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Abstract

Stochastic control-flow models (SCFMs) are a

class of generative models that involve branch-

ing on choices from discrete random vari-

ables. Amortized gradient-based learning of

SCFMs is challenging as most approaches tar-

geting discrete variables rely on their contin-

uous relaxations—which can be intractable in

SCFMs, as branching on relaxations requires

evaluating all (exponentially many) branch-

ing paths. Tractable alternatives mainly com-

bine REINFORCE with complex control-variate

schemes to improve the variance of naı̈ve esti-

mators. Here, we revisit the reweighted wake-

sleep (RWS) [5] algorithm, and through ex-

tensive evaluations, show that it outperforms

current state-of-the-art methods in learning

SCFMs. Further, in contrast to the importance

weighted autoencoder, we observe that RWS

learns better models and inference networks

with increasing numbers of particles. Our re-

sults suggest that RWS is a competitive, often

preferable, alternative for learning SCFMs.

1 INTRODUCTION

Stochastic control-flow models (SCFMs) describe gener-

ative models that employ branching (i.e., the use of if

/ else / cond statements) on choices from discrete ran-

dom variables. Recent years have seen such models gain

relevance, particularly in the domain of deep probabilis-

tic programming [2, 49, 52, 57, Ch. 7], which allows

combining neural networks with generative models ex-

pressing arbitrarily complex control flow. SCFMs are en-

countered in a wide variety of tasks including tracking

and prediction [29, 41], clustering [45], topic modeling

[3], model structure learning [1], counting [14], attention
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Figure 1: An overview of learning algorithms for discrete
latent-variable models, with focus on SCFMs.

[60], differentiable data structures [17–19], speech &

language modeling [7, 24], and concept learning [25, 30].

While a variety of approaches for amortized gradient-

based learning (targeting model evidence lower bound

(ELBO)) exist for models using discrete random vari-

ables, the majority rely on continuous relaxations of

the discrete variables [e.g. 23, 34, 48, 55, 56, 58],

enabling gradient computation through reparameteriza-

tion [27, 46]. The models used by these approaches typ-

ically do not involve any control flow on discrete ran-

dom choices, instead choosing to feed choices from their

continuous relaxations directly into a neural network,

thereby facilitating the required learning.

In contrast, SCFMs do not lend themselves to continuous-

relaxation-based approaches due to the explicit branch-

ing requirement on choices from the discrete vari-

ables. Consider for example a simple SCFM—a two-

mixture Gaussian mixture model (GMM). Computing the

ELBO for this model involves choosing mixture identity

(Bernoulli). Since a sample from a relaxed variable de-

notes a point on the surface of a probability simplex (e.g.

[0.2, 0.8] for a Bernoulli random variable), instead of its

vertices (0 or 1), computing the ELBO would need eval-

uation of both branches, weighting the resulting com-

putation under each branch appropriately. This process

can very quickly become intractable for more complex

SCFMs, as it requires evaluation of all possible branches

in the computation, of which there may be exponentially

many, as illustrated in Figure 2.
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Figure 2: The challenge faced by continuous-relaxation meth-
ods on SCFMs—requiring exploration of all branches, in con-
trast to exploring only one branch at a time. Stochastic control
flow proceeds through discrete choices (ci) yielding values (vi).

Alternatives to continuous-relaxation methods mainly

involve the use of the importance weighted auto-

encoder (IWAE) [6] framework, employing the REIN-

FORCE [59] gradient estimator, combined with control-

variate schemes [16, 20, 37, 38, 53] to help decrease the

variance of the naı̈ve estimator. Although this approach

ameliorates the problem with continuous relaxations in

that it does not require evaluation of all branches, it has

other drawbacks. Firstly, with more particles, the IWAE

estimator adversely impacts inference-network quality,

consequently impeding model learning [44]. Secondly,

its practical efficacy can still be limited due to high vari-

ance and the requirement to design and optimize a sepa-

rate neural network (c.f. § 4.3).

Having characterized the class of models we are inter-

ested in (c.f. Figure 1), and identified a range of current

approaches (along with their characteristics) that might

apply to such models, we revisit reweighted wake-sleep

(RWS) [5]. Comparing extensively with state-of-the-art

methods for learning in SCFMs, we demonstrate its effi-

cacy in learning better generative models and inference

networks, using lower variance gradient estimators, over

a range of computational budgets. To this end, we first

review state-of-the-art methods for learning deep gen-

erative models with discrete latent variables (§ 2). We

then revisit RWS (§ 3) and present an extensive evalua-

tion of these methods (§ 4) on i) a probabilistic context

free grammar (PCFG) model on sentences, ii) the Attend,

Infer, Repeat (AIR) model [14] to perceive and localize

multiple MNIST digits, and iii) a pedagogical GMM ex-

ample that exposes a shortcoming of RWS which we then

design a fix for. Our experiments confirm RWS as a com-

petitive, often preferable, alternative for learning SCFMs.

