matrix for Schatten-1, Schatten-
2, and Schatten-∞ norm balls (Hazan and others 2016)),
or there may simply be no method available for computing
the projection in general (e.g., the convex hull of rotation
matrices (Hazan, Kale, and Warmuth 2010), which arises
as a constraint set in online learning settings (Hazan, Kale,
and Warmuth 2010)). In these scenarios, each iteration of
the gradient descent may require many “inner” iterations to
compute the projection (Jaggi, Sulovsk, and others 2010;
Lacoste-Julien and Jaggi 2015; Hazan and Kale 2012). This
makes the projection step quite costly, and can account for
much of the execution time of each iteration (see our techni-
cal report (Rector-Brooks, Wang, and Mozafari 2018)).

*Work performed while a PhD student at the University of Michi-
gan, Ann Arbor.
Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Frank-Wolfe (FW) optimization — In this paper, we fo-
cus on (FW) approaches, also known as projection-free or
conditional gradient algorithms (Frank and Wolfe 1956). Un-
like gradient descent, these algorithms avoid the projection
step altogether by ensuring that the update vector always
lies within the feasible set. At each iteration, FW solves a
linear program over a constraint set. Since linear programs
have closed-form solutions for most constraint sets, each it-
eration of FW is, in many cases, more cost effective than
conducting a gradient descent step and then projecting it
back to the constraint set (Jaggi 2013; Hazan and Kale 2012;
Hazan and others 2016).

Another main advantage of FW is the sparsity of its so-
lution. Since the solution of a linear program is always
a vertex (i.e., extreme point) of the feasible set (when
the set itself is convex), each iteration of FW can add, at
most, one new vertex to the solution vector. Thus, at iter-
ation t, the solution is a combination of, at most, t + 1
vertices of the feasible set, thereby guaranteeing the spar-
sity of the eventual solution (Clarkson 2010; Jaggi 2013;
Jaggi 2011).

For these reasons, FW optimization has drawn grow-
ing interest in recent years, especially in matrix comple-
tion, structural SVM, computer vision, sparse PCA, met-
ric learning, and many other settings (Jaggi, Sulovsk, and
others 2010; Lacoste-Julien et al. 2013; Osokin et al. 2016;
Wang et al. 2016; Chari et al. 2015; Harchaoui et al. 2012;
Hazan and Kale 2012; Shalev-Shwartz, Gonen, and Shamir
2011). Unfortunately, while faster in each iteration, standard
FW requires many more iterations to converge than gradient
descent, and therefore is slower overall. This is because FW’s
convergence rate is typically O

(

1
t

)

while that of (acceler-

ated) gradient descent is O
(

1
t2

)

, where t is the number of
iterations (Jaggi 2013).

We make several contributions (summarized in Table 1):

1. We revisit a non-conventional variant of FW optimization,
called Primal Averaging (PA) (Lan 2013), which has been
largely neglected in the past, as it was believed to have
the same convergence rate as FW without line search, yet
incurring extra computations (i.e., matrix averaging step)
at each iteration. However, we discover that, when the
constraint set is strongly convex, this non-conventional
variant enjoys a much faster convergence rate with high
probability, O( 1

t2 ) versus O( 1t ), which more than com-
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Additional Assumptions
about the Loss Function

Constraint Set
Assumption

Convergence
Rate

Requires Line Search
(In Each Iteration)

Convex Loss Function

This Paper None Strongly convex O
(

1
t2

)

with
high probability

No

State-of-the-Art Result(s)

(Jaggi 2013) None Convex O
(

1
t

)

No

(Garber and Hazan 2015) Strongly convex Strongly convex O
(

1
t2

)

Yes
(Lacoste-Julien and Jaggi

2015)
Strongly convex Polytope O (exp (−t)) Yes

(Levitin and Polyak 1966;
Demyanov and Rubinov 1970;
Dunn 1979)

Norm of the gradient
is lower bounded

Strongly convex O (exp (−t)) No

(Beck and Teboulle 2004) f(x) = ∥Ax− b∥
2
2 Convex O (exp (−t)) No

Quasi-Convex Loss Function

This Paper Locally-Lipschitz,
Norm of the gradient
is lower bounded

Strongly convex O
(

min
(

1
t1/3

, 1
t1/2

))

