REVISITING RECURRENT NEURAL NETWORKS FOR ROBUST ASR
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ABSTRACT

In this paper, we show how new training principles and opti-
mization techniques for neural networks can be used for different
network structures. In particular, we revisit the Recurrent Neural
Network (RNN), which explicitly models the Markovian dynamics
of a set of observations through a non-linear function with a much
larger hidden state space than traditional sequence models such as an
HMM. We apply pretraining principles used for Deep Neural Net-
works (DNNs) and second-order optimization techniques to train an
RNN. Moreover, we explore its application in the Aurora2 speech
recognition task under mismatched noise conditions using a Tandem
approach. We observe top performance on clean speech, and under
high noise conditions, compared to multi-layer perceptrons (MLPs)
and DNNs, with the added benefit of being a “deeper” model than
an MLP but more compact than a DNN.

Index Terms: Automatic Speech Recognition, Recurrent Neural
Networks, Deep Learning

1. INTRODUCTION

Using features other than MFCCs has long been a focus of research
in the speech recognition community, and the combination of various
feature streams has proven useful in a variety of speech recognition
systems. A common technique to merge streams is to use a Tandem
method [1], in which processed phone posterior probabilities are ap-
pended to standard MFCCs.

Typically, these posteriors are generated through some discrim-
inative process, and MLPs have successfully been used in speech
for many years. More recently, research on the training strategies
for deep networks has allowed for improved performance in many
machine learning and pattern recognition tasks, as described in Sec-
tion 2. Recent efforts in the speech community have explored and
expanded the principles of deep learning, and found that deep archi-
tectures are more efficient at modeling speech, and generalize better
[2, 3, 4]. This model has performed well in a number of different
configurations (such as the Hybrid system, in which posterior esti-
mates are transformed to likelihoods and directly used in an HMM
[3], or as the Tandem system used in this work).

The typical application of deep learning to speech recognition
uses a frame with context (typically of a few frames) as the input of
the network, and learns (with or without pretraining) a DNN to esti-
mate frame level phone or state posteriors. Weights are usually up-
dated using backpropagation with stochastic gradient descent. In this
paper, we propose a new point of view to the deep learning paradigm:

e Given advances in understanding deep architectures, we pose
RNN s as an instantiation of these models, and re-explore pre-
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Fig. 1. Structure of our Recurrent Neural Network.

vious work on the subject [5], comparing traditional MLPs,
DNNs', and RNNs under noise environments.

The RNN (see Figure 1) is a natural extension to DNNs for tem-
poral sequence data such as speech. In RNN, the deepness comes
from layers through time. Furthermore, due to the large hidden space
that RNNs can represent (exponential in the number of hidden units),
plus the non-linear dynamics that they can model, they can learn to
memorize events with longer context, and may be a better fit for
speech data.

We describe related work on deep learning and RNNs in speech
in Section 2 and our Tandem approach in Section 3. Experimental
results and conclusions comprise Sections 4 and 5, respectively.

2. RELATED WORK

The neural-network-based Tandem approach, originally proposed in
[6], has been used in many systems to improve recognition perfor-
mance. In a Tandem system, a base feature such as a mel-scale cep-
stral coefficients (MFCCs) or perceptual linear prediction (PLP) is
used as the input to an MLP trained on relevant labels (typically
phones, or monophone HMM states). Then, the outputs of the net-
work can themselves be used as features to a recognizer. Two advan-
tages of the Tandem approach are that non-traditional features can
be easily incorporated into a speech recognition system, as shown in
[1], and it is robust to noise [7].

2.1. Deep Neural Networks

One of the challenges with the MLP and the DNN is that the objec-
tive function is non-convex, and as more hidden layers are added,
finding a good local minima becomes more challenging. Motivated

'In this paper, we use MLP to denote a single hidden layer Neural Net-
work architecture, whereas DNN implies a deeper architecture with two or
more hidden layers. Deep Belief Network (DBN) is used when we use pre-
training to train a DNN.
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by this problem, DNNs with pretraining based on Restricted Boltz-
man Machines, denoted as Deep Belief Networks (DBNs), were in-
troduced in [8] and have been applied to several fields such as com-
puter vision (see [9]), phone classification (see [10]), speech recog-
nition [2, 3, 11, 4], and speech coding (see [12]). The new idea is to
train each layer independently in a greedy fashion, by sequentially
using the hidden variables as observed variables to train each layer
of the deep structure. Recently, the use of DNNs with no pretraining
has also been studied [4, 11].