2 BACKGROUND

Consider data (x(n))Nn=1 sampled from a true (unknown)

generative model p(x), a family of generative models

pθ(z, x) of latent variable z and observation x parame-

terized by θ and a family of inference networks qφ(z|x)
parameterized by φ. We aim to learn the generative

model by maximizing the marginal likelihood over data:

θ∗ = argmaxθ
1
N

∑N
n=1 log pθ(x

(n)). Simultaneously,

we would like to learn an inference network qφ(z|x) that

amortizes inference given observation x; i.e., qφ(z|x)
maps an observation x to an approximation of pθ∗(z|x).
Amortization ensures this function evaluation is cheaper

than performing approximate inference of pθ∗(z|x) from

scratch. Our focus here is on such joint learning of

generative model and inference network, here referred

to as “learning a deep generative model”, although we

note that other approaches exist that learn the generative

model [15, 39] or inference network [32, 43] in isolation.

We begin by reviewing IWAEs [6] as a general approach

for learning deep generative models using stochastic gra-

dient descent (SGD) methods, focusing on generative-

model families with discrete latent variables, for which

the naı̈ve gradient estimator’s high variance impedes

learning. We also review control-variate and continuous-

relaxation methods for gradient-variance reduction.

IWAEs coupled with such gradient-variance reduction

methods are currently the dominant approach for learn-

ing deep generative models with discrete latent variables.

2.1 IMPORTANCE WEIGHTED

AUTOENCODERS

Burda et al. [6] introduce the IWAE, maximizing the

mean ELBOs over data, 1
N

∑N
n=1 ELBO

K
IS (θ, φ, x

(n)),
where, for K particles,

ELBO
K
IS (θ, φ, x) = EQφ(z1:K |x)

[

log

(

1

K

K∑

k=1

wk

)]

, (1)

Qφ(z1:K |x) =
K∏

k=1

qφ(zk|x), wk =
pθ(zk, x)

qφ(zk|x)
.

When K = 1, this reduces to the variational auto-

encoder (VAE) [27, 46]. Burda et al. [6] show that

ELBO
K
IS (θ, φ, x) is a lower bound on log pθ(x) and that

increasing K leads to a tighter lower bound. Further,

tighter lower bounds arising from increasing K improve

learning of the generative model, but impair learning

of the inference network [44], as the signal-to-noise ra-

tio of θ’s gradient estimator is O(
√
K) whereas φ’s is

O(1/
√
K). Note that although Tucker et al. [54] solve

this for reparameterizable distributions, the issue persists

for discrete distributions. Consequently, poor learning of

the inference network, beyond a certain point (large K),

can actually impair learning of the generative model as

well; a finding we explore in § 4.3.

Optimizing the IWAE objective using SGD methods re-

quires unbiased gradient estimators of ELBO
K
IS (θ, φ, x)

with respect to θ and φ [47]. ∇θ ELBO
K
IS (θ, φ, x) is es-

timated by evaluating ∇θ log ẐK using samples z1:K ∼
Qφ(·|x), where ẐK = 1

K

∑K
k=1wk. ∇φELBO

K
IS(θ, φ, x)



is estimated similarly for models with reparameterizable

latents, discrete (and other non-reparameterizable) la-

tents require the REINFORCE gradient estimator [59]

gREINFORCE =log ẐK∇φ logQφ(z1:K |x)
︸ ︷︷ ︸

1

+∇φ log ẐK
︸ ︷︷ ︸

2

. (2)

2.2 CONTINUOUS RELAXATIONS AND

CONTROL VARIATES

Since the gradient estimator in (2) typically suffers from

high variance, mainly due to the effect of 1 , a number of

approaches have been developed to ameliorate the issue.

These can be broadly categorized into approaches that

directly transform the discrete latent variables (continu-

ous relaxations), or approaches that target improvement

of the naı̈ve REINFORCE estimator (control variates).

Continuous Relaxations: Here, discrete variables are

transformed to enable reparameterization [27, 46], help-

ing reduce gradient-estimator variance. Approaches span

the Gumbel distribution [23, 34], spike-and-X trans-

forms [48], overlapping exponentials [56], and general-

ized overlapping exponentials for tighter bounds [55].

Besides difficulties inherent to such methods, such as

tuning temperature parameters, or the suitability of undi-

rected Boltzmann machine priors, these methods are

not well suited for learning SCFMs as they generate

samples on the surface of a probability simplex rather

than its vertices. For example, sampling from a trans-

formed Bernoulli distribution yields samples of the form

[α, (1 − α)] rather than simply 0 or 1—the latter form

required for branching. With relaxed samples, as illus-

trated in Figure 2, one would need to execute all the ex-

ponentially many discrete-variable driven branches in the

model, weighting each branch appropriately—something

that can quickly become infeasible for even moderately

complex models. However, for purposes of comparison,

for relatively simple SCFMs, one could apply methods in-

volving continuous relaxations, as demonstrated in § 4.3.