Yes

State-of-the-Art Result(s)
Does not exist Does not exist Does not exist Does not exist Does not exist

Non-Convex Loss Function

This Paper None Strongly convex O
(

1
t

)

with
high probability

Yes

State-of-the-Art Result(s)

(Lacoste-Julien 2016) None Convex O
(

1
t1/2

)

No

Table 1: Our contributions compared to the state-of-the-art results for projection-free optimization. Here, t is the
number of iterations. For non-convex functions, convergence is defined in terms of a stationary point instead of
a global minimum. Note that although our bound is probabilistic for convex loss functions, we use no additional
assumptions on the loss function and do not require line search, which can be a costly operation for big data (see
Section 2).

pensates for its slightly more expensive iterations. This
surprising result has important ramifications in practice,
as many classification, regression, multitask learning,
and collaborative filtering tasks rely on norm constraints
that are strongly convex, e.g., generalized linear mod-
els with lp norm, squared loss regression with lp norm,
multitask learning with Group Matrix norm, and matrix
completion with Schatten norm (Kim and Xing 2010;
Garber and Hazan 2015; Hazan and others 2016).

2. While previous work on FW optimization has generally
focused on convex functions, we show that FW with
line search can converge to the global optimum, even
for smooth functions that are not convex, but are quasi-
convex and locally-Lipschitz.

3. We also study the general case of (smooth) non-convex
functions, showing that FW with line search can converge
to a stationary point at a rate of O( 1t ) with high proba-
bility, as long as the constraint set is strongly convex.
To the best of our knowledge, we are not aware of such
a fast convergence rate in the non-convex optimization
literature.1

4. Finally, we conduct extensive experiments on various
benchmark datasets, empirically validating our theoret-
ical results, and comparing the actual performance of
various FW variants in practice.

1Without any assumptions, converging to local optima for con-
tinuous non-convex functions is NP-hard (Carmon et al. 2017;
Agarwal et al. 2017).

2 Related Work

Table 1 compares the state-of-the-art on projection-free opti-
mization to our contributions.

Convex optimization — Garber and Hazan (Garber and
Hazan 2015) show that for strongly convex and smooth loss
functions, FW with line search achieves a convergence rate
of O( 1

t2 ) over strongly convex sets. In contrast, we do not
need the loss function to be strongly convex. Further, they
require an exact line search at each iteration to achieve this
convergence rate. Line search, however, comes with signif-
icant downsides. An exact line search solves the problem
min

γ∈[0,1]
f(x+ γv) for loss function f , solution vector x ∈ R

n,

and descent direction v ∈ R
n. There are several methods for

solving this optimization, and choosing the best method is
often difficult for practitioners (e.g., bracketing line searches
versus interpolation ones). Moreover, at best, these methods
converge to the minimum at a rate of O

(

1
t2

)

(Sun and Yuan
2006). Approximate line searches require fewer iterations.
However, in using them, one loses most theoretical guaran-
tees provided in previous work, including that of (Garber
and Hazan 2015). Nonetheless, both exact and inexact line
searches involve at least one evaluation of the loss function or
one of its derivatives, which can be quite prohibitive for large
datasets (see Section 7.2). This is because the underlying
function for data modeling is typically in the form of a finite
sum (e.g., regression loss) over all the data. In comparison,
Primal Averaging, which we study and promote, does not
require a line search and works with a predefined step size.
Notably, this allows PA to considerably outperform FW with

1577



line search (see Section 7.2).

Prior work (Levitin and Polyak 1966; Demyanov and Ru-
binov 1970; Dunn 1979) shows that standard FW without
line search for smooth functions can achieve an exponential
convergence rate, by making a strict assumption that the gra-
dient is lower-bounded everywhere in the feasible set. In our
analysis of PA, however, we do not assume the gradient is
lower-bounded everywhere, allowing our result to be more
widely applicable.

