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Revisiting Proportional Fairness: Anonymity Among
Users 1n Interference Coupled Wireless Systems

Holger Boche, Senior Member, IEEE, and Siddharth Naik

Abstract—The paper revisits the problem of proportional
fairness in interference coupled wireless systems. It models
interference coupling in wireless systems based on an interference
function framework through a set of axioms (introduced by Yates
in 1995). It utilizes the collective choice function to represent
resource allocation strategies and an axiomatic framework to
emulate certain desirable properties of resource allocation strate-
gies. We introduce the axiom of equal priority in the power domain
(and in the interference domain) and motivate it as interference
coordination fairness. We consider this as an anonymity among
the users, from the perspective of a central controller, e.g. a
base station or an operator. We show that the proportional fair
resource allocation strategy is anonymous to the identity of the
users at the signal processing layer. Such an anonymity is relevant
to obtain interference coordination fairness in iterative resource
allocation strategies frequently encountered in wireless systems.

Index Terms—Proportional fairness, anonymity among users,
interference coupled wireless systems.

I. INTRODUCTION

HE topic of proportional fairness has been well motivated
T and analyzed in literature. The work [1] analyzes a
problem similar to the one considered in our paper. In [1] the
problem of optimal flow control in a multiclass telecommu-
nications environment where each user desires to optimize its
performance while being fair to the other users is considered.
They suggest the Nash bargaining solution (NBS) as a suitable
candidate for this problem. This work has been extended
by [2], who analyze stability and fairness of two classes of
rate control algorithms for communication networks. They
motivate proportional fairness from a stability perspective and
generalize the problem for routing control. The papers [3]-[6]
are some of the more recent work on proportional fairness in
wireless systems. Our list is by no means exhaustive. A further
list of references can be found at [7].

Our paper revisits the problem of proportional fairness
resource allocation strategy. Our paper utilizes the collective
choice function (CCF) to represent resource allocation strate-
gies and an axiomatic framework to capture certain desirable
properties of resource allocation strategies. We motivate that
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the proportional fairness resource allocation strategy is the
unique fair strategy from a signal processing perspective. We
introduce the axiom of equal priority in the power domain
(interference domain) to capture the property that a central
controller (e.g. operator, base station) is anonymous to the
identity of the users while carrying out interference man-
agement and coordination in the power domain (interference
domain).

We make the following assumption: the central controller
can measure and knows perfectly the interference values at
the users. Such an assumption is frequently encountered in
iterative power control algorithms, where the user has to report
back the measured interference to a central controller or if
a user has to iterate its power value based on a fed back
interference value.

The paper has the following main contribution: Under the
stated assumption, our main result proves that the central
controller (e.g. operator, base station) is anonymous to the
users while doing interference management and coordination
in the power domain (interference domain), if and only if
it implements the proportional fairness resource allocation
strategy. We call this anonymity to user permutation when
the interference value is known to the user as interference
coordination fairness.

II. INTERFERENCE COUPLING IN WIRELESS SYSTEMS

We begin this section by presenting the notation used in our
paper: Let 7 represent interference functions. K is the number
of users in the system. -« represents a vector, such that (s.t.)
v = [1,...,7x]T. & is a scalar for k € {1,..., K} =:
K. T represents a set. Let Y represent a family of sets for
the K users such that I' € Y% and T' ¢ RE. v < 2
implies that 7,(:) < 7,&2),% e K; v < ~() implies that
D < 4 vk € K. Similarly for > and >. Equipped with
these definitions and notations, we introduce the interference
function framework below.

The signal-to—interference (plus noise) ratio (SINR) is an
important measure for user performance in wireless systems.
Many other performance measures have a direct relationship
with SINR. Consider K users with transmit powers p =
[p1,...,pr]T and K := {1,..., K}. The noise power at each
receiver is o2, Hence the SINR at each receiver depends on
the extended power vector p = [p,d*|T = [p1,...,px,0?]T.
The resulting SINR of user & is SINRy (p) = p./Z1(p), where
T} is the interference (plus noise) as a function of p. In order
to model interference coupling, we shall follow the axiomatic
approach proposed in [8], [9] (extended in [10]). Let P be the
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set of all power vectors. In our paper, we have P := Rf w1

unless explicitly mentioned otherwise.

