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This paper presents an analytical model of a rigid rotor supported in two fluid film bearings
with an emphasis on predicting the instability threshold speed. The factors contributing to the
stability of the rotor are discussed and presented graphically using root locus plots. The
parametric study of the stability starts from the discussion of the rotor/bearing system with
"mirror symmetry". Three basic cases are considered:

(i) Rotor with relatively small gyroscopic effect (small polar moment of inertia) and
relatively high transverse moment of inertia. It is found that the pivotal mode
instability exists, but the lateral mode controls stability.

(ii) Highly gyroscopic rotor (relatively large polar moment of inertia) with also rela-
tively low transverse moment of inertia. It is found that the pivotal mode is infinitely
stable and the lateral mode controls stability.

(iii) Highly gyroscopic rotor with relatively high transverse moment of inertia. It is
found that the pivotal mode exists and controls stability. The lateral mode always
exists.

Both asymmetry in rotor geometry (location of center of mass with respect to the
bearings) and fluid bearing parameters (stiffness, damping) are considered. It is shown
that, for a given bearing asymmetry parameter, the maximum stability is achieved when
the geometric asymmetry parameter is of equal value. The recommendations on the
optimal design from the stability standpoint are given.
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INTRODUCTION

The gyroscopic effect, as related to rotordy-
namics, has been researched in many papers,
starting from pioneering works by Yamamoto

(1954), Dimentberg (1961) and Crandall (1982,
1961) considering various ways of describing
the rotor lateral and angular motion. A descrip-
tion of gyroscopic effects together with more com-

plete lists of references can be found in books by
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Ehrich (1992) and Vance (1988). An experimental
work dealing with parameter identification for the
rotor system with large gyroscopic influence is
reported by Bently et al. (1986). The interaction
between the stabilizing effect of gyroscopics and
destabilizing effect of fluid-induced tangential
forces has been investigated by Muijderman (1986).
An earlier paper by Hatch and Bently (1995)

presented a model and stability criteria for a rigid
rotor with significant gyroscopic effects supported
in one fluid film bearing and one roller element
bearing. The latter was assumed to have infinite
lateral stiffness. The significant finding of this paper
was that it is possible to make a rotor pivotal mode
absolutely resistant to fluid induced instabilities by
using the gyroscopic effect to counteract the forces
driving the fluid instability. Experimentation veri-
fied the conclusions drawn in this paper, leading to
the feasibility of employing the stability criteria on
real machines to correct fluid instability problems.
One of the questions that came up was, "what if a

machine has two fluid film bearings?" By adding
another fluid film bearing, it is expected that there
will be a translational mode as well as a pivotal
mode. The second fluid film bearing introduces a
new, strictly lateral, degree of freedom, and another
mode. Investigating the stability criteria for this
more complex model was the motivation for this
study.

ROTOR MODEL

A diagram of the rotor modeled is shown in Fig. 1.
The model consists of a rotor supported in two fluid
lubricated bearings with fluid film radial stiffness

Kb, and rotating damping Db, subscripted with a
or 2 to indicate which bearing is referred to. The
rotor itself has parameters of mass M, polar mass
moment of inertia Ip, and transverse mass moments
of inertia Ix, Iy.
The coordinate system for describing the rotor

motion is shown in Figs. 2 and 3. It is a combination
of a Cartesian and a spherical system. The basis of
the absolute stationary coordinate system xyz has

Bearing Bearing 2

FIGURE Diagram of rotor system used in model.

FIGURE 2 Coordinate systems for the rigid rotor.

its origin at the point O which is coincident with the
rotor mass center, Or, when the rotor is centered in
the bearing clearances. The translational motion of
the rotor is assumed planar, and is described by
lateral displacements x and y. Additionally, a

spherical coordinate system is introduced with
origin at the rotor mass center Or, and, and as

angles of yaw and pitch respectively (Fig. 3). Note
that for the rotor as shown in Fig. 1, distance z is

negative. Of course, generally a rotor may have its
mass center outside of the bearing span in which
case zl and z2 are both of the same sign. Such rotors
are usually called "overhung" rotors.
Any lateral displacement of the rotor relative to

its center of mass, Or, can be described by the two

angles plus the distance z from Or. The combination
of the (x,y) and (X,) coordinate systems provide
the independent coordinates used for a Lagrangian
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FIGURE 3 Angles X, b of yaw and pitch.

derivation of the equations of motion (not
presented in this paper).