Quasi-convex optimization — Hazan et al. study quasi-
convex and locally-Lipschitz loss functions that admit some
saddle points (Hazan, Levy, and Shalev-Shwartz 2015). One
of the optimization algorithms for this class of functions is
the so-called normalized gradient descent, which converges
to an ϵ-neighborhood of the global minimum. The analysis
in (Hazan, Levy, and Shalev-Shwartz 2015) is for uncon-
strained optimization. In this paper, we analyze FW for the
same class of functions, but with strongly convex constraint
sets. Interestingly, when the constraint set is an l2 ball, FW
becomes equivalent to normalized gradient descent. In this
paper, we both 1) show that FW can converge to a neigh-
borhood of a global minimum, and 2) derive a convergence
rate. (Dunn 1979) extends the analysis of FW to a class of
quasi-convex functions of the form f(w) := g(h(w)), where
h is differentiable and monotonically increasing, and g is a
smooth function. Such functions are quite rare in machine
learning. In contrast, we study a much more general class
of quasi-convex functions, including several popular models
(e.g., generalized linear models with a sigmoid loss).

Non-convex optimization — While there has been a surge
of research on non-convex optimization in recent years (Car-
mon et al. 2017; Ge et al. 2015; Agarwal et al. 2017;
Lee et al. 2016; Lacoste-Julien 2016), nearly all of it
has focused on unconstrained optimization. To our knowl-
edge, there are only a few exceptions (Lacoste-Julien 2016;
Ghadimi and Lan 2016; Ge et al. 2015; Reddi et al. 2016).
(Lacoste-Julien 2016) proves that FW for smooth non-convex
functions converges to a stationary point, at a rate of O( 1√

t
),

which matches the rate of projected gradient descent. (Reddi
et al. 2016) extends this and considers a stochastic version of
FW for smooth non-convex functions. Furthermore, Theorem
7 of (Yu, Zhang, and Schuurmans 2014) provides a conver-
gence rate for non-convex optimization using FW, which is
slower than O( 1√

t
). We show in this paper that, for strongly

convex sets, FW converges to a stationary point with high
probability much faster: O( 1t ).

3 Background

3.1 Preliminaries

Strongly convex constraint sets are quite common in machine
learning. For example, when p ∈ (1, 2], lp balls {u ∈ R

n :
∥u∥p ≤ r} and Schatten-p balls {X ∈ R

m×n : ∥X∥
Sp
≤ r}

are all strongly convex (Garber and Hazan 2015), where

∥X∥
Sp

=
(

∑min(m,n)
i=1 σ(X)pi

)1/p

is the Schatten-p norm

and σ(X)i is the ith largest singular value of X . Group
lp,q balls, used in multitask learning (Garber and Hazan

2015; Kim and Xing 2010), are also strongly convex when
p, q ∈ (1, 2]. In this paper, we use the following definitions.

Definition 1 (Strongly convex set). A convex set Ω ⊆ R
d is

an α-strongly convex set with respect to a norm ∥·∥ if for any
u, v ∈ Ω and any θ ∈ [0, 1], the ball induced by ∥ · ∥ which
is centered at θu+ (1− θ)v with radius θ(1− θ)α2 ∥u− v∥

2

is also included in Ω.

Definition 2 (Quasi-convex functions). A function
f : Rd → R is quasi-convex if for all u, v ∈ R

d such that
f(u) ≤ f(v), it follows that ⟨∇f(v), u− v⟩ ≤ 0, where
⟨·, ·⟩ is the standard inner product.

Definition 3 (Strictly-quasi-convex functions). A function
f : Rd → R is strictly-quasi-convex if it is quasi-convex and
its gradients only vanish at the global minimum. That is, for
all u ∈ R

d, it follows that f(u) > f(u∗) ⇒ ∥∇f(u)∥ ̸= 0
where u∗ is the global minimum.