Definition 1. We say that Z : P — Ry is an interference
Sfunction, if the following axioms are fulfilled:

Al conditional positivity Z(p) > 0 if p > 0

A2 scale invariance Z(ap) = aZ(p) for all a >0
A3 monotonicity Z(p) > Z(p) if p > p

A4 strict monotonicity Z(p) > Z(p) if p > p,

PK+1 > PR +1-

Note that we require that Z(p) is strictly monotonic with
respect to the last component p, .. An example is I(p) =

vT'p+ 0% where v € R is a vector of interference coupling
coefficients. The axiomatic framework Al1-A4 is connected
with the framework of standard interference functions [8].
For the purpose of this paper it is sufficient to be aware that
there exists a connection between these two models and the
results of this paper are applicable to standard interference
functions. The structure of the SINR region depends on
the interference coupling in the system. Until now we have
focused on interference coupling aspects, where interference
is a function of the powers of the various users and noise.

In this paper, “utility” can represent a certain arbitrary
performance measure, which depends on the SINR by a
strictly monotonic and continuous function ¢ defined on R .
The utility of user k is

ur(p) = 61 (SINRk(p)) = ¢x(w(p)). k€ L. (1)

An example of the above case is capacity: ¢(z) = log(1 +
x). Related performance indicators, when we would like
to minimize the objective function, which is a function of
SINR are minimum mean square error (MMSE): ¢(z) =
1/(1+x), BER for coherent M—ASK (amplitude shift keying),
equally spaced amplitudes, equally probable symbols and
ML (maximum likelihood) detection for the AWGN channel:
o(x) = W BER for high—SINR approximation
of M-PSK (p?hase shift keying), equally probable symbols
(phases), ML detection, with Gray bit mapping: ¢(z) =
o7 @ (sin({7) V@) [11], [12].

e consider a cooperative game theoretic setting, where
the users have the possibility of signalling and communi-
cating with the central controller, e.g. base station, operator
before choosing their strategies and the resource allocation
process. The users could agree or disagree on the resource
allocation strategies. Such a framework is traditionally called
a bargaining framework. In our paper, we bargain over closed,
bounded and comprehensive sets. There are various tradeoffs
and dependencies between the users, which are modelled using
this interference function framework and we can obtain an
operating point for the system. We have a centralized system,
which implies user cooperation allowing them to efficiently
manage or even combat interference.

We call the feasible utility set I' (or just the utility set) as the
set of all feasible SINR vectors -y, that can be supported for
all users by means of power control, with interference being
treated as noise. In our paper we focus on utility sets with the
following properties:
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o I' is a non-empty closed and bounded subset of Rf . We
consider a communication system where at least a single
user participates!, i.e. relint T' N Rf # 0.

e I' is comprehensive: A set I' C Rf is called downward
comprehensive if for all ¥ € T and v» € RX,
~@) < ~M) implies v(?) € T. This may be interpreted
as free disposibility of utility. Throughout the paper, by
comprehensive we imply downward comprehensive.

The family of all sets with the above properties is denoted
as 8. Hence S¥ := {T|T' ¢ RX,T is comprehensive,
compact}.

It can be shown that compact, comprehensive sets from Rf
can be written as sub-level sets of interference functions. An
example of certain such sets are certain rate regions. The SINR
region I' need not be convex, see Example 1 in [13]. Such an
analysis of linear interference functions can be extended to
log—convex interference functions. Even though the original
SINR region is not convex, by an appropriate transformation
to the log—domain (with the substitution p = e®, which is
component—-wise exponential), we are still in a position to
analyze the proportional fair resource allocation strategy [13].

It is clear that S¥ is closed under intersection and union
of its elements. Further we denote the family of all convex
and strictly convex utility sets by SZ .. and Sk comvex:
respectively. A bargaining game for K users is defined
as the pair (I',d) where I' C RX is the utility set and
d e {vyeT: 3 > v, €I} is the disagreement
point. The disagreement point is the point in the utility set
corresponding to the utilities each user receives, if they are
unable to reach a solution outcome via the bargaining game.
The disagreement point corresponds to the point with the least
utilities obtained by the users in the bargaining game. In our
paper we choose 0 as the disagreement point to simplify the
analysis without any loss of generality. v € I" is a particular
utility vector, where v = [y1, Y2, ..., 7Vk| and 7y is the utility
of the k*" user.

