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Abstract
As a countermeasure against the famous Bleichenbacher
attack on RSA based ciphersuites, all TLS RFCs starting
from RFC 2246 (TLS 1.0) propose “to treat incorrectly
formatted messages in a manner indistinguishable from
correctly formatted RSA blocks”.

In this paper we show that this objective has not been
achieved yet (cf. Table 1): We present four new Blei-
chenbacher side channels, and three successful Bleichen-
bacher attacks against the Java Secure Socket Extension
(JSSE) SSL/TLS implementation and against hardware
security appliances using the Cavium NITROX SSL ac-
celerator chip. Three of these side channels are timing-
based, and two of them provide the first timing-based
Bleichenbacher attacks on SSL/TLS described in the lit-
erature. Our measurements confirmed that all these side
channels are observable over a switched network, with
timing differences between 1 and 23 microseconds. We
were able to successfully recover the PreMasterSecret
using three of the four side channels in a realistic mea-
surement setup.

1 Introduction

SSL/TLS is, due to its enormous importance, a major tar-
get for attacks. During the last years, novel attack tech-
niques (targeting the TLS Record Layer) have been dis-
covered (see e.g. [21]). However, one of the most famous
attacks is still Bleichenbacher’s chosen-ciphertext attack
on the TLS handshake [5], exploiting side channels of the
RSA decryption process (see Section 3). Formal models
don’t cover this attack: The first full security proof of the
TLS-RSA handshake [17] assumes that the RSA decryp-
tion implementation is ideal without any side channels.

Bleichenbacher’s Attack. Bleichenbacher’s attack is
an adaptive chosen-ciphertext attack on the RSA
PKCS#1 v1.5 encryption padding scheme (denoted by

TLS impl. Side channel Queries & Efficiency
Queries Time

OpenSSL timing O(240) n.a.
JSSE error message 177,000 12 h
JSSE timing 18,600 19.5 h

Cavium timing 7371 41 h

Table 1: Overview on Bleichenbacher side channels and
attacks. In case of timing based side channels, Queries
denotes the number of queries sent to the Bleichenbacher
oracle O (see below); the actual number of requests sent
to the TLS server (and thus the attack duration) depend
on the network quality. Even though we found timing
differences in the OpenSSL implementation, the attack
revealed not to be practical due to the weakness of the
oracle.

PKCS#1 in the following). The only prerequisite for
the attack is the presence of a side channel at the TLS
server which allows to distinguish PKCS#1 compliant
from non-compliant ciphertexts. An attacker with access
to such a side channel can proceed as follows: He records
the TLS handshake of the target connection, and extracts
the RSA-PKCS#1 encrypted ClientKeyExchangemes-
sage c. Then he iteratively creates new ciphertexts
c′,c′′, . . . from c. These are sent to the TLS server as
part of a new handshake, and the server’s responses are
observed. With each successful query, i.e. a query c∗

which is PKCS#1 compliant, the attacker can reduce the
interval in which the original plaintext is located in. He
repeats these steps until the interval only contains one in-
teger, thus decrypting the ciphertext c. Daniel Bleichen-
bacher successfully applied this attack to SSL 3.0 [5] in
1998.

In three of the four presented attacks we are dealing
with timing based side channels, so we have to repeat
measurements to statistically eliminate random noise. In
the following, we use an abstraction to deal with this fact:
A Bleichenbacher oracle O receives a candidate cipher-
text c∗ as input and makes use of a side channel (e.g. by
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repeating measurements) to finally output whether c∗ is
PKCS#1 compliant or not (see Figure 3).

Countermeasures. Soon after the publication of the
original Bleichenbacher attack in 1998, error messages
were unified and the TLS standards introduced the fol-
lowing countermeasure: If the decrypted message struc-
ture is not compliant, the TLS server generates a random
PreMasterSecret, and performs all subsequent hand-
shake computations with this value.1 This countermea-
sure was described in TLS versions 1.0 [9] and 1.1 [10].
TLS 1.2 [11] improves this by prescribing that a random
number must always be generated, independently of the
PKCS#1 compliance of the incoming ciphertext. This
should ensure equal processing times for compliant and
non-compliant ciphertexts.