Definition 4 (Strictly-locally-quasi-convex functions). Let
u, v ∈ R

d, κ, ϵ > 0. Further, write Br(x) as the Euclidean
norm ball centered at x of radius r where x ∈ R

d and r ∈ R.
We say f : Rd → R is (ϵ, κ, v)-strictly-locally-quasi-convex
in u if at least one of the following applies:

1. f(u)− f(v) ≤ ϵ

2. ∥∇f(u)∥ > 0 and for every y ∈ B ϵ
κ
(v) it holds that

⟨∇f(u), y − u⟩ ≤ 0

3.2 A Brief Overview of Frank-Wolfe (FW)

The Frank-Wolfe (FW) algorithm (Algorithm 1) attempts
to solve the constrained optimization problem min

x∈Ω
f(x) for

some convex constraint set Ω (a.k.a. feasible set) and some
function f : Ω→ R. FW begins with an initial solutionw0 ∈
Ω. Then, at each iteration, it computes a search direction vt
by minimizing the linear approximation of f at wt, vt =
min
v∈Ω
⟨v,∇f(wt)⟩, where ∇f(wt) is the gradient of f at wt.

Next, FW produces a convex combination of the current
iterate wt and the search direction vt to find the next iterate
wt+1 = (1− γt)wt + γtvt where γt ∈ [0, 1] is the learning
rate for the current iteration. There are a number of ways
to choose the learning rate γt. Chief among these are setting
γt = 2

t+1 (Algorithm 1, option A) or finding γt via line

search (Algorithm 1, option B).

4 Faster Convergence Rate for Smooth

Convex Functions

4.1 Primal Averaging (PA)

PA (Lan 2013) (Algorithm 2) is a variant of FW that op-
erates in a style similar to Nesterov’s acceleration method.
PA maintains three sequences, (zt−1)t=1,2,..., (vt)t=1,2,...,
and (wt)t=1,2,.... The first is the accelerating sequence (as in
Nesterov acceleration), the second is the sequence of search
directions, and the third is the sequence of solution vectors.
At each iteration, PA updates its sequences by computing two
convex combinations and consulting the linear oracle, such
that

zt−1 = (1− γt)wt−1 + γtvt−1
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Algorithm 1 Standard Frank-Wolfe algorithm

1: Input: loss f : Ω→ R.
2: Input: linear opt. oracle O(·) for Ω.
3: Initialize: any w1 ∈ Ω.
4: for t = 1, 2, 3, . . . do
5: vt ← O(∇f(wt)) = argminv∈Ω⟨v,∇f(wt)⟩.
6: Option (A): Predefined decay learning rate {γt ∈ [0, 1]}t=1,2,...

7: Option (B): γt=argminγ∈[0,1] γ⟨vt − wt,∇f(wt)⟩+ γ2 L
2 ∥vt − wt∥

2.

8: wt+1 ← (1− γt)wt + γtvt.
9: end for

Algorithm 2 Primal Averaging

1: Initialize any v0 ∈ Ω ⊂ R
d. Set w0 = v0.

2: for t = 1, 2, 3, . . . do
3: γt =

2
t+1 .

4: zt−1 = (1− γt)wt−1 + γtvt−1.

5: Option (A): pt = Σt
i=1

θi
Θt
∇f(zi−1), where Θt = Σt

i=1θi, θt = t, and θt
Θt

= γt.

6: Option (B): pt = ∇f(zt−1).
7: vt = argmin

v∈Ω
⟨v, pt⟩.

8: wt = (1− γt)wt−1 + γtvt.
9: end for

vt = argmin
v∈Ω

⟨Θ−1
t

t
∑

i=1

θi∇f(zi−1), v⟩

wt = (1− γt)wt−1 + γtvt

where Θt =
∑t

i=1 θi and the θi are chosen, such that

γt = θt
Θt

. Note that choosing θt does not require signifi-

cant computation as setting θt = t satisfies the requirement

γt =
θt
Θt

for all t. 2

Since zt−1 and wt are convex combinations of elements of
the constraint set Ω, zt−1 and wt are themselves in Ω. While
the input to the linear oracle is a single gradient vector in
standard FW, PA uses an average of the gradients seen in
iterations 1, 2, . . . , t as the input to the linear oracle.