Control Variates: Here, approaches build on the RE-

INFORCE estimator for the IWAE ELBO objective, de-

signing control-variate schemes to reduce the variance

of the naı̈ve estimator. Variational inference for Monte

Carlo objectives (VIMCO) [38] eschews designing an ex-

plicit control variate, instead exploiting the particle set

obtained in IWAE. It replaces 1 with

g
1

VIMCO =

K∑

k=1

(log ẐK −Υ−k)∇φ log qφ(zk|x), (3)

Υ−k = log
1

K

(

exp

(
1

K − 1

∑

ℓ 6=k

logwℓ

)

+
∑

ℓ 6=k

wℓ

)

where Υ−k ⊥⊥ zk and highly correlated with log ẐK .

Finally, assuming zk is a discrete random variable with

C categories1, REBAR [53] and RELAX [16] improve on

Mnih and Gregor [37] and Gu et al. [20], replacing 1 as

g
1

RELAX =

(

log ẐK − cρ(g̃1:K)

)

∇φ logQφ(z1:K |x)

+∇φcρ(g1:K)−∇φcρ(g̃1:K), (4)

where gk is a C-dimensional vector of reparameterized

Gumbel random variates, zk is a one-hot argmax func-

tion of gk, and g̃k is a vector of reparameterized condi-

tional Gumbel random variates conditioned on zk. The

conditional Gumbel random variates are a form of Rao-

Blackwellization used to reduce variance. The control

variate cρ, parameterized by ρ, is optimized to mini-

mize the gradient variance estimates along with the main

ELBO optimization, leading to state-of-the-art perfor-

mance on, for example, sigmoid belief networks [40].

The main difficulty in using this method is choosing a

suitable family of cρ, as some choices lead to higher vari-

ance despite concurrent gradient-variance minimization.

3 REVISITING REWEIGHTED

WAKE-SLEEP

Reweighted wake-sleep (RWS) [5] comes from a family

of algorithms [11, 22] for learning deep generative mod-

els, eschewing a single objective over parameters θ and φ
in favour of individual objectives for each. We review the

RWS algorithm and discuss its pros and cons.

3.1 REWEIGHTED WAKE-SLEEP

Reweighted wake-sleep (RWS) [5] is an extension of the

wake-sleep algorithm [11, 22] both of which, like IWAE,

jointly learn a generative model and an inference net-

work given data. While IWAE targets a single objective,

RWS alternates between objectives, updating the genera-

tive model parameters θ using a wake-phase θ update and

the inference network parameters φ using either a sleep-

or a wake-phase φ update (or both).

Wake-phase θ update. Given φ, θ is updated using an

unbiased estimate of ∇θ−
(

1
N

∑N
n=1ELBO

K
IS (θ, φ, x

(n))
)
,

obtained without reparameterization or control variates,

as the sampling distribution Qφ(·|x) is independent of θ.2

1The assumption is needed only for notational convenience.
However, using more structured latents leads to difficulties in
picking the control-variate architecture.

2We assume that the deterministic mappings induced by the
parameters θ, φ are themselves differentiable, such that they are
amenable to gradient-based learning.



Sleep-phase φ update. Here, φ is updated to minimize

the Kullback-Leibler (KL) divergence between the poste-

riors under the generative model and the inference net-

work, averaged over the data distribution of the current

generative model

Epθ(x)[DKL(pθ(z|x), qφ(z|x))]
= Epθ(z,x)[log pθ(z|x)− log qφ(z|x)]. (5)

Its gradient, Epθ(z,x)[−∇φ log qφ(z|x)], is estimated by

evaluating −∇φ log qφ(z|x), where z, x ∼ pθ(z, x). The

estimator’s variance can be reduced at a standard Monte

Carlo rate by increasing the number of samples of z, x.

Wake-phase φ update. Here, φ is updated to minimize

the KL divergence between the posteriors under the gen-

erative model and the inference network, averaged over

the true data distribution

Ep(x)[DKL(pθ(z|x), qφ(z|x))]
= Ep(x)[Epθ(z|x)[log pθ(z|x)− log qφ(z|x)]]. (6)

The outer expectation Ep(x)[Epθ(z|x)[−∇φ log qφ(z|x)]]
of the gradient is estimated using a single sample x from

the true data distribution p(x), given which, the inner ex-

pectation is estimated using self-normalized importance

sampling with K particles, using qφ(z|x) as the proposal

distribution. This results in the following estimator

K∑

k=1

wk
∑K

ℓ=1 wℓ

(−∇φ log qφ(zk|x)) , (7)

where, similar to (1), x ∼ p(x), zk ∼ qφ(zk|x), and

wk = pθ(zk, x)/qφ(zk|x). Note that (7) is the nega-

tive of the second term of the REINFORCE estimator of

the IWAE ELBO in (2). The crucial difference between

the wake-phase φ update and the sleep-phase φ update

is that the expectation in (6) is over the true data distri-

bution p(x) and the expectation in (5) is under the cur-

rent model distribution pθ(x). The former is desirable

from the perspective of amortizing inference over data

from p(x), and although its estimator is biased, this bias

decreases as K increases.