III. REVISITING PROPORTIONAL FAIRNESS

As has been observed in Section I, the proportional fairness
resource allocation strategy has been investigated exhaustively
in economics and wireless communication systems. The char-
acterization of proportional fairness for resource allocation in
wireless systems is very important. We shall be discussing
proportional fairness as the only resource allocation strategy
that provides interference coordination fairness.

We believe that based on physical layer modeling of wire-
less systems it would be interesting to complement the analysis

IWe define the relative interior of a set X, denoted as relint X, as its
interior relative to aff X:

relint X = {& € U | B(x,r) Nnaff X C X for some r > 0},

where B(xz,7) = {y | |ly — «| < r} is a ball of radius » and center @
in the norm ||-||. (Here, ||-|| is any norm; all norms define the same relative
interior.) The set of all affine combinations of points in some set X C R¥
is called the affine hull of X and denoted by aff X:

Jz™ e X,
91+...+9n=1}.

aff X = {Glm(n +...+ 9n:c<”) \ :c<1), L.
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of resource allocation strategies in the utility domain to an
analysis in the power domain and propose the following
abstraction: power py is a certain fixed number, which the
operator chooses for a user k at each time instant; interference
Ty is a certain fixed number, which is the interference caused
by other users and noise. However, we assume that interfer-
ence at each user is fixed at a particular time instant and is
known by the central controller (e.g. base station, operator).

Such an abstraction of considering power as a fixed number
and interference as a fixed number, which is known to the cen-
tral controller is frequently used in power update algorithms
e.g. Foschini’s power control algorithm [14], fixed—point iter-
ation [8] and in general any iterative power control algorithm,
which recalculates the power treating the interference as a
fixed number for the next step of the iteration.

Such an abstraction is relevant for all decentralized or
centralized power control resource allocation strategies, where
the nodes or users have to do one of the following: re-
porting back value of measured interference values to the
central controller (e.g. base station); calculating its iterate
of the power control value based on the interference value
provided to it. These serve as a motivational basis for our
characterization of proportional fairness. In the next section,
we introduce the CCF, which represents a resource allocation
strategy. We further introduce the axiomatic framework, to
emulate desirable properties of resource allocation strategies.

A. Collective Choice Function and Utility Function

We propose a general axiomatic framework, which helps
understand the trade-offs between user requirements and dif-
ferent solution outcomes by characterizing resource allocation
strategies using the CCF [15]. The CCF chooses one point
from a certain set, which is the operating point of the resource
allocation strategy. Some examples of such a set are a (signal-
to-interference) SIR region and certain achievable rate regions.

A common approach is to model the CCF along with a
set of axioms, also known as axiomatic bargaining theory
[16]. A CCF @ represents a resource allocation strategy
in the wireless scenario. These game theoretic axioms are
used to emulate certain desirable and undesirable properties,
which the operating point of our resource allocation strategy
could possess. Based on the axioms the CCF satisfies, the
corresponding resource allocation strategy satisfies different
properties and leads to a different operating point in the region,
making the axioms quite intuitive and a natural framework to
work within. We begin by defining the CCF .

Definition 2. A CCF on the family S¥ of sets T, is defined as
any function ® : S — RX such that ®(T") € T, VI € SK.

For emphasis, as it is a crucial point in obtaining an
operating point, we would like to point out that ®(I"), where
' € S¥ is as per Definition 2 single-valued.

Example 1. The symmetric NBS ®nps(T), where I' €
SK .. can be obtained by maximizing the product of the

utilities as follows:
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Let u : RY — Ry be any function. Let u be a utility
function corresponding to a set a users JC who obtain resources
from a central controller.

Example 2. Consider the case, when the interference function
looks like Zy(p) = o2/|hg|?. Let the utility function u
be defined as follows: u(y) = [].cic(7k), where 7 =
(|hi|?/o?)pr, where 7y is the SINR of the k™ user. Then,
we have that u(y) = 25 ([TpexclPrl?®) (TTiexcpr). If we
want to maximize the function u(+y), subject to a total power
constraint Py, on the system —the resulting solution in the
power domain is p; = p2 = ... = px = % Pow. Then, the
operator has no incentive to distinguish between the users and
treats all the users equally. However, in the above system, all
the users are orthogonal to each other and is a very special
case of general optimization problems encountered in wireless
systems.

We shall return to this problem and formally characterize
the property of a central controller having no incentive to
distinguish between the users as an anonymity among the users
and call it interference coordination fairness in Definition 5.
Now consider the following optimization problem, where the
system of users cannot be orthogonalized as shown in the
Example 2.