2.2. Recurrent Neural Networks

Recurrent Neural Networks were first applied to speech recognition
in [5]. RNNs are powerful models that can model non-linear dy-
namics through connections between hidden layers, as can be seen
in Figure 1. One of the key challenges for training RNNs is that long
term dependencies are difficult to capture since vanishing gradients
over time preclude the update of weights from the far past. Back
Propagation Through Time and approximations to it have been used
before. More recently, applications in Language Modeling [13] and
advances in optimization [14] have seen state of the art performance
by the usage of RNNs for sequence modeling.

2.3. Pretraining and optimization

In this paper, we further explore the interaction between pretraining
and the optimization method to learn the model parameters for both
DNN and RNN models for robust speech recognition. Analysis on
why pretraining is useful has been discussed in both the machine
learning [15] and speech recognition [4, 11] communities. Given
that the training of RNNs is more problematic than of DNNs due to
the vanishing gradient problem [16], we developed a new second or-
der optimization algorithm derived from Hessian Free optimization
[17].

3. PROPOSED METHOD

Our RNN approach follows the same formulation as in [14]. Unlike
in the DNN case, only the current frame without context is used
at the observation at time ¢, x¢;. The RNN is able to “remember”
context naturally due to its large hidden state representation and its
recurrent nature. The architecture is as follows:

h; = tanh(Whaxe + Wirrhe—1)
o: = softmax(Worhy)

where the bias terms are omitted for simplicity, h; represents the
hidden state of the network at time ¢, and W, Wy, and W, are
parameters to be learned. Note that, due to the recursion over time
on hy, the RNNs can be seen as a very deep network with 7" layers,
where 7" is the number of time steps. We define the initial seed of the
network hg to be another parameter of our model, and we optimize
the cross entropy between the predicted phone posterior output oy,
and the true target (given by forced alignment), similar to how DNNs
and MLPs are trained.

As we report in Section 5, there are some considerations in the
training of the RNN that are important. First, we pretrain the RNN
by “disconnecting” the hidden layers temporally, that is, we first op-
timize forcing W, to be zero (in which case, the training reduces to
simple MLP training), and then switch to jointly optimize all param-
eters. Secondly, the MLPs and DNNs have access to future context
of four frames (when using a nine frame context, i.e. ¢t &= 4 frames).
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We enforce this in the RNNs by delaying the output by four frames.
Finally, we constrain the length of the utterances 7" to be at most
60 (which is equivalent to reset the hidden state h to hg every 60
frames), as this results in more efficient learning in our GPU imple-
mentation. However, we have also experimented with not truncating
utterances at test time. All these factors are empirically evaluated in
Section 5.

The outputs of the MLP, DNN, and RNN provide an esti-
mate of the posterior probability distribution for phones. We apply
Karhunen-Loeve Transform to the log-probabilities of the merged
posteriors to reduce the dimensionality to 32 dimensions and orthog-
onalize those dimensions. We then mean and variance normalize the
features by utterance. Finally, we append the resulting feature vector
to the MFCC feature. The augmented feature vector then becomes
the observation stream for the decoder, which is described in the next
section.

4. EXPERIMENTAL SETUP

For this paper, we use the Aurora2 data set described in [18], a con-
nected digit corpus which contains 8,440 sentences of clean train-
ing data and 56,056 sentences of clean and noisy test data. The
test set comprises 8 different noises (subway, babble, car, exhibi-
tion, restaurant, street, airport, and train-station) at 7 different noise
levels (clean, 20dB, 15dB, 10dB, 5dB, 0dB, -5dB), totaling 56 dif-
ferent test scenarios, each containing 1,001 sentences. Since we are
interested in the performance of MLP, DNN and RNN features in
mismatched conditions, all systems were trained only on the clean
training set but tested on the entire test set. In this study, we com-
pare 13-dimensional perceptual linear prediction (PLP) features with
first and second derivatives used as input features for either an MLP,
DNN, or RNN. This Tandem feature is also appended to a 13-
dimensional MFCC with first and second derivatives in all the ex-
periments.

The parameters for the HTK decoder used for this experiment
are the same as that for the standard Aurora2 setup described in [18].
The setup uses whole word HMMs with 16 states with a 3-Gaussian
mixture with diagonal covariances per state; skips over states are not
permitted in this model. This is the setup used in the ETSI standards
competition. More details on this setup are available in [18].