Novel Side Channels. In this paper we analyze sev-
eral widely used TLS implementations for their vul-
nerability against Bleichenbacher attacks and show that
the implemented countermeasures are not sufficient: We
describe four new Bleichenbacher oracles, and analyze
their sources (see Table 1). Additionally, the strength of
these oracles is evaluated and three of these oracles are
shown to be strong enough to mount Bleichenbacher at-
tacks in practice. This finally led to the decryption of
previously recorded SSL/TLS sessions.

The first side channel is caused by an implementa-
tion bug in the Java Secure Socket Extension (JSSE)
– Java’s built-in SSL/TLS implementation. In JSSE
a different error message can be triggered if the two
most significant bytes are PKCS#1 compliant, but the
PreMasterSecret shows up to be of invalid length.
We were able to successfully exploit this and decrypt a
PreMasterSecret with a few thousand queries.

The second side channel is based on conspicuous tim-
ing differences in the OpenSSL implementation during
PKCS#1 processing. The source of this side channel is
hard to determine: Our working assumption suggests that
it is based on the additional time consumption of choos-
ing a random value. Following the description of Blei-
chenbacher countermeasures in TLS versions 1.0 and
1.1, this random value is only generated if the decrypted
PreMasterSecret is not PKCS#1 compliant. The tim-
ing difference (in the range of few microseconds) caused
by the unequal treatment of random number generation
(depending on the PKCS#1 compliance of the cipher-
texts) may be the cause for this side channel. We were
able to reliably measure a timing difference in the range

1This leads to a fatal error when checking the ClientFinished

(because of different PreMasterSecret at client and server side), but
it does not allow the attacker to distinguish valid from invalid cipher-
texts based on server error messages.

of one microsecond over a LAN and to reliably detect
plaintexts containing valid PreMasterSecret values.

The third side channel is based on the fact that Java’s
Exception handling and error processing can be a time
consuming task: Whenever the resulting plaintext is not
PKCS#1 compliant, an Exception is raised by JSSE
forcing random PreMasterSecret generation. The re-
sulting timing difference is significantly higher (in the
range of 20 microseconds) and can be measured over a
LAN. This qualifies the side channel for practical attacks
under real-world conditions.

The fourth side channel was found in widely used
F5 BIG-IP and IBM Datapower products which rely on
the Cavium NITROX SSL accelerator chip. It allowed
to distinguish invalid messages from messages starting
with 0x??02 (where 0x?? represents an arbitrary byte).
Since the original Bleichenbacher algorithm does not
handle this case, we derived a novel variant of the algo-
rithm and evaluated that it can decrypt 2048-bit cipher-
texts with only 4700 queries to an oracle.

Contribution. The contributions of this paper can be
summarized as follows:

• Impact. We analyze several widely used SSL/TLS
implementations and identify four new Bleichen-
bacher side channels, three of them timing-based.
We describe three successful Bleichenbacher at-
tacks which completely break JSSE and NITROX
based SSL/TLS accelerators.

• Novelty. We describe the first timing based Blei-
chenbacher attacks against a TLS implementation.
We present a novel variant of the original Bleichen-
bacher algorithm to handle specific server behavior
and show that this variant results in a much better
attack performance.

• Insight. We show that Exception handling may
cause large timing differences, measurable over a
LAN. This observation is in general important for
development of side channel free (cryptographic)
implementations in object oriented languages.

• Methodology. Our research was conducted using a
novel framework for SSL/TLS inspection and pen-
etration, called T.I.M.E., which may be of indepen-
dent interest.

Responsible Disclosure. All vulnerabilities were com-
municated to the vendors’ security teams and sent to-
gether with fix proposals. They were fixed or are going
to be fixed in the newest releases.

2
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2 SSL/TLS

The Secure Sockets Layer (SSL) protocol was invented
1994 by Netscape Communications, and later (1999) re-
named to Transport Layer Security (TLS) by the IETF. It
evolved to be the de facto standard for secure data trans-
mission over the Internet and is mostly used, but not lim-
ited, to secure HTTP traffic.

SSL/TLS mainly consists of two components: the
Handshake Protocol to negotiate security primitives and
key material, and the Record Layer where the payload
(HTTP, IMAP, ...) is encrypted and integrity protected.