In standard FW, the sequence (wt)t=1,2,... has the follow-
ing property (Jaggi 2013; Lan 2013; Hazan and others 2016):

f(wt)− f(w
∗) ≤

2L

t(t+ 1)
Σt

i=1 ∥vi − wi−1∥
2

(1)

where w∗ is an optimal point and L is the smoothness param-

eter of f . We observe that the 1
t

∑t
i=1 ∥vi − wi−1∥ factor

of (1) is the average distance between the search direction
and solution vector pairs. Denote the diameter D of Ω as
D = sup

u,v∈Ω
∥u− v∥. Then, since wi−1 and vi are both in Ω,

we find that 1
t

∑t
i=1 ∥vi − wi−1∥ ≤ D. That is, the average

distance of vi andwi−1 is upper bounded by diameterD of Ω.
Combining this with (1) yields standard FW’s convergence

2 If θt = t then θt
Θt

= t∑t
i=1

i
= 2t

t(t+1)
= 2

t+1
= γt.

rate:

f(wt)− f(w
∗) ≤

2L

t(t+ 1)
Σt

i=1 ∥vi − wi−1∥
2

≤
2LD2

t+ 1
= O

(

1

t

) (2)

PA has a similar guarantee for the sequence (wt)t=1,2,... (Lan
2013). Namely

f(wt)− f(w
∗) ≤

2L

t(t+ 1)
Σt

i=1∥vi − vi−1∥
2 (3)

While the inability to guarantee an arbitrarily small distance
between vi and wi in Equation 1 caused standard FW to
converge asO( 1t ), this is not the case for the distance between
vi and vi−1 in Equation 3. Should we be able to bound the
distance ∥vi − vi−1∥ to be arbitrarily small, we can show that
PA converges as O( 1

t2 ) with high probability. We observe
that the sequence (vt)t=1,2,... expresses this behavior when
the constraint set is strongly convex. We have the following
theorem.3

Theorem 1. Assume the convex function f is smooth with
parameter L. Further, define the function h as h(w) =
f(w) + θξTw where θ ∈

(

0, ϵ
4D

]

, ξ ∈ R
d, w ∈ Ω, Ω is

an α-strongly convex set, D is the diameter of Ω, and ξ is
uniform on the unit sphere. Applying PA to h yields the
following convergence rate for f with probability 1− δ,

f(wt)− f(w
∗) = O

(

dL

α2δ2t2

)

3All omitted proofs can be found in our technical report (Rector-
Brooks, Wang, and Mozafari 2018).
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Theorem 1 states that applying PA to a perturbed function
h over an α-strongly convex constraint set allows any smooth,
convex function f to converge as O

(

1
t2

)

with probability
1− δ, albeit depending on δ and d. However, as t grows, the
t2 term in the convergence rate’s denominator quickly domi-
nates the rate’s δ and d terms. This, combined with PA’s non-
reliance on line search, allows it to outperform the method
proposed in (Garber and Hazan 2015). We note that, although
Theorem 1 requires us to run PA on the perturbed function
h, f itself still converges as O

(

1
t2

)

with high probability.
That is, the iterates wt produced by running PA on h them-
selves have the guarantee of f(wt) − f(w

∗) = O
(

dL
α2δ2t2

)

for w∗ = argmin
w∈Ω

f(w) with probability 1 − δ. We also

empirically investigate this result in Section 7.

4.2 Stochastic Primal Averaging (SPA)

Here we provide a stochastic version of Primal Averaging.
While in the previous section we studied PA with Option
(A) of Algorithm 2, we now consider PA with Option (B)
of Algorithm 2, providing an analysis of its stochastic ver-

sion. That is, pt = ∇̃f(zt−1), where ∇̃f represents the

aggregated stochastic gradient constructed as ∇̃f(zt−1) =
∑

i∈St
∇̂fi(zt−1). Further, ∇̂fi(·) is the stochastic gradient

computed with the ith item of a dataset of size N , while
St is the set of indices sampled without replacement from
{1, 2, . . . , N} at iteration t. We note that |St| = min(t4, N).

Theorem 2. Assume the convex function f is smooth with
parameter L. Denote σ as the variance of a stochastic gra-

dient. Suppose pt = ∇̃f(zt−1) and the number of samples
used to obtain pt is nt = O(t4). Further, define the function

h as h(w) = f(w) + θξTw where θ ∈
(

0, ϵ
4D

]

, ξ ∈ R
d,

w ∈ Ω, Ω is an α-strongly convex set, D is the diameter of Ω,
and ξ is uniform on the unit sphere. Then applying PA to h
yields the following convergence rate for f with probability
1− δ,

E[f(wt)]− f(w
∗) = O

(

dL2(D2 + σ) log t

α2δ2t2

)

Theorem 2 states that the stochastic version of PA main-

tains an O
(

log t
t2

)

convergence rate with high probability,

using h in a manner similar to Theorem 1. Note that nt grows
as O(t4) until it begins to use all the data points to compute
the gradient. Thus, for earlier iterations of SPA, the algorithm
requires far less computation than its deterministic counter-
part. However, the samples required in each iteration grows
quickly, causing later iterations of SPA to share the same
computational cost as deterministic Primal Averaging.