Example 3. Consider the following problem:
K
Z log (1 +
k=1

Pk )
Ti(p)

where weic Pk < Pol is the case of a system with a certain
total power constraint of P, . Assuming that the central
controller can accurately estimate the interference at all the
users and for fixed powers, we look at the following problem

2

max
Ek e Pk < Powl

max Z log (1 + (3)

2 kex Pe<Pow 1
for a certain permutation 7 on the set of users K. It can be
seen that in general the solution of (2) is not equivalent to the
solution of (3).

The symmetric NBS, ®yps(T), T' € SK can be ob-
tained by maximizing the product of the utilities as follows:
Onps(T) = argmaxyer HkK:1 ~k. This product optimiza-
tion approach is equivalent to proportional fairness [2]. We
now present certain properties of the utility function which
we shall utilize in our analysis in Section IV.

Definition 3. Quasi—concavity: A function v : Rf — Ry,
with T' € SX is quasi-concave, if and only if v,,v, € T,

convex

Y1 # Yas u(y1) > u(7yy), then for 6 € (0,1) we have that
u(fyy + (1= 0)vs) = u(ys).

Definition 4. Strict monotonicity: A function u : RE — R,
with T € SE ., is said to satisfy strict monotonicity, if and

only if for all v,,v, € I', 7, > 5 and 7, # v, we have
that u(y;) > u(vyy).

In the following definitions, we make an abstraction of the
static state of the system and assume that the operator (central
controller) has full knowledge of the interference values at the
users.
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Definition 5. Axiom of equal priority: A strictly monotonic,
continuous and quasi—concave function v : I' — R, for all
T € SE . is said to satisfy the axiom of equal priority if and
only if for all permutations 7, we have that u(vy) = u(7 (%)),

where 7 is a certain permutation over the set of users /.

We now present the axiom of equal priority in the power
domain and interference domain respectively.

Definition 6. Axiom of equal priority in the power domain:
A strictly monotonic, continuous and quasi—concave function
u: '~ Ry, where v, = p/Zy is said to satisfy the axiom
of equal priority in the power domain if

b1 p_K) —u Pr(1) Pr(K)
T, I T, I,
for all permutations 7 on the set of users K.

);

u(

In Definition 6, in addition to the fact that the interference
values at the users are known to the operator, it has been
assumed that the interference at each user is fixed. If a
utility function satisfies the axiom of equal priority in the
power domain, then the operator has no priority among the
various users, i.e. the operator does not choose one user
over another while carrying out interference coordination or
interference management so as to optimize a global objective.
Example 2 does not satisfy the axiom of equal priority in the
power domain. However, the example displaying proportional
fairness satisfies the axiom of equal priority in the power
domain.

Definition 7. Axiom of equal priority in the interference
domain: A strictly monotonic, continuous and quasi-concave
function u : I’ — Ry, where vy, = pr/Zy is said to satisfy
the axiom of equal priority in the interference domain if
u(p—l,...,p—K) = u( P ey PK
7 Ik Tr(1y Lr(x)

for all permutations 7 on the set of users K.

b

In Definition 7, in addition to the fact that the interference
values at the users are known to the operator, it has been
assumed that the power of each user is fixed. The axiom of
equal priority in the power domain or the axiom of equal
priority in the interference domain does not imply that the
channel has no impact on the resource allocation. Even if
each user is allocated equal power, the channel coefficients
of the users decide the performance or utility obtained by that
particular user. In Section IV we shall show that the axiom
of equal priority in the power domain and the axiom of equal
priority in the interference domain are equivalent under further
conditions on the utility functions

B. Axiomatic Framework

Here we describe certain axioms, which are important in
this paper.

wPo Weak Pareto Optimality: For T' € R%, let W(T') :
{~() €T : there is no v? € T with v(2) > ~(1)
Then if for every I' € S¥, &) € W(I),
satisfies W PO.
Pareto Optimality: For every T € SK, ®(T') ¢
P(T), where P(I") is the Pareto Optimal set defined

L
®

PO
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as follows: P(T') := {1 € T : v € T with
7(2) Z fy(l)’ 7(2) # 7(1)}

11A  Independence of Irrelevant Alternatives: For all T'q,
I'; € SE with Ty C T'y and ®(T3) € T'y, we have
O(T) = D(Ty).