Record Layer. The Record Layer is initiated with the
NULL ciphersuite, where no cryptographic protection is
applied at all. Then the handshake is executed, until the
ChangeCiperSpec message is sent by one party. Imme-
diately after sending this message, this party switches the
Record Layer to the negotiated parameters (algorithms
and keys) and enables the negotiated security algorithms.

Subsequently, all messages sent through the TLS
channel are secured by the selected cipher suite algo-
rithms and the computed key material. Regarding in-
tegrity and confidentiality the Record Layer relies on
a MAC-then-PAD-then-Encrypt scheme ([22] gives a
detailed overview on this topic and highlights the pit-
falls). The payload data is integrity protected by a (keyed
H)MAC, padded if required, and finally encrypted.

Handshake Protocol. This protocol is used to negoti-
ate the cryptographic primitives and keys. The different
primitives are bundled in cipher suites. A cipher suite
defines the algorithms for (a) key exchange or key agree-
ment, (b) encryption (and, if necessary, the mode of op-
eration) and (c) MAC (Message Authentication Code).
Thus, the cipher suite TLS RSA WITH DES CBC SHA uses
(a) RSA encryption for key exchange, (b) DES encryp-
tion in CBC mode for encryption and (c) a SHA-1 based
HMAC for integrity to protect the payload.

Figure 1 illustrates a typical (RSA-based) handshake
without mutual authentication, between a client and a
server. All cipher suites supported by the client are
listed in the ClientHello message, and one of these
suites is chosen by the server in the ServerHello mes-
sage. The server’s public key for RSA encryption is sent
in the Certificate message and the ciphertext of the
PreMasterSecret chosen by the client is contained in
the ClientKeyExchange message. After this message,
both - client and server - are ready to switch to encrypted
mode (by sending a ChangeCiperSpec message). The
final two Client-/Server Finished messages (con-
taining a cryptographic checksum over all previously ex-
changed handshake messages) are already encrypted.

Client Server 

ClientHello 

ClientKeyExchange 

ChangeCipherSpec 

(Client-)Finished 

ServerHello 

Certificate 

ServerHelloDone 

ChangeCipherSpec 

(Server-)Finished 

Figure 1: SSL/TLS handshake with RSA Key Exchange

Other Protocols. The ChangeCipherSpec Protocol is
used to activate channel protection (switch to negotiated
cipher suite and related key material), whereas the Alert
Protocol is responsible for signalizing errors and failures.

Libraries and Appliances. The work presented in this
paper focuses on the most common open source libraries
and SSL/TLS appliances listed below.

OpenSSL.2 As a widely used open source library
OpenSSL is applied by many applications (such as the
Apache Webserver’s default module for SSL/TLS).

Java Secure Socket Extension (JSSE).3 This library
is the standard implementation of SSL/TLS for the Java
platform, provided as part of the Java Runtime Environ-
ment. Java based applications are very likely to use it.

GnuTLS.4 GnuTLS is another open source library for
SSL/TLS available under GPL.

IBM Datapower and F5 BIG-IP. These two products
are widely used Web application firewalls and security
appliances. Their SSL/TLS processing is handled using
a Cavium NITROX SSL accelerator chip.

3 Bleichenbacher’s Attack

In 1998, Daniel Bleichenbacher presented an adaptive
chosen-ciphertext attack on protocols using the RSA
PKCS #1 encryption standard [5]. He exemplarily ap-
plied his attack to the SSL v3.0 protocol. Through dif-
ferent error messages returned from the SSL server, Blei-

2http://www.openssl.org
3http://docs.oracle.com/javase/7/docs/technotes/

guides/security/jsse/JSSERefGuide.html
4http://www.gnutls.org

3
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chenbacher was able to identify ciphertexts where the
plaintext started with 0x0002. Thus, he used the SSL
server as a (partial) decryption oracle O and was able
to decrypt an encrypted PreMasterSecret, from which
all SSL/TLS session keys are derived [11]. Soon after
this discovery, the error messages were unified in order
to close this side channel. Later, the attack was reenabled
by Klı́ma, Pokorný and Rosa [16] through a different side
channel, fixed again and finally remained unexploitable
for nearly 10 years.

In order to describe the basic attack, we will first
give an overview of the PKCS#1 encryption padding
scheme and its usage in SSL/TLS to secure the
PreMasterSecret. Afterwards, the attack and the
countermeasures are presented. Throughout this section
we write |a| to denote the byte-length of a string a, and
a||b to denote concatenation of a and b. We let (N,e) be
an RSA public key, with corresponding secret key d.