The architecture considered for the DNNs and MLPs was in-
spired by the MNIST hand written digit recognition task [9] and is
the same that we used in recent work [2]. Further details on the train-
ing procedure can be found in [2], but it is worth noting that, in order
for the deep network to use temporal information, a context window
totaling nine frames is used. This was found helpful in related work
as well [11]. For fairness of comparing DNNs with RNNs, we also
include a partial study of how pretraining and differing optimization
procedures affect the results (we do so by comparing DNNs with and
without pretraining).

5. RESULTS

The details of every system reported in this Section are as follows:

e MLP: As described in [2], we train a 720 hidden unit neu-
ral network with stochastic gradient descent (using ICSI’s
Quicknet), with 9 frames of context using 39 dimensional
PLP as input.

e DBN: As described in [2], we train a deep belief network with
generative pretraining, and conjugate gradient descent. The



structure of the network is of 500-1000-1500 hidden units,
with 9 frames of context using 39 dimensional PLP as input.

e DNN: With the same structure of the DBN, but instead of
using pretraining and conjugate gradient descent, we use a
modified version of the second order optimizer HF [17].

e RNN: Using an RNN with 1000 hidden units, training seg-
ments of 60 frames, with a delayed output of 4 frames, and
initialized as a regular MLP (i.e., disconnected). At test time,
the network is run on the whole sequence (i.e. the limit of 60
frames is not used).

5.1. Phone Recognition

When training the networks, we leave the first 800 utterances for
cross validation (as our training algorithms look at CV error for early
stopping). Thus, we get error rates for a phone classification task
(without an HMM) from the held out data. In Table 1, we observe
how the phone error rate in this frame-by-frame classification of the
RNN is comparable to a DNN, and better than the DBN proposed
in our previous work. There is, however, a fundamental difference
between the DBN and both DNN/RNN: due to the pretraining, we
are starting the optimization in a more promising region, which may
help finding a more desirable local optima. For small recognition
tasks such as Aurora2, this has been shown to generalize better.
Thus, under mismatched/noisy conditions, the DBN may still out-
perform the DNN or RNN.

System MLP DBN DNN? RNN?
HU 720 500-1K-1.5K  500-1K-1.5K 1K
PER (%) 15.4% 10.1% 8.3% 8.5%

Table 1. Phone Error Rate on Cross-Validation Set. The first two
columns correspond to the reported PER in [2]. The third column is
the same as the second but with no pretraining, and using a better
optimization technique. The last column corresponds to an RNN with
1K hidden units.

5.1.1. Recurrent Neural Network system

In this section, we explore how the RNNs perform when training
and testing conditions are changed. As seen in Table 2, adding in
the non-linear dynamic term Wy, yields the biggest improvement
to the system, showing the usefulness of temporal context. Also,
as one can expect, adding future context (which, in the context of
DNN/MLP training is done by adding 4 frames of future context to
the input), helped. One of the most surprising facts is that long term
context seems to help more than we expected: if we restart the RNN
state every 60 frames, we achieve 10.2% PER, whereas if we let the
RNN run on the whole utterance without restarts, the performance is
almost 2% absolute better. This indicates that the RNN is capturing
long term effects that yield significantly better PER.

It is worth noting that if we do not use the discriminatively
trained disconnected network to initialize the RNN (which is sim-
ilar to layerwise backpropagation [11]), convergence is rather slow
and, even with the second order optimization method, the solution is
far from optimal (worse than 40% PER).

2Trained using a Hessian Free derived second order method [17].

System PER
Disconnected RNN (W, = 0) 18.8%
RNN 11.8%
+ future context (4 frames) 10.2%
+ non truncated testing 8.5%

Table 2. Phone Error Rate on Cross-Validation Set with different
training/testing schemes for RNNs. Error rates are reported for 1000
hidden units.

5.2. Speech Recognition

Typical results on the Aurora?2 test set using the ETSI setup report ac-
curacies (or mean accuracy) across the 8 noises at 7 noise conditions.
We do not report accuracies here for two reasons. The first and rather
mundane reason is that reporting hundreds of numbers will result in
a table too large for the length constraints of this paper. Second, and
perhaps more importantly, we do not think that reporting accuracies
in general (even with a reduced table) is properly illustrative of the
performance of the system. Consider, for instance, a table consisting
of results for two systems in two noise conditions, one clean and one
extremely noisy. If the baseline achieved a 98% accuracy rate on
the clean test and 3% accuracy on the noisy one, and the proposed
system achieved a 99% and 1.9% accuracy on the clean and noisy
conditions, respectively, one would clearly choose the latter system
as that system reduced over half the errors on the clean test while
performing roughly similarly on the noisy one (that is, neither re-
ally worked in noise). If we simply look at mean accuracy, however,
we see that the baseline actually outperforms the compared system.
The reduction in errors corresponds fairly well to the common costs
of using a system (for instance, how often a system must retreat to
a human operator). For this reason, we report WER results, which
for many years have been the standard for most speech recognition
tasks.