sym  Symmetry: For every I' € SK, if T' is symmetric
set then, ®1(T") = $o(T") = ... = P (T), where
O(I) = [@1(T),..., D (T)].

src  Scale Transformation Covariance® STC': For every

I'c S¥, and all @ € RX, @ > 0 and (al') € S¥,

we have ®(al’) = a®(T).
The interpretation of W PO is that it is impossible to find
another point, which leads to strictly superior performance for
all the users in the system simultaneously. From a wireless
systems perspective: when a CCF representing a resource
allocation strategy satisfies the axiom of W PO it implies that
the operating point of the resource allocation strategy will be
on the boundary of the region. In general we would always
like to have an operating point on the boundary, so that we
are fully utilizing all the resource.

Based on the system objective, ® could satisfy certain
other axioms, selecting one point on the boundary, which is
the desired operating point. The axiom /A implies that if
the feasible set shrinks and the operating point still remains
feasible, then the operating point of the smaller set should be
the same.

The axiom of SY M implies that if the feasible utility set
is symmetric, then the resource allocation strategy divides the
resources symmetrically among the users. In wireless systems,
the axiom of SY M ensures a certain kind of equity among
the various users in the wireless system.

The axiom of STC implies that the solution outcome
is invariant with respect to component-wise scaling of the
feasible utility region. It requires that the solution outcome
be independent of the chosen preferences of the users in a
wireless system. We present an example below which helps
clarify the axiom of ST'C' from a wireless system perspective.

Example 4. An example of a resource allocation strategy,
which satisfies the axiom of ST'C is as follows: multiuser
SISO downlink with a sum power constraint. If the base-
station now has larger power available to it, then the region
scales linearly as compared to the previous case. If the solution
outcome in the latter case is a linear scaling of the solution
outcome in the previous case, then the corresponding resource
allocation strategy is said to satisfy the axiom of STC.

The axioms described above serve as our axiomatic frame-
work. The axioms of W PO, SYM, ITA and STC can be
used to obtain a symmetric NBS for convex sets. If the utility
set I' is closed, bounded, convex comprehensive, then we
obtain an unique symmetric NBS fulfilling these four axioms.

IV. PROPORTIONAL FAIRNESS: ANONYMITY OF USERS

In this section we present further nice characteristics of the
proportional fair resource allocation strategy and motivate the

SHere we use the notation aI' = {~ : 3s € T with v = as}, where as
is defined as component-wise multiplication.
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concept of interference coordination fairness. The combinato-
rial structure of the proportional fairness resource allocation
strategy was briefly discussed in Section 3.2 in [13]. Here, we
have performed the analysis with respect to the axiom of equal
priority in the power domain. The same analysis, with respect
to the axiom of equal priority in the interference domain can
be easily carried out. The main motivation of such an analysis,
as previously mentioned — is to analyze the special property,
which proportional fairness inherits from its structure. The
property does not allow an operator or a central controller to
have a preference amongst the users in a certain sense. We
call this anonymity of the users as interference coordination
fairness. We now define the CCF @, in terms of the utility
function u as follows:

®,(T) := argmax u(~y). 4)
~el

We now present certain facts, which connect the properties

of the utility function u to the axioms satisfied by the

corresponding CCF ®,,.

Fact 1. Let uw be a quasi—concave, continuous and strictly
monotonic utility function. Then, we have that the correspond-
ing CCF ®,, defined in (4) satisﬁes the axioms of PO and
11 A on the family of sets S

convevc

ITA is a necessary condition, however not a sufficient
condition for a CCF to be expressed according to (4). The
satisfaction of the axioms of PO and /1A along with the
axiom of equal priority in the power domain will help us
prove that the CCF ®,, corresponds to the symmetric NBS on
the family of sets SX

convex*

Lemma 1. Let a utility function u satisfy the axiom of equal
priority in the power domain. Then, the corresponding CCF
O, defined in (4) satisfies the axiom of SY M on the family
Of g€t9 Scamex

Let a utility function u satisfy the axiom of equal priority
in the interference domain. Then, the corresponding CCF @,
defined in (4) satisfies the axiom of SY M on the family of

K
sets Sconvevc

Proof: u(vi,...,7x) = u(f, ..., ). Let Ty = ... =
Tk = 1. Therefore
P Pr\ _
’LL(Il,...,IK) = U(p17-~-7pK)
u(Ugexpr)
= u(rexyr)-

The second equality above follows from the axiom of equal
priority in the power domain. The third equality follows, since
the axiom of equal priority in the power domain holds for all
values of fixed interference. Hence, we have proved, that if
the axiom of equal priority in the power domain is fulfilled
then so is the axiom of equal priority, which is equivalent to
the axiom of SY M. [ ]

With Lemma 1 we are able to prove the following charac-
terization of proportional fairness.