3.1 PKCS#1 v1.5 Encryption Padding
PKCS#1 v1.5. The basic task of the PKCS#1 v1.5 en-
cryption padding scheme is to prepend a random padding
string PS (|PS| > 8) to a message k, and then apply the
RSA encryption function:

1. The encrypter takes a message k and chooses a
random, non-zero string PS, where |PS| > 8 and
|PS|= �−3−|k|.

2. The cleartext block is m = 00||02||PS||00||k. By in-
terpreting this string as an integer m < N,

3. the ciphertext is computed as c = me mod N.

To decrypt such a ciphertext, the decrypter first com-
putes m = cd mod N. Afterwards, it is checked whether
the decrypted message m has a correct PKCS#1 format.
This message m = m1||m2||...||m|m| is PKCS#1 compli-
ant if (x ≥ 10):

m1 = 0x00

m2 = 0x02

0x00 �∈ {m3, . . . ,mx}
0x00 ∈ {mx+1, . . . ,m|m|}

(1)

PKCS#1 usage in TLS. In case of TLS, PKCS#1 is
used for encapsulation of the PreMasterSecret ex-
changed during a handshake which consists of 48 bytes.
The first two bytes of the PreMasterSecret contain a
two-byte version number ma j||min (e.g., ma j = 0x03,
min = 0x01 for TLS 1.0). The remaining bytes are cho-
sen by the client at random. Figure 2 gives an example
of a PreMasterSecret (PMS) padded to be encrypted
with a 2048-bit RSA key.

0200 00 Randomnonzero padding

256 Bytes

205 Bytes 48 Bytes PMS

03 01

Figure 2: PKCS#1 padding applied to a PMS to be en-
crypted with a 2048-bit RSA key

We say that a PKCS#1 compliant message m is TLS
compliant if:

|k| = 48
k1||k2 = ma j||min

(2)

3.2 Basic Attack Idea.

Bleichenbacher’s attack enables an adversary, who is in
possession of a ciphertext c0, to recover the encrypted
plaintext m0. The only prerequisite for this attack is the
ability to access an oracle O that decrypts a ciphertext
c and responds with 1 or 0, depending on whether the
decrypted message m starts with 0x0002 or not:

O(c) =

{
1 if m = cd mod N starts with 0x0002

0 otherwise.

If the oracle answers with 1, the adversary knows that
2B ≤ m ≤ 3B− 1, where B = 28(�−2). The algorithm is
based on the malleability of the RSA encryption scheme
which allows the following blinding:

c = (c0 · se) mod N = (m0s)e mod N

The attacker queries the oracle with c. If the oracle re-
sponds with 0, the attacker increments s and repeats the
previous step. Otherwise, the attacker learns that

2B ≤ m0s− rN < 3B

for some r. This allows the attacker to reduce the set of
possible solutions to

2B+ rN
s

≤ m0 <
3B+ rN

s

By iteratively choosing new values for s, querying the or-
acle, and computing new r values, the attacker narrows
down the interval which contains the original m0 value.
He repeats these steps until only one solution in the inter-
val is left. We refer to the original paper [5] for details.

4
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3.3 Impact of Oracle Type on Attack Per-
formance

The oracle O needed for the attack can be based on dif-
ferent side channels. For example, it can be provided by
a server responding with different error messages based
on the PKCS#1 compliance. If the server identifies a
message as PKCS#1 compliant, the attacker knows the
message starts with 0x0002.

Bleichenbacher tested his attack against an SSL server
which strictly checked the PKCS#1 format (see Equa-
tion 1). He needed about one million messages to de-
crypt an arbitrary ciphertext (1024-bit RSA). However,
the attack performance varies. Bleichenbacher’s algo-
rithm relies solely on the knowledge that the first two
message bytes are equal to 0x0002. If an oracle is con-
structed from an application which verifies only the first
two bytes of the decrypted message (0x0002), we get a
very “strong” oracle and the attack performs well. On
the other hand, if an application checks also different
properties such as TLS protocol version conformity (see
Equation 2), the oracle can respond with 0 even if the
first two bytes are equal to 0x0002 (e.g., if the extracted
PreMasterSecret is of invalid length). Such a behav-
ior leads to false negatives which slow down the attack
performance. The oracle is “weak”.