Assumptions

Bearing fluid film stiffness and damping proper-
ties are considered laterally isotropic. This is
true for the case of lightly loaded bearings/
seals.
The rotor is assumed rigid.
It is assumed that the angular displacement ofthe
rotor is small, consequently the distance from the
origin along the axis is maintained as simply z.

Additionally, gyroscopic effects of second order
or higher are neglected.
There is no axial motion of the rotor.
The fluid film damping in the bearings is directly
proportional to the fluid film stiffness.
The fluid circumferential average velocity ratio, A
(Muszynska, 1988), is considered the same in
both bearings.
The rotative speed f, of the rotor is assumed
constant. There is no torsional vibration. All
calculations consider variation of rotor speed
discretely.

Equations of Motion

The four degrees of freedom x, y, X and can be
reduced to two by introduction of the complex
coordinates r=x+jy, and similarly, tI, =X +jb.
Using these identities, the equations for the free

response of the system are as follows:

M/: + (Dbl + Db2)? + [(Kbl + Kb2)
jAf(Dbl + Dbz)]r.’’ + (Db2z2 + DblZl)

+ [Kb2z2 + Kblz --j(Db2z2 + Obz)AQ]t 0,

(1)

It + [(Db,z2 + Db2z)--jlpf] + [(Kb,z2 + Kb2z22)
--jAf(Db,Zl2 + Db2z22)] + (Db2z2 + Db,z,

+ (Kbzz2 + Kbz jAf(Db2z2 + Dblz))r O,
(2)

where A is the fluid circumferential average velocity
ratio as shown by Muszynska (1988). In order to
reduce the complexity of the equation set and
possibly gain some insight into the physical
behavior of the rotor system, nondimensional
forms of Eqs. (1) and (2) are generated using the
relations given in Table I:

h" + 2th’ + (1 2jtA)h

+ bto(O’ -java0) 4- atoO O, (3)

I," ’ + 2/(0 (P’ jka2) + T]2J

bto ato+ --(h’ jcoh) + --h 0. (4)

STABILITY OF THE MIRROR SYMMETRIC
SYSTEM-UNCOUPLED MODES

The rotor system (Fig. 1) is considered "mirror
symmetric" if the distance from the center of
mass to either bearing is identical (]zl]
and the bearing characteristics are the same (Dbl
Ob2 Kbl- Kb2). In that case the cross-coupling
factors, ato and bto, vanish and translational and
pivotal modes, Eqs. (3) and (4) become uncoupled.

(1) For translational mode:

h" + 2th’ + (1 2jtAco)h 0. (5)
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TABLE Nomenclature of factors used to nondimensionalize equations of motion

Radius of gyration, p

Nondimensional displacement, h

Ratio of transverse to polar moment of inertia,

Lateral natural frequency, ut

Angular natural frequency, "u0

Lateral damping factor, t

Angular damping factor, 0

Natural frequency ratio,

Stiffness cross coupling factor, ato

Nondimensional rotor speed, co

Nondimensional time, r

Damping cross coupling factor, bto

(2) For pivotal mode:

0"-j0’ + 2r/0(0’- jAco0) + r/Z0 0. (6)

The instability threshold speed for the translational
mode is as follows:

(t) /t v/Kbl -[- Kb2

From Eq. (7) it can be seen that the stability ofthe
translational mode can be maximized three ways:
Increasing direct stiffness values, decreasing the
modal mass, M, or decreasing the bearing fluid
circumferential average velocity ratio, A. All will
raise the speed at which the translational mode
becomes unstable. There is no unconditional
stability for the translational mode. The instability
threshold speed for the pivotal mode is as follows:

(o) uo /KblZ -I- Kb2z
th

The interesting result from Eq. (8) is that an
unconditional stability criterion can be derived
using finite and achievable parameters as shown

by Hatch and Bently (1995). By setting the term in
the denominator under the radical less than or

equal to zero, the following unconditional stability
criterion is reached:

<A. (9)p-

Figure 4 shows a root locus plot of the rotor
system with the criterion of Eq. (9) satisfied. By
examining the roots of each of the decoupled
equations (5) and (6), it can be seen that the lateral
mode is the only source of the instability. A quick
check of this is provided by observing that the roots

generated by the gyroscopic term have a branch
that is asymptotically approaching the zero real
axis.