3.2 PROS OF REWEIGHTED WAKE-SLEEP

While the gradient update of θ targets the same objective

as IWAE, the gradient update of φ targets the objective in

(5) in the sleep case and (6) in the wake case. This makes

RWS a preferable option to IWAE for learning inference

networks because the φ updates in RWS directly target

minimization of the expected KL divergences from the

true to approximate posterior. With an increased com-

putational budget, using more Monte Carlo samples in

the sleep-phase φ update case and more particles K in

the wake-phase φ update, we obtain a better estimator

of these expected KL divergences. This is in contrast to

IWAE, where optimizing ELBO
K
IS targets a KL divergence

on an extended sampling space [33] which for K > 1
doesn’t correspond to a KL divergence between true and

approximate posteriors (in any order). Consequently, in-

creasing K in IWAE leads to impaired learning of infer-

ence networks [44].

Moreover, targeting DKL(p, q) as in RWS can be prefer-

able to targeting DKL(q, p) as in VAEs. The former en-

courages mean-seeking behavior, having the inference

network to put non-zero mass in regions where the pos-

terior has non-zero mass, whereas the latter encourages

mode-seeking behavior, having the inference network to

put mass on one of the modes of the posterior [36]. Us-

ing the inference network as an importance sampling (IS)

proposal requires mean-seeking behavior [42, Theorem

9.2]. Moreover, Chatterjee et al. [8] show that the num-

ber of particles required for IS to accurately approximate

expectations of the form Ep(z|x)[f(z)] is directly related

to exp(DKL(p, q)).

3.3 CONS OF REWEIGHTED WAKE-SLEEP

While a common criticism of the wake-sleep family of

algorithms is the lack of a unifying objective, we have

not found any empirical evidence where this is a prob-

lem. Perhaps a more relevant criticism is that both the

sleep and wake-phase φ gradient estimators are biased

with respect to ∇φEp(x)[DKL(pθ(z|x), qφ(z|x))]. The

bias in the sleep-phase φ gradient estimator arises from

targeting the expectation under the model rather than the

true data distribution, and the bias in the wake-phase φ
gradient estimator results from estimating the KL diver-

gence using self-normalized IS.

In theory, these biases should not affect the fixed point

of optimization (θ∗, φ∗) where pθ∗(x) = p(x) and

qφ∗(z|x) = pθ∗(z|x). First, if θ → θ∗ through the wake-

phase θ update, the data distribution bias reduces to zero.

Second, although the wake-phase φ gradient estimator is

biased, it is consistent—with large enough K, conver-

gence of stochastic optimization is theoretically guaran-

teed on convex objectives and empirically on non-convex

objectives [10]. Further, this gradient estimator follows

the central limit theorem, so its asymptotic variance de-

creases linearly with K [42, Eq. (9.8)]. Thus, using

larger K improves learning of the inference network.

In practice, the families of generative models, inference

networks, and the data distributions determine which of

the biases are more significant. In most of our findings,

the bias of the data distribution appears to be the most

detrimental. This is due to the fact that initially pθ(x) is

quite different from p(x), and hence using sleep-phase



φ updates performs worse than using wake-phase φ up-

dates. An exception to this is the PCFG experiment (c.f.

§ 4.1) where the data distribution bias is not as large and

inference using self-normalized IS is extremely difficult.

4 EXPERIMENTS

The IWAE and RWS algorithms have primarily been

applied to problems with continuous latent variables

and/or discrete latent variables that do not actually in-

duce branching (such as sigmoid belief networks; [40]).

The purpose of the following experiments is to compare

RWS to IWAE combined with control variates and con-

tinuous relaxations (c.f § 3) on models with conditional

branching, and show that it outperform such methods.

We empirically demonstrate that increasing the number

of particles K can be detrimental in IWAE but advanta-

geous in RWS, as evidenced by achieved ELBOs and av-

erage distance between true and amortized posteriors.

In the first experiment, we present learning and amor-

tized inference in a PCFG [4], an example SCFM where

continuous relaxations are inapplicable. We demonstrate

that RWS outperforms IWAE with a control variate both in

terms of learning and inference. The second experiment

focuses on Attend, Infer, Repeat (AIR), the deep gener-

ative model of [14]. It demonstrates that RWS leads to

better learning of the generative model in a setting with

both discrete and continuous latent variables, for model-

ing a complex visual data domain (c.f. § 4.2). The final

experiment involves a GMM (§ 4.3), thereby serving as a

pedagogical example. It explains the causes of why RWS

might be preferable to other methods in more detail. 3

Notationally, the different variants of RWS will be re-

ferred to as wake-sleep (WS) and wake-wake (WW). The

wake-phase θ update is always used. We refer to using it

in conjunction with the sleep-phase φ update as WS and

using it in conjunction with the wake-phase φ update as

WW. Using both wake- and sleep-phase φ updates dou-

bles the required stochastic sampling while yielding only

minor improvements on the models we considered. The

number of particles K used for the wake-phase θ and

φ updates is always specified, and computation between

them is matched so a wake-phase φ update with batch

size B implies a sleep phase φ update with KB samples.