The oracle strength can be measured using a proba-
bility that the oracle responds with 1 when a given de-
crypted message starts with 0x0002. Suppose P(A) de-
fines a probability that the first two bytes of the decrypted
message are 0x0002. P(1|A) is a probability that the or-
acle answers with 1, in case that the decrypted message
starts with 0x0002. Suppose we work with a 1024 bit
RSA key. For an oracle strictly checking the PKCS#1
compliance (first eight bytes do not contain 0x00, but
one of the following 118 bytes contains 0x00), the prob-
ability can be computed as:

P1024
PKCS (1|A) =

(
255
256

)8

·
(

1−
(

255
256

)118
)

≈ 0.36

Different oracle types and their impact on the attack
performance were analyzed by Bardou et al. [4]. In addi-
tion, they improved Bleichenbacher’s attack by a factor
of four. An improved attack running with the discussed
oracle needs about 15,000 queries to decrypt a PKCS#1
compliant message (more queries are needed to decrypt
an arbitrary message).

3.4 Countermeasures
Due to its importance, Bleichenbacher’s attack is directly
addressed in the TLS standard [11]. The basic idea of
the proposed countermeasure is to continue the process-
ing with a randomly generated PreMasterSecret every

c'

1 / 0

...

Bleichenbacher's 
Attacker

Bleichenbacher's 
Attacker OracleOracle TLS ServerTLS Server

...

TLS handshake(c')

Bleichenbacher's 
algorithm relying on 
oracle's responses

Constructed oracle 
evaluating message 

conformity

Figure 3: Bleichenbacher’s attack algorithm relies on an
oracle returning 1 or 0 according to the message validity.

time the message structure is invalid or decryption failed
completely. This ensures unified error messages of the
server. Algorithm 1 describes the implementation of this
countermeasure as proposed in TLS 1.2 [11]:

Algorithm 1 A (simplified) countermeasure against
Bleichenbacher’s attack proposed in the TLS stan-
dard [11].

1: generate a random PMSR
2: decrypt the ciphertext: m := dec(c)
3: if ( (m �= 00||02||PS||00||k) OR (|k| �= 48)

OR (k1||k2 �= ma j||min) then
4: proceed with PMS := PMSR
5: else
6: proceed with PMS := k
7: end if

This countermeasure ensures that each ciphertext de-
cryption reveals a PreMasterSecret which is used in
the handshake processing. Thus, the attacker cannot dis-
tinguish between valid and invalid ciphertexts. Note that
a random PreMasterSecret is generated every time,
independently from the ciphertext validity. This ensures
equal processing times of valid and invalid ciphertexts.

4 SSL/TLS Penetration Testing

Given the importance of PKCS#1 format processing in
SSL/TLS, it is important how Bleichenbacher counter-
measures are implemented in real-world applications.

4.1 Attack Challenges

We investigate ways of turning a seemingly secure SSL/-
TLS server into an oracle O suitable for Bleichen-
bacher’s attack. The attack is sketched in Figure 3: The
attacker communicates with O and suggests ciphertexts.
O sends these ciphertexts to the server by performing a
TLS handshake, evaluates its responses, and returns 1 or
0 according to the PKCS#1 conformity.

5
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The oracle can be based on different side channels.
First, noisy TLS servers responding with different error
messages represent a direct oracle OD. Second, even
if the server does not respond with different error mes-
sages, its processing logic can cause different timings
while handling valid and invalid ciphertexts. These silent
checks can be used to construct a timing oracle OT .

When constructing an oracle O , we have to face the
following challenges:

1. O must not respond with false positives: ciphertexts
falsely identified as valid cause Bleichenbacher’s al-
gorithm to end up in a wrong internal state from
which the algorithm cannot recover.

2. O should respond with as few false negatives as
possible: valid ciphertexts falsely identified as in-
valid slow down the attack performance.