In Fig. 5 it can be seen that the lateral roots are

unchanged, but now the gyroscopic root crosses the
zero axis at lower rotative speed than the lateral
root, thus controlling stability. This is due to the
criterion set in (9) not being met. It should be noted
that the stability of the gyroscopic mode does not
necessarily have to be absolute, just better than the
lateral mode, as the lowest threshold dominates.
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SYSTEM PARAME;rERS

M 2 kg
Kbl 28e3 N/m

Kb2 28e3 N/m

Dbl 262.5 N s/m

Db2 262.5 N s/m

Zl =-0.102 m
z2 0.102 m

0.45
Ip 0.022 kg m
It Ip /A kg rn

FIGURE 4 Root locus plot of "mirror symmetric" rotor with ratio = 1/A. Plot was generated using the parameters given
above and varying rotative speed, f2. The O’s indicate the beginning of the locus at ft 0. The x’s indicate the position of the
roots at the point where the system becomes unstable at f- 3581 rpm.
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FIGURE 5 Root locus plot of symmetric rotor with system
parameters as in Figure 4, except for the parameter It=2
Ip/Akgm2. The O’s indicate the beginning of the locus at
f 0. The x’s indicate the position of the roots at the point
where the system first becomes unstable at f 2435 rpm.
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FIGURE 6 Root locus plot of symmetric rotor with system
parameters as in Figure 4, except for the parameter It= 1.1
Ip/Akgm2. The O’s indicate the beginning of the locus at
f-0. The x’s indicate the position of the roots at the point
where the system first becomes unstable at f 3581 rpm.

Figure 6 illustrates a case where the criterion (9) is
not met, yet the lateral mode still controls stability.

ROTOR AXIAL ASYMMETRY: COUPLING
OF THE MODES

The introduction of asymmetry in either geometric
or bearing parameters causes a coupling of the
lateral and pivotal modes. The purpose of this

investigation is to determine if there is ever an

improvement in the rotor stability from asym-
metry. The deviations of the rotor system from
the mirror symmetric case can be expressed by two
coefficients:

Coefficient of geometric asymmetry a

The distances from the center of mass to the
bearings, Z and Z2, can be expressed in terms of
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TABLE II Transformation of nondimensionalization parameters by asymmetry factors

Lateral natural frequency, u,

Natural frequency ratio, r/

Lateral damping factor, t
Angular damping factor, 0
Damping cross coupling factor, bw
stiffness cross coupling factor, ato

rl L/(2pv/-)v/i + a 2ab, D/(2x/--)

0=,
b,o= 2,a,o

ato L/(2p)(a- b)

the total distance between the bearings, L, and an
asymmetry factor, a, as follows:

L L
z1 -(a- 1)--, z2 -(1 / a)-. (10)

If a=0, the rotor system is geometrically
symmetric, if al > then the rotor has overhung
design (i.e. the rotor center of mass lies outside of
the two bearing supports).

Coefficient of stiffness asymmetry b

Similarly, the fluid film direct stiffness’ Kbl and Kb2
can be parametrized in terms of the total stiffness

K-Kb + Kb2, and an asymmetry parameter, b, as
follows:

K K
Kbl (1 / b)-, Kb2 (1 b)-. (11)

The same parameter, b, can be used to describe
the damping asymmetry based on the assumption
that the fluid film damping is proportional to
stiffness. D represents the total damping Dbl / Db2.

D D
(12)+ Z) 2

The parameter b can range from 0 to 1. A
symmetric system corresponds to b =0. The non-
dimensional parameters listed in Table I are now
transformed in terms of the asymmetry parameters,
as follows in Table II:
Taking the relations in Table II into account, the

characteristic equation for Eqs. (3) and (4) can
be presented in the following nondimensional

format:

[$2/ 2IS / (1- 2jt/CO)] [$2/ (2]t --j)S / ]2

2jtr/ACO a2to[1 / 2t(S-- jAco)] 2 0, (13)

where s is an eigenvalue. This is a fourth-order
equation and consequently has four roots, two of
which can have positive real parts. The following
expression represents the relation for the instability
threshold of the system:

/,’t q ]2 /( _)2 a2to
th----" /’ -1-" 1-- /--’

t
(14)

where a is related to the stability criterion given by
(9) as follows"

ip.
It

If cr > 0, the system has a finite pivotal mode
instability threshold, cr < 0 corresponds to infinite
stability of the pivotal mode. Note that expression
(14) for ato-0 turns into instability thresholds (7)
and (8) for the mirror symmetric case. Depending
on the parameters, there can be instability thresh-
olds corresponding to either the lateral or pivotal
modes. The effects of asymmetry on the instability
threshold can now be investigated.