4.1 PROBABILISTIC CONTEXT-FREE

GRAMMAR

In this experiment we learn model parameters and amor-

tize inference in a PCFG [4]. Each discrete latent variable

in a PCFG chooses a particular child of a node in a tree.

3In Appendix D, we include additional experiments on sig-
moid belief networks which, however, are not SCFMs.

Depending on each discrete choice, the generative model

can lead to different future latent variables. A PCFG is an

example of an SCFM where continuous relaxations can-

not be applied—weighing combinatorially many futures

by a continuous relaxation is infeasible and doing so for

futures which have infinite latent variables is impossible.

While supervised approaches have recently led to state-

of-the-art performance in parsing [9], PCFGs remain

one of the key models for unsupervised parsing [35].

Learning in a PCFG is typically done via expectation-

maximization [12] which uses the inside-outside algo-

rithm [31]. Inference methods are based on dynamic

programming [13, 61] or search [28]. Applying RWS and

IWAE algorithms to PCFGs allows learning from large un-

labeled datasets through SGD while inference amortiza-

tion ensures linear-time parsing in the number of words

in a sentence, at test-time. Moreover, using the inference

network as a proposal distribution in IS provides asymp-

totically exact posteriors if parses are ambiguous.

A PCFG is defined by sets of terminals (or words) {ti},

non-terminals {ni}, production rules {ni → ζj} with ζj
a sequence of terminals and non-terminals, probabilities

for each production rule such that
∑

j P (ni→ζj) = 1
for each ni, and a start symbol n1. Consider the As-

tronomers PCFG given in Manning et al. [35, Table 11.2]

(c.f. Appendix A). A parse tree z is obtained by recur-

sively applying the production rules until there are no

more non-terminals. For example, a parse tree (S (NP

astronomers) (VP (V saw) (NP stars))) is obtained by ap-

plying the production rules as follows:

S
1.0
−−→ NP VP

0.1
−−→ astronomers VP

0.7
−−→ astronomers V NP

1.0
−−→ astronomers saw NP

0.18
−−→ astronomers saw stars,

where the probability p(z) is obtained by multiplying the

corresponding production probabilities as indicated on

top of the arrows. The likelihood of a PCFG, p(x|z), is

1 if the sentence x matches the sentence produced by z
(in this case “astronomers saw stars”) and 0 otherwise.

One can easily construct infinitely long z by choosing

productions which contain non-terminals, for example:

S → NP VP → NP PP VP → NP PP PP VP → · · · .

We learn the production probabilities of the PCFG and an

inference network computing the conditional distribution

of a parse tree given a sentence. The architecture of the

inference network is the same as described in [32, Sec-

tion 3.3] except the input to the recurrent neural network

(RNN) consists only of the sentence embedding, previ-

ous sample embedding, and an address embedding. Each

word is represented as a one-hot vector and the sentence

embedding is obtained through another RNN. Instead of

a hard {0, 1} likelihood which can make learning diffi-

cult, we use a relaxation, p(x|z) = exp(−L(x, s(z))2),



Figure 3: PCFG training. (Top) Quality of the generative model: While all methods have the same gradient update for θ, the
performance of WS improves and is the best as K is increased. Other methods, including WW, do not yield significantly better
model learning as K is increased, since WS’s inference network learns the fastest. (Bottom) Quality of the inference network:
VIMCO and REINFORCE do not improve with increasing K. WS performs best as K is increased, and while WW’s performance
improves, the improvement is not as significant. This can be attributed to the data-distribution bias being less significant than the
bias coming from self-normalized IS (c.f. § 3.3). Median and interquartile ranges from up to 10 repeats shown (see text).

where L is the Levenshtein distance and s(z) is the sen-

tence produced by z. Using the Levenshtein distance

can also be interpreted as an instance of approximate

Bayesian computation [50]. Training sentences are ob-

tained by sampling from the astronomers PCFG with the

true production probabilities.

We run WW, WS, VIMCO and REINFORCE ten times

for K ∈ {2, 5, 10, 20}, with batch size B = 2, us-

ing the Adam optimizer [26] with default hyperparam-

eters. We observe that the inference network can often

end up sub-optimally sampling very long z (by choos-

ing production rules with many non-terminals), leading

to slow and ineffective runs. We therefore cap the run-

time to 100 hours—out of ten runs, WW, WS, VIMCO and

REINFORCE retain on average 6, 6, 5.75 and 4 runs re-

spectively In Figure 3, we show both (i) the quality of

the generative model as measured by the average KL be-

tween the true and the model production probabilities,

and (ii) the quality of the inference network as measured

by Ep(x)[DKL(p(z|x), qφ(z|x))] which is estimated up to

an additive constant (the conditional entropy H(p(z|x)))
by the sleep-φ loss (5) using samples from the true PCFG.