3. O should require as few requests as possible.

4.2 T.I.M.E.

This research was enabled by a new framework called
T.I.M.E. - TLS Inspection Made Easy (for details
see [20]). The framework implements a TLS client stack
in Java with means to intercept the communication and
TLS protocol flow at any time through predefined hook-
points. It allows altering TLS messages in an object
based representation or, if necessary, even at bit level.
This renders deep analysis of TLS, simulating complex
attack scenarios, or trigger bugs only occurring in usually
hard to provoke operation states possible. The frame-
work proved to be well suited for the creation of a large
amount of test cases, even in complex attack scenarios.
The modularity allows a quick test case creation and au-
tomated testing for vulnerabilities of many different TLS
implementations with comparably little effort. A com-
prehensive reporting engine eases the analysis even when
working with large amounts of test cases and scanning
targets.

Architecture. Figure 4 illustrates the T.I.M.E. archi-
tecture. It consists of the following main parts:

• SSL/TLS Stack and Network Stack handle the com-
munication between the framework and the remote
SSL/TLS server.

• The Attack Engine consists of different attack mod-
ules including one for Bleichenbacher’s attack. It
contains the attack logic and test cases for trigger-
ing different server behavior to identify bugs in the
server’s SSL/TLS stack.

Targets 

Network Stack 

Fingerprinting 
Engine 

Attack Engine 

Attack 
Report 

Fingerprinting 
Report 

Comprehensive Report 

Target list 

Report 

 
SSL/TLS Stack 

Bleichenbacher 
Module  

Stack Identification 
Module  

Figure 4: T.I.M.E. architecture

• The Fingerprinting Engine generates specifically
formatted messages and triggers different server be-
havior which is analyzed to identify the SSL/TLS
implementation and its version. The description of
this engine is out of scope of this paper.

• The Reporting Module generates attack and finger-
printing reports.

The whole process of intercepting a running com-
munication is event based. An application is able to
register for events of interest, in this case e.g. the
ClientKeyExchange message and Alerts. The work-
flow notifies each observer about occurring events. Once
an observer is notified, the execution control is passed
to this observer. The observer can manipulate the cur-
rent message or internal states of the stack and return
the control back to the workflow. The communication is
paused until the observer returns control. Once returned
the workflow continues immediately with processing.

The interaction between server, attack module and the
handshake workflow of T.I.M.E. is illustrated in Figure 5.

The Bleichenbacher attack logic is built directly upon
the stack and can be used to modify messages during the
TLS handshake. The modified messages are used to trig-
ger different server behavior. This allows to check for
obvious vulnerabilities to Bleichenbacher’s attack.

4.3 Test Environment
As we are performing timing attacks over a network,
special care must be taken for the measurement setup.
Measuring precise processing times from remote is chal-
lenging because of the jitter induced by busy network

6
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Figure 5: Interaction between the components. The Bleichenbacher Attack Module instantiates a
TLS10HandshakeWorkflow object (part of the T.I.M.E. framework), registers as an observer for the
ClientKeyExchange and Alert messages and finally starts the workflow. Every time one of these messages oc-
curs the handshake is paused and the Bleichenbacher Attack Modules gains control. It either modifies the encrypted
PreMasterSecret or analyzes the response message. Finally, it returns the control back to the workflow which
continues with the handshake.

components, by the remote machine and by the measur-
ing client. We also wanted to perform our attacks in
a realistic scenario, in which the attacker has full con-
trol over the measuring machine, but only limited con-
trol over the network quality. We therefore ran the mea-
surement machine with a stripped down Ubuntu 12.04
LTS Linux where we disabled CPU halting (boot param-
eter idle=poll) and CPU frequency scaling (fixing the
CPU frequency using the cpufreq tools). Both settings
are not uncommon in data centers that trade faster re-
sponse times for higher power consumption. We used a
Realtek 8139-based networking card with no support for
interrupt coalescing. Note that this configuration likely
optimizes the quality of the timing measurements, but
it is not a necessary requirement. For a comprehensive
analysis of hardware choices and configuration settings
for timing measurements over networks see [8].