5 Strictly-Locally-Quasi-Convex Functions

In this section we show that FW with line search can converge
within an ϵ-neighborhood of the global minimum for strictly-
locally-quasi-convex functions. Furthermore, if it is assumed
that the norm of the gradient is lower bounded, then FW with
line search can converge within an ϵ-neighborhood of the
global minimum in O

(

max
(

1
ϵ2 ,

1
ϵ3

))

iterations.

Theorem 3. Assume that the function f is smooth with
parameter L, and that f is (ϵ, κ, w∗)-strictly-locally-quasi-
convex, where w∗ is a global minimum. Then, the standard
FW algorithm with line search (Algorithm 1 option (B)) can
converge within an ϵ-neighborhood of the global minimum
when the constraint set is strongly convex. Furthermore, if
one assumes that f(w)− f(w∗) ≥ ϵ implies that the norm of
the gradient is lower bounded as ∥∇f(w)∥ ≥ θϵ for some

θ ∈ R, then the algorithm needs t = O(max( 2κ
θϵ2 ,

8Lκ
θϵ3 )) iter-

ations to produce an iterate that is within an ϵ−neighborhood
of the global minimum.

Hazan et al. (Hazan, Levy, and Shalev-Shwartz 2015) pro-
vide several examples of strictly-locally-quasi-convex func-
tions. First, if ϵ ∈ (0, 1] and x = (x1, x2) ∈ [−10, 10]2, then
the function

g(x) = (1 + e−x1)−1 + (1 + e−x2)−1

is (ϵ, 1, x∗)-strictly-locally-quasi-convex in x. Second, if ϵ ∈
(0, 1) and w ∈ R

d, then the function

h(w) =
1

m

m
∑

i=1

(yi − φ(⟨w, xi⟩))
2

is (ϵ, 2γ , w
∗)-strictly-locally-quasi-convex in w. Here,

φ(z) = 1z≥0, γ ∈ R is the margin of a perceptron, and
we have m samples {(xi, yi)}

m
i=1 ∈ B1(0) × {0, 1} where

B1(0) ⊂ R
d.

6 Smooth Non-Convex Functions

In this section, we show that, with high probability, FW with
line search converges as O

(

1
t

)

to a stationary point when the
loss function is non-convex and the constraint set is strongly
convex. To our knowledge, a rate this rapid does not exist in
the non-convex optimization literature.

To help demonstrate our theoretical guarantee, we intro-
duce a measure called the FW gap. The FW gap of f at a point
wt ∈ Ω is defined as kt := maxv∈Ω⟨v−wt,−∇f(wt)⟩. This
measure is adopted in (Lacoste-Julien 2016), which is the
first work to show that, for smooth non-convex functions,

FW has an O
(

1√
t

)

convergence rate to a stationary point

over arbitrary convex sets. The O
(

1√
t

)

rate matches the

rate of projected gradient descent when the loss function is
smooth and non-convex. It has been shown (Lacoste-Julien
2016) that a point wt is a stationary point for the constrained
optimization problem if and only if kt = 0.

Theorem 4. Assume that the non-convex function f is
smooth with parameter L and the constraint set Ω is α-
strongly convex and has dimensionality d. Further, define
the function h as h(w) = f(w) + θξTw where θ ∈

(

0, ϵ
4D

]

,

ξ ∈ R
d, w ∈ Ω, D is the diameter of Ω, and ξ is uniform on

the unit sphere. Let ℓ1 = f(w1)− f(w
∗) and C ′ = αδ

√
π

8L
√
2d

.