Quantitatively, WS improves as K increases and outper-

forms IWAE-based algorithms both in terms of learning

and inference amortization. While WW’s inference amor-

tization improves slightly as K increases, it is signifi-

cantly worse than WS’s. This is because IS proposals will

rarely produce a parse tree z for which s(z) matches x,

leading to extremely biased estimates of the wake-φ up-

date. In this case, this bias is more significant than that of

the data-distribution which can harm the sleep-φ update.
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VP
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0:749 0:230

qWS(parse treejsentence)

Figure 4: Samples from the inference network trained with WS

(K = 20). Highest probability samples correspond to correct
sentences (s(z) = x).

We inspect the quality of the inference network by sam-

pling from it. Figure 4, shows samples from an inference

network trained with WS, conditioned on the sentence

“astronomers saw stars with telescopes”, weighted ac-

cording to the frequency of occurrence. Appendix A fur-

ther includes samples from an inference network trained

with VIMCO, showing that none of them match the given

sentence (s(z) 6= x), and whose production probabilities

are poor, unlike with RWS.

4.2 ATTEND, INFER, REPEAT

Next, we evaluate WW and VIMCO on AIR [14], a struc-

tured deep generative model with both discrete and con-

tinuous latent variables. AIR uses the discrete variable to

decide how many continuous variables are necessary to

explain an image. The sequential inference procedure of

AIR poses a difficult problem, since it implies a sequen-

tial decision process with possible branching. See [14]

and Appendix B for the model notation and details.

We set the maximum number of inference steps in AIR

to three and train on 50 × 50 images with zero, one or
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Figure 5: Training of AIR. (Left) Training curves: training with VIMCO leads to larger variance in training than WW. (Middle) Log
evidence values at the end of training: increasing number of particles improves WW monotonically but improves VIMCO only up to
a point (K = 10 is the best). (Right) WW results in significantly lower variance and better inference networks than VIMCO. Note
that KL is between the inference network and the current generative model.

two MNIST digits. The training and testing data sets con-

sist of 60000 and 10000 images respectively, generated

from the respective MNIST train/test datasets. Unlike

AIR, which used Gaussian likelihood with fixed stan-

dard deviation and continuous inputs (i.e., input x ∈
[0, 1]50×50), we use a Bernoulli likelihood and binarized

data; the stochastic binarization is similar to Burda et al.

[6]. Training is performed over two million iterations by

RmsProp [51] with the learning rate of 10−5, which is di-

vided by three after 400k and 1000k training iterations.

We set the glimpse size to 20× 20.

We first evaluate the generative model via the average

test log marginal where each log marginal is estimated

by a one-sample, 5000-particle IWAE estimate. The in-

ference network is then evaluated via the average test

KL from the inference network to the posterior under the

current model where each DKL(qφ(z|x), pθ(z|x)) is esti-

mated as a difference between the log marginal estimate

above and a 5000-sample, one-particle IWAE estimate.

Note that this estimate is just a proxy to the desired KL

from the inference network to the true model posterior.

This experiment confirms that increasing number of par-

ticles improves VIMCO only up to a point, whereas WW

improves monotonically with increased K (Figure 5).

WW also results in significantly lower variance and bet-

ter inference networks than VIMCO.

4.3 GAUSSIAN MIXTURE MODEL

In order to examine the differences between RWS and

IWAE more closely, we study a GMM which branches on a

discrete latent variable to select cluster assignments. The

generative model and inference network are defined as

pθ(z) = Cat(z|softmax(θ)), p(x|z) = N (x|µz, σ
2
z),

qφ(z|x) = Cat(z|softmax(ηφ(x))),

where z ∈ {0, . . . , C − 1}, C is the number of clusters

and µc, σ
2
c are fixed to µc = 10c and σ2

c = 52. The gen-

erative model parameters are θ ∈ R
C . The inference net-

work consists of a multilayer perceptron ηφ : R → R
C ,

with the 1-16-C architecture and the tanh nonlinearity,

parameterized by φ. The chosen family of inference net-

works is empirically expressive enough to capture the

posterior under the true model. The true model is set to

pθtrue
(x) where softmax(θtrue)c = (c+ 5)/

∑C
i=1(i+ 5)

(c = 0, . . . , C − 1), i.e. the mixture probabilities are

linearly increasing with the z . We fix the mixture pa-

rameters in order to study the important features of the

problem at hand in isolation.

We train using WS, WW, as well as using IWAE with RE-

INFORCE, RELAX, VIMCO and the Concrete distribution.

We attempted different variants of relaxations [48, 56] in

this setting, but they performed considerably worse than

any of the alternatives (c.f. Appendix E). We fix C = 20
and increase number of particles from K = 2 to 20. We

use the Adam optimizer with default parameters. Each

training iteration samples a batch of 100 data points from

the true model. Having searched over several tempera-

ture schedules for the Concrete distribution, we use the

one with the lowest trainable terminal temperature (lin-

early annealing from 3 to 0.5). We found that using the

control variate cρ(g1:K) = 1
K

∑K
k=1 MLPρ([x, gk]), with

multilayer perceptron (MLP) architecture (1+C)-16-16-

1 (tanh) led to most stable training (c.f. Appendix C).