Figure 7 shows a family of curves, each repre-
senting a constant value of the fluid film asymmetry
parameter, b. The stability criterion for the pivotal
mode (9) is not met here, consequently the pivotal
mode is the stability controlling factor. In this case
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FIGURE 7 Instability threshold versus geometric parameter asymmetry.
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FIGURE 8 Instability threshold versus geometric parameter asymmetry.

it can be seen that asymmetry in either a or b can
have only detrimental effects on the instability
threshold.
The next case investigated is shown in Fig. 8. All

the parameters are identical with Fig. 7, except that
rotor length, L, is increased. The important insight
gained from this case is that in all cases the insta-
bility threshold is higher than with a short bearing
span. Additionally, note that the peak instability
threshold at b a =0.6 is the same as with a sym-
metric system b a 0. Peak stability is reduced at
greater values of fluid film asymmetry, b 0.9, yet
is still improved over the short rotor case.

Figure 9 shows the case where the stability
criterion (9) is satisfied. The rotor length, L, is

returned to the original smaller value used in Fig. 7.
Remarkable about this case is the fact that the peak
instability thresholds are equal regardless of b and
that the peak value of stability is reached at a b.
The translational mode is now entirely responsible
for determining stability.

Figure 10 is similar to Fig. 9 with the exception
that rotor length, L, has been increased. At first
glance, the results appear identical because the peak
values are the same, but closer inspection will show
that the curves take slightly different paths to arrive
at the peak values. From this it can be concluded
that lengthening the rotor does not have the same
benefits when the gyroscopic mode is not the
controlling factor for stability.
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FIGURE 9 Instability threshold versus geometric parameter asymmetry.
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FIGURE 10 Instability threshold versus geometric parameter asymmetry.

CONCLUSIONS

The rotor system considered is a rigid rotor
supported in two fluid film bearings. The latter
are assumed to have isotropic stiffness and rotating
damping characteristics as by Muszynska (1988).
This model, based on the strength of circumfer-
ential flow, describes the "cross-coupled stiffness
coefficient" as a product of damping, rotative
speed, and A. This model was identified by extensive
modal testing of rotor with fluid interaction by
Muszynska (1995). The application of such a model
allows a complete parametric stability analysis of
the system.

Consideration of stability of the steady state
regime in the rotor system with "mirror symmetry"
allows for three basic cases:

(i) Highly gyroscopic rotor with high transverse
moment of inertia. There are two instability

thresholds: one for both translational and
pivotal modes. The latter as the lowest
controls the rotor stability.

(ii) The rotor with relatively low gyroscopic effect
and high transverse moment of inertia: Again
there are two instability thresholds, but in this
case the translational mode threshold is the
lowest, thus controlling overall stability.

(iii) The case of a rotor with relatively low trans-
verse moment ofinertia. In this case the pivotal
mode is always stable and the rotor stability
is determined by the translational mode insta-

bility threshold.

The parametric study of the asymmetric rotor
system based on the results of the symmetric system
stability analysis yields that for the first case the
pivotal mode controls the stability for any set of
asymmetry parameters. For a given stiffness asym-
metry parameter the maximum instability threshold
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is achieved when the rotor center of mass is shifted
away from the stiffer bearing on the geometric
asymmetry parameter of the same value. The
instability threshold maximum corresponds to the
symmetric rotor.

This implies that stability may be maximized in
this case by distributing the mass of the rotor in
such a way as to minimize the ratio of transverse
moment of inertia to polar moment of inertia, .

In the case where the translational mode is
controlling stability, The instability threshold can
only be managed by manipulation of the bearing
parameters or total rotor mass.

NOMENCLATURES

a

ato
b

bto
Dbl, Db2

D

Kbl, Kb2

K
Z1, Z2
L
M
O
Or
s

geometric asymmetry parameter
stiffness cross-coupling parameter
stiffness asymmetry parameter
damping cross-coupling parameter
bearing and 2 fluid film damping,
respectively
total lateral fluid film damping
transverse and polar moments of
inertia, respectively
bearing and 2 direct fluid film
stiffness
total lateral fluid film stiffness
bearing and 2 location, respectively
total distance between the bearings
rotor system mass
absolute coordinate system origin
rotor center of mass
eigenvalue

r-x+jy

-x+J

th

lateral displacement of rotor center
of mass in the stationary system of
coordinates
fluid bearing circumferential average
velocity ratio
angle of yaw and pitch, respectively
complex angular displacement
rotative speed
instability thresholds for translation
and pivotal modes
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