Then applying FW with line search to h yields the following
guarantee for the FW gap of f with probability 1− δ,

min
1≤s≤t

ks ≤
ℓ1

tmin{ 12 , C
′}

= O

(

1

t

)
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Convexity of Loss Function Loss Function Constraint Task

Convex
Quadratic Loss lp norm Regression

Observed Quadratic Loss Schatten-p norm Matrix Completion

Strictly-Locally-Quasi-Convex Squared Sigmoid lp norm Classification

Non-Convex Bi-Weight Loss lp norm Robust Regression

Table 2: Various loss functions and constraint sets used in our experiments.

(a) Matrix completion w/ convex (observed
quadratic) loss, Schatten-2 norm constraint.

(b) Classification w/ quasi-
convex (squared sigmoid) loss,
l2 norm constraint.

(c) Regression w/ non-convex (bi-weight)
loss, l2 norm constraint.

Figure 1: Convergence rates of FW variants for convex loss without line search and non-convex loss with line search.

We would further discuss the result stated in the theorem.
In non-convex optimization literature, Nesterov and Polyak
(Nesterov and Polyak 2006) show that cubic regularization

of Newton’s method can find a stationary point in O(ϵ−3/2)
iterations and evaluations of the Hessian. First order methods,
such as gradient descent, typically require O(ϵ−2) iterations
(Carmon et al. 2017) to converge to a stationary point. Recent
progress on first order methods, however, assumes some mild

conditions and show that an improved rate of O(ϵ−7/4) is
possible (Carmon et al. 2017; Agarwal et al. 2017). Here, we
show that when the constraint set is strongly convex, FW with
line search only needs O(ϵ−1) iterations to arrive within an
ϵ-neighborhood of a stationary point. It is important to note,
although the O(ϵ−1) convergence rate holds probabilistically,
it is quite fast compared to the known rates in the non-convex
optimization literature.

7 Experiments

We have conducted extensive experiments on different combi-
nations of loss functions, constraint sets, and real-life datasets
(Table 2). Here, we only report two main sets of experiments:
the empirical validation of our theoretical results in terms of
convergence rates (Section 7.1) and the comparison of vari-
ous optimizations in terms of actual run times (Section 7.2).
We refer the interested reader to our technical report for ad-
ditional experiments (Rector-Brooks, Wang, and Mozafari
2018).

For classification and regression, we used the logistic and
quadratic loss functions. For matrix completion, we used the
observed quadratic loss (Freund, Grigas, and Mazumder
2017), defined as f (X) =

∑

(i,j)∈P (M)(Xi,j − Mi,j)
2

where X is the estimated matrix, M is the observed ma-
trix, and P (M)={(i, j) : Mi,j is observed}. As a non-
convex, but strictly-locally-quasi-convex loss, we also used
squared sigmoid loss ϕ(z) = (1 + exp(−z))−1 (Hazan,
Levy, and Shalev-Shwartz 2015) for classification. For ro-
bust regression, we used the bi-weight loss (Belagiannis et
al. 2015), as a non-convex (but smooth) loss ψ(f(xi), yi) =
(f(xi)− yi)

2

1 + (f(xi)− yi)2
.

For regression, we used the YearPredictionMSD dataset
(500K observations, 90 features) (Lichman 2013). For clas-
sification, we used the Adult dataset (49K observations, 14
features) (Lichman 2013). For matrix completion, we used
the MovieLens dataset (1M movie ratings from 6,040 users
on 3,900 movies) (Harper and Konstan 2016).

7.1 Empirical Validation of Convergence Rates

We ran several experiments to empirically validate our con-
vergence results. In particular, we studied the performance of
Primal Averaging (PA) and standard FW With Line Search
(FWLS) with both l2 and Schatten-2 norm balls as our
strongly convex constraint sets.

Theorem 1 guarantees a convergence rate of O( 1
t2 ) for

PA when the constraint set is strongly convex and the loss
function is convex. We experimented with both l2 (logistic
classifier) and Schatten-2 norm (matrix completion) balls,
measuring the loss value at each iteration. As shown in Fig-
ure 1a, a slope of −2.41 confirms Theorem 1’s guarantee,
which predicts a slope of at least −2.