The generative model is evaluated via the L2 distance be-

tween the probability mass functions (PMFs) of its prior

and true prior as ‖softmax(θ)−softmax(θtrue)‖. The in-

ference network is evaluated via the L2 distance between

PMFs of the current and true posteriors, averaged over a

fixed set (M = 100) of observations (x
(m)
test )

M
m=1 from

the true model: 1
M

∑M
m=1 ‖qφ(z|x

(m)
test )−pθtrue

(z|x(m)
test )‖.

We demonstrate that using WS and WW with larger par-

ticle budgets leads to better inference networks whereas

this is not the case for IWAE methods (Figure 6, bottom).

Recall that the former is because using more samples to

estimate the gradient of the sleep φ objective (5) for WS

reduces variance at a standard Monte Carlo rate and that
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Figure 6: GMM training. Median and interquartile ranges from 10 repeats shown. (Top) Quality of the generative model: WS and
WW improve with more particles thanks to lower variance and lower bias estimators of the gradient respectively. IWAE methods
suffer with a larger particle budget [44]. WS performs the worst as a consequence of computing the expected KL under the model
distribution pθ(x) (5) instead of the true data distribution p(x) as with WW (6). WW suffers from branch-pruning (see text) in low-
particle regimes, but learns the best model fastest in the many-particle regime; δ-WW additionally learns well in the low-particle
regime. (Bottom) Both inference network and generative model quality develop identically.

using more particles in (7) to estimate the gradient of

the wake φ objective results in a lower bias. The latter

is because using more particles results in the signal-to-

noise of IWAE’s φ gradient estimator to drop at the rate

O(1/
√
K) [44].

Learning of the generative model, through inference-

network learning, also monotonically improves with in-

creasing K for WS and WW, but worsens for all IWAE

methods except VIMCO, since the θ gradient estimator

(common to all methods), ∇θ ELBO
K
IS (θ, φ, x) can be

seen as an importance sampling estimator whose quality

is tied to the proposal distribution (inference network).

To highlight the difference between WW and WS, we

study the performance of the generative model and the

inference network for different initializations of θ. In

Figure 6, θ is initialized such that the mixture probabili-

ties are exponentially decreasing with z which results in

the data distribution pθ(x) being far from pθ∗(x). Conse-

quently, the sleep-phase φ update is highly biased which

is supported by WS being worse than WW. On the other

hand, if θ is initialized such that the mixture probabilities

are equal, pθ(x) is closer to pθ∗(x), which is supported

by WS outperforming WW (see Appendix C.2).

We now describe a failure mode affecting WS, WW,

VIMCO, RELAX and REINFORCE due the adverse initial-

ization of θ which we call branch-pruning. It is best il-

lustrated by inspecting the generative model and the in-

ference network as training progresses, focusing on the

low-particle (K = 2) regime (Figure 7). For WS, the gen-

erative model pθ(z) peaks at z = 9 and puts zero mass

for z > 9; the inference network qφ(z|x) becomes the

posterior for this model which, here, has support at most

{0, . . . , 9} for all x. This is a local optimum for WS as

(i) the inference network already approximates the pos-

terior of the model pθ(z, x) well, and (ii) the generative

model pθ(z), trained using samples from qφ(z|x), has

no samples outside of its current support. Similar fail-

ures occur for WW and VIMCO/RELAX/REINFORCE al-

though the support of the locally optimal pθ(z) is larger

({0, . . . , 14} and {0, . . . , 17} respectively).

While this failure mode is a particular feature of the ad-

verse initialization of θ, we hypothesize that WS and WW

suffer from it more, as they alternate between two dif-

ferent objectives for optimizing θ and φ. WS attempts

to amortize inference for the current model distribution

pθ(x) which reinforces the coupling between the gener-

ative model and the inference network, making it easier

to get stuck in a local optimum. WW with few particles

(say K = 1) on the other hand, results in a highly-biased

gradient estimator (7) that samples z from qφ(·|x) and

evaluates ∇φ log qφ(z|x); this encourages the inference

network to concentrate mass. This behavior is not seen

in WW with many particles where it is the best algorithm

at learning both a good generative model and inference

network (Figure 6; Figure 7, right).

We propose a simple extension of WW, denoted δ-WW,

that mitigates this shortcoming by changing the proposal

of the self-normalized importance sampling estimator in

(7) to qφ,δ(z|x) = (1 − δ)qφ(z|x) + δUniform(z). We

use δ = 0.2, noting that the method is robust to a range

of values. Using a different proposal than the inference

network qφ(z|x) means that using the low-particle es-
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timator in (7) no longer leads to branch-pruning. This

is known as defensive importance sampling [21], and is

used to better estimate integrands that have long tails us-

ing short-tailed proposals. Using δ-WW outperforms all

other algorithms in learning both the generative model

and the inference network in the low-K regime and per-

forms similarly as WW in the high-K regime.