It is realistic to assume that the attacker has some lim-
ited control over the network. For example, if the con-
nection from the attacker’s machine to the target machine
is of bad quality, the attacker can often rent (or compro-
mise) a machine nearby the target machine and launch
the attack from there (consider cloud-based scenarios).
We therefore used a network setting in which the attack-
ing and target machine are in the same (productive) Uni-
versity campus LAN connected through a Cisco Catalyst
2950 switch. This setting emulates the environment of a
common co-location center or a cloud system where the
attacker might even be able to rent a virtual machine that

runs on the same hardware as the target machine [23].
If we use the attack module for triggering different

TLS server messages, the whole T.I.M.E. tool set is
placed on a single machine and communicates as a client
with the remote TLS server. For timing measurement we
had to act differently after we found out that T.I.M.E.
provides no reliable base for highly fine grained time
measurement. Thus, we decided to split the Bleichen-
bacher logic and the TLS logic into separate modules.
Figure 6 illustrates this setup. On the left, we see the
Bleichenbacher attack module that triggers and executes
the attack. The Bleichenbacher logic generates new ci-
phertexts and hands it over to the measurement module.

To test if a TLS implementation has a suitable
timing leak that allows the creation of a timing-
based oracle, one has to measure the delay between
the ClientKeyExchange message and the arrival of
the HANDSHAKE FAILURE message (the server performs
PKCS#1 checking during this period). High precise tim-
ing measurement is not possible in Java (the JVM it-
self causes a significant noise which falsifies the results).
Thus, we modified the lightweight MatrixSSL C imple-
mentation5 to execute the TLS handshake and measure
the timing delays in clock ticks by using the RDTSC as-
sembler directive.

We used the timing analysis tool NetTimer6 to eval-
uate the server response times. This tool implements a

5http://www.matrixssl.org/
6http://sebastian-schinzel.de/nettimer

7
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Figure 6: Architecture for measuring timing differences. The enhanced T.I.M.E. framework is split into two parts:
The Bleichenbacher Attack Module and the Measurement Module based on the MatrixSSL library.

variant of Crosby’s box hypothesis test, which was found
to perform well for analyzing network delay measure-
ments [8]. With this setup, we were able to reliably dis-
tinguish timing differences of a few hundred nanosec-
onds over a LAN with one thousand repeated measure-
ments. This confirms that the findings of [8] not only
hold for artificial UDP ping-pong protocols, but also for
real-world TCP-based protocols.

4.4 Methodology
Our methodology during evaluation of Bleichenbacher’s
attack on a specific implementation can be summarized
in the following steps.

Triggering Different Server Behaviors. In Sec-
tion 3.1 we described how an encrypted ciphertext is
processed on a TLS server. This process includes sev-
eral validation and unpadding steps. If one of these steps
is implemented incorrectly, a side channel might arise.
Thus, we first implemented different T.I.M.E. test cases
that aim to trigger different server behavior which could
lead to a practical oracle O . These test cases include:

1. A TLS compliant message, see Equation 2.

2. A PKCS#1 compliant message which is not TLS
compliant, see Equation 1. Such a message
can include a wrong TLS version number or a
PreMasterSecret with an invalid length.

3. A non-PKCS#1 compliant message: Such a mes-
sage can for example start with a non-zero byte
or can be missing the 0x00 byte after the random
padding of the message.

We cover all three cases and send the encrypted mes-
sages to the target TLS server and observe if the server

responds with different error messages or timing behav-
ior. As we analyze open source TLS frameworks, we are
able to combine the automatic analysis of the T.I.M.E.
framework with an additional source code review.

Analyzing Oracle Strength. We analyze if the discov-
ered side channel can be used to construct a practical
(Strong) Bleichenbacher oracle. This can be achieved by
considering two factors. First, the probability that the or-
acle responds with 1 if the decrypted message starts with
0x0002. Second, in case of a timing oracle, how many
server requests are needed to distinguish a valid from an
invalid ciphertext.

Performing the Attack. In order to assess the practica-
bility and performance of the attack using a constructed
oracle, we use the oracle in a real attack execution and
report on the number of oracle queries. For this pur-
pose, we implemented the Bleichenbacher attack [5] as
T.I.M.E. test case and extended it with the trimming and
skipping holes methods from [4].

5 First Side Channel: Error Messages in
JSSE

Automated evaluation of JSSE with T.I.M.E. revealed
a new side channel which could be used to construct
a noisy oracle OD−JSSE leading to a successful Blei-
chenbacher attack. In general, the side channel is
caused by an improper padding check and the subse-
quent PreMasterSecret processing. This behavior en-
abled us to force the server to respond with different
alerts while processing differently formatted PKCS#1
messages: INTERNAL ERROR and HANDSHAKE FAILURE.

8