Theorem 1. Let u be a quasi—concave, continuous and strictly
monotonic utility function. Then, u satisfies the axiom of equal
priority in the power domain, if and only if for all powers

2999
P1,-..,Px > 0 and interference values 1y,...,Zx > 0,
u(%,...,g—i) = u(g1 gK,l 1), i.e. there exists a

continuous and strictly monotonic lncreasing function h, such
that u can be written as u(y1, ..., vx) = M[ [ cxc T5)-

Proof: “==-: The proof will be achieved via induction.
We begin with the case for 2 users. For any p1,p2,Z;,Zo > 0
and for any A > 0, from the axiom of equal priority in the
power domain and 77 = 7, /X we have that

Ap1 P2 Ap2 p1
u( Il 12) u( Il 1'2)

Let p, = Apo. Then, from the axiom of equal priority in the
power domain

(&)

Py Piy _ (P Py
U(Il’Iz B (11712)
Therefore, \ \
P2 P1y  P1 ADP2
w(zm ) =z 7)) ©6)
From (5) and (6) we have that
A A
( D1 P2) o (pl Pz) %)

I, ' I,

Equation (7) is valid for all A > 0.
We define A := Zy/ps. Then, we have that

(Iz D1 pz) (Il ).

21 Ip

For any ﬁl,fl > 0, we define p; = pip2 and Z; = flIg.
Then we have that

1 pip2 P2 D1p2 Pl P2

P2 Ilzg 2 Ilzg I 2
Hence, we have proved the result for the case of 2 users.
Now let us assume that the result holds for the case of
K users. Now consider that there are K + 1 users, with

I, I,

powers pi,...,Pr,Pk+1 > 0 and interference functions
Ti,...Ir,Ti+1 > 0. Then we have that
w(B,. . B Py Hz 1Py Dic1)
i Ik Ikt Hz I Ik
where
(Hl LBy By (B, B
Hl 1Il IK+1 Il IK—H

Finally, from the fact, that the expression is true for the case
of 2 users, we obtain

u(&,l,... 1 Pr+1 =u

DIPK+1
1, PIPK+1 ).
7 Tk 1 )

TiTwn

Hence, we have our desired result.
<=": This direction can be easily verified. Hence, we skip
the proof. |
A particular example of the function h is h(x) =
u(z,1,...,1).

Corollary 1. Let u be a quasi—concave, continuous and
strictly monotonic utility function. Then, u satisfies the axiom
of equal priority in the interference domain, if and only
if for all powers pi,...,px > 0 and interference values
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b1 PK Pi---PK 1
Ty I > 0, u(I1 R, IK) u(Il___IK I P 1), ie.
there exists a continuous and strictly monotonic increasing

function h, such that u can be written as u(vyi,...,VK) =
h(er)c Vi)-

The above results show that under certain assumptions on
the utility functions the axiom of equal priority in the power
domain and the axiom of equal priority in the interference
domain are equivalent.

Remark 1. Let u be a quasi—concave, continuous and strictly
monotonic utility function. Then, the utility function u satisfies
the axiom of equal priority, if and only if the corresponding
CCF @, where u(v1,...,7x) = hM[[cxcyx) and h is a
strictly monotonic increasing and continuous function is the
symmetric NBS.

V. DISCUSSION

We have introduced the axiom of equal priority in the
power domain (axiom of equal priority in the interference
domain), which emulates the anonymity of the user identity
while performing interference coordination. When the re-
source allocation strategy satisfies the axiom of equal priority
in the power domain (interference domain), then the operator
gives no preference to a particular user, while carrying out
interference management. We have considered the following
scenario: the central controller knows the interference values
of all the users. We have seen, that if and only if the operator
utilizes the proportional fair resource allocation strategy, does
it have no incentive to manipulate the system (a particular
user has more interference or less interference). We term the
anonymity of the central controller to the identity of the users,
while performing interference management or coordination as
interference coordination fairness.
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