For this paper, we average WER across noises and report scores
for each noisy condition. Finally, all results are significant with a
p-value of 0.002 using the differences of proportions significance
test.

5.2.1. Tandem systems

For this set of experiments, we concatenate our processed posterior
probabilities with MFCC features (i.e. Tandem system). As noted in
[2], it is generally better to append MFCC features to the discrimina-
tively trained networks (except for very noisy conditions, in which
case MFCCs degrades performance of MLP/DNN/RNN).

In Table 3 we find the results for our MFCC baseline, and sev-
eral Tandem systems. As can be seen, adding a deep network in
Tandem with MFCCs clearly outperforms the MFCC baseline. It is
interesting that the DBN is generally more competitive under mild
noise conditions than DNN and RNN, presumably due to the gen-
erative initialization, which is known to yield better generalization
(specially in small datasets). The RNN outperforms every model
under clean speech, which is interesting and should be further ex-
plored with a larger speech database. The fact that the RNN is also
better under very noisy conditions may indicate that, in those cases,
longer term dependencies that the MLP/DBN/DNN models cannot
capture may be necessary. Lastly, the number of hidden units for the
RNN did not seem to have a big effect: 200 units seemed to underfit
the data, and 1500 units were a bit better under high noise condition,
but worse on clean (presumably due to overfitting). We expect this
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parameter to be more relevant when the training set exhibits more
variance and is larger, but we leave this for future work.

SNR MFCC MLP DBN DNN RNN
Clean 1.60% 1.56% 0.88% 0.78% 0.70 %
20dB 5.33% 3.68% 2.69% 3.05% 3.59%
15dB 14.77% 7.47% 6.35% 6.38% 6.89%
10dB 36.59% 16.63% 1526%  14.61% 14.77%
5dB 66.65%  36.82%  34.34% 32.09% 30.94 %
0dB 86.98%  63.80%  61.43% 58.98% 57.19%
-5dB 94.01%  87.09%  85.71% 84.42% 81.51%

Table 3. Average WER for several systems under different noise con-
ditions. The first three columns correspond to the reported results in
[2]. Bold numbers indicate best performance. Note that, as before,
DNN and RNN use the second order optimization method.

6. DISCUSSION AND FUTURE WORK

In this paper, we extend our work on deep learning, in which we
already studied how the deep models integrate with MFCC using the
Tandem approach, and the deep model is robust to different noise
conditions present in the Aurora2 dataset.

Our first extension is to study the effect of pretraining of our
previously proposed model. We found that the standard approach to
deep learning, that is, DBNs trained using pretraining and standard
conjugate gradient descent, and the DNNs with no pretraining but
trained with a second order optimization method performed similarly
under clean condition. DBNs were, however, able to perform better
under mild noise conditions, which can be explained by the nature of
pretraining to better generalize to unseen conditions during training.

We also revisit RNN, a model that seems natural for sequential
data such as speech, but poses a difficult optimization problem. Us-
ing our proposed pretraining and the second order method, we were
able to successfully train the RNN and use its outputs in a Tandem
approach, which yields the best clean condition score for HMM Tan-
dem system in the Aurora?2 set, and better performance on the noisier
conditions (although the WER in those scenarios is still too high for
most practical applications).

Given the performance seen on clean speech, one of the lines
of research is to apply this approach to a larger dataset. When or-
ders of magnitude more data is available, the relative differences of
each model may change (e.g. pretraining is not as valuable once the
amount of training data is large enough).

Since both the RNN and DNN improve performance, one could
combine the model to create a deep recurrent neural network, in
which multiple hidden layers are used. Also, instead of using Tan-
dem, we will try using a hybrid system, which will replace the GMM
emission model by the RNN. Lastly, predicting subphone states of
the HMM instead of phone posteriors is beneficial [4, 14] and, with
more data available, could yield further improvements.
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