Theorem 3 shows that FWLS converges to the global min-
imum at the rate of O

(

min
(

1
t1/3

, 1
t1/2

))

when the constraint
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(a) PA vs. standard FW variants. (b) PA vs. gradient descent. (c) Stochastic PA vs. stochastic GD.

Figure 2: PA versus (a) other FW variants, (b) gradient descent, and (c) stochastic gradient descent.

set is strongly convex and the loss function is strictly-locally-
quasi-convex. We investigated this result with the squared
sigmoid loss and an l2 norm constraint. Figure 1b exhibits
our results, showing a slope of −2.12, a finding better than
the worst-case bounds given by Theorem 3, i.e., a slope of
−0.5 (see our technical report (Rector-Brooks, Wang, and
Mozafari 2018) for a detailed discussion).

From Theorem 4, we expect FWLS to converge to a sta-
tionary point of a (smooth) non-convex function at a rate of
O( 1t ) when constrained to a strongly convex set. Using the
bi-weight loss and an l2 norm constraint, we measured the
loss value at each iteration. As shown in Figure 1c, the results
confirmed our theoretical results, showing an even steeper
slope (−1.46 instead of −1, since Theorem 4 only provides
a worst-case upper bound).

7.2 Comparison of Different Optimization
Algorithms

To compare the actual performance of various optimization
algorithms, we measure the run times, instead of the number
of iterations to convergence, in order to account for the time
spent in each iteration. In Figure 2, dotted vertical lines mark
the convergence points of various algorithms.

First, we compared all three variants of FW: PA, standard
FW With Predefined Learning Rate (FWPLR) defined in
Algorithm 1 with option A, and standard FW With Line
Search (FWLS) defined in Algorithm 1 with option B. All
methods were tested on a regression task (quadratic loss)
with an ℓ2 norm ball constraint.

As shown in Figure 2a, PA converged 3.7× and 15.6×
faster than FWPLR and FWLS, respectively. This consider-
able speedup has significant ramifications in practice. Tra-
ditionally, PA has been shied away from, due to its slower
iterations, while its convergence rate was believed to be the
same as the more efficient variants (Lan 2013). However, as
proven in Section 4, PA does converge in fewer iterations.

We also compared the run time of PA versus projected
gradient descent (regression task with a quadratic loss). We
compared their deterministic versions in Figure 2b, where
PA converged significantly faster (7.7×), as expected. For
a fair comparison of their stochastic versions, Stochastic
Primal Averaging (SPA) and Stochastic Gradient Descent

(SGD), we considered two cases: an l2 constraint (which
has an efficient projection) and l1.1 constraint (which has
a costly projection). As expected, for an efficient projec-
tion, SGD converged 4.6× faster than SPA (Figure 2c), and
when the projection was costly, SPA converged 25.1× faster
(see (Rector-Brooks, Wang, and Mozafari 2018) for detailed
plots).

8 Conclusion

In this paper, we revisited an important class of optimization
techniques, FW methods, and offered new insight into their
convergence properties for strongly convex constraint sets,
which are quite common in machine learning. Specifically,
we discovered that, for convex functions, a non-conventional
variant of FW (i.e., Primal Averaging) converges significantly
faster than the commonly used variants of FW with high
probability. We also showed that PA’s O( 1

t2 ) convergence
rate more than compensates for its slightly more expen-
sive computational cost at each iteration. We also proved
that for strictly-locally-quasi-convex functions, FW can con-
verge to within an ϵ-neighborhood of the global minimum
in O

(

max( 1
ϵ2 ,

1
ϵ3 )

)

iterations. Even for non-convex func-
tions, we proved that FW’s convergence rate is better than
the previously known results in the literature with high proba-
bility. These new convergence rates have significant ramifica-
tions for practitioners, due to the widespread applications of
strongly convex norm constraints in classification, regression,
matrix completion, and collaborative filtering. Finally, we
conducted extensive experiments on real-world datasets to
validate our theoretical results and investigate our improve-
ment over existing methods. In summary, we showed that PA
reduces optimization time by 2.8–15.6× compared to stan-
dard FW variants, and by 7.7–25.1× compared to projected
gradient descent. Our plan is to integrate PA in machine learn-
ing libraries libraries, including our BlinkML project (Park
et al. 2018).
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