5 DISCUSSION

The central argument here is that where one needs both

amortization and model learning for SCFMs, the RWS

family of methods is preferable to IWAE with either con-

tinuous relaxations or control-variates. The PCFG ex-

periment (§ 4.1) demonstrates a setting where continu-

ous relaxations are inapplicable due to potentially infinite

recursion, but where RWS applies and WS outperforms

all other methods. The AIR experiment (§ 4.2) high-

lights a case where with more particles, performance of

VIMCO degrades for the inference network [44] and con-

sequently the generative model as well, but where RWS’s

performance on both increases monotonically. Finally,

the analysis on GMMs (§ 4.3) focuses on a simple model

to understand nuances in the performances of different

methods. Beyond implications from prior experiments, it

indicates that for the few-particle regime, the WW gradi-

ent estimator can be biased, leading to poor learning. For

this, we design an alternative involving defensive sam-

pling that ameliorates the issue. The precise choice of

which variant of RWS to employ depends on which of

the two kinds of gradient bias described in § 3.3 dom-

inates. Where the data distribution bias dominates, as

with the AIR experiment, WW is preferable, and where

the self-normalized IS bias dominates, as in the PCFG ex-

periment, WS is preferable. In the GMM experiment, we

verify this empirically by studying two optimization pro-

cedures with low and high data distribution biases.

Acknowledgments

TAL’s research leading to these results is supported

by EPSRC DTA and Google (project code DF6700)

studentships. AK’s and YWT’s research leading to

these results are supported by funding from the Eu-

ropean Research Council under the European Unions

Seventh Framework Programme (FP7/2007-2013) ERC

grant agreement no. 617071. NS is supported by EP-

SRC/MURI grant EP/N019474/1. FW’s research lead-

ing is supported by The Alan Turing Institute under the

EPSRC grant EP/N510129/1; DARPA PPAML through

the U.S. AFRL under Cooperative Agreement FA8750-

14-2-0006; Intel and DARPA D3M, under Cooperative

Agreement FA8750-17-2-0093.



References

[1] Ryan Adams, Hanna Wallach, and Zoubin Ghahramani.
Learning the structure of deep sparse graphical models.
In International Conference on Artificial Intelligence and
Statistics, 2010.

[2] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz
Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D Good-
man. Pyro: Deep universal probabilistic programming.
The Journal of Machine Learning Research, 20(1):973–
978, 2019.

[3] David M Blei, Andrew Y Ng, and Michael I Jordan. La-
tent dirichlet allocation. Journal of machine Learning re-
search, 3(Jan):993–1022, 2003.

[4] Taylor L Booth and Richard A Thompson. Applying
probability measures to abstract languages. IEEE trans-
actions on Computers, 100(5):442–450, 1973.

[5] Jörg Bornschein and Yoshua Bengio. Reweighted wake-
sleep. In International Conference on Learning Repre-
sentations, 2015.

[6] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov.
Importance weighted autoencoders. In International Con-
ference on Learning Representations, 2016.

[7] Nick Chater and Christopher D Manning. Probabilistic
models of language processing and acquisition. Trends in
cognitive sciences, 10(7):335–344, 2006.

[8] Sourav Chatterjee, Persi Diaconis, et al. The sample size
required in importance sampling. The Annals of Applied
Probability, 28(2):1099–1135, 2018.

[9] Danqi Chen and Christopher Manning. A fast and accu-
rate dependency parser using neural networks. In Pro-
ceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 740–750,
2014.

[10] Jie Chen and Ronny Luss. Stochastic gradient descent
with biased but consistent gradient estimators. arXiv
preprint arXiv:1807.11880, 2018.

[11] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and
Richard S Zemel. The Helmholtz machine. Neural com-
putation, 7(5):889–904, 1995.

[12] Arthur P Dempster, Nan M Laird, and Donald B Rubin.
Maximum likelihood from incomplete data via the em al-
gorithm. Journal of the Royal Statistical Society: Series
B (Methodological), 39(1):1–22, 1977.

[13] Jay Earley. An efficient context-free parsing algorithm.
Communications of the ACM, 13(2):94–102, 1970.

[14] S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yu-
val Tassa, David Szepesvari, Koray Kavukcuoglu, and
Geoffrey E. Hinton. Attend, infer, repeat: Fast scene un-
derstanding with generative models. In Advances in Neu-
ral Information Processing Systems, 2016.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In Ad-
vances in neural information processing systems, pages
2672–2680, 2014.

[16] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder,
and David Duvenaud. Backpropagation through the void:
Optimizing control variates for black-box gradient esti-
mation. In International Conference on Learning Repre-
sentations, 2018.

[17] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural
Turing machines. arXiv preprint arXiv:1410.5401, 2014.

[18] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim
Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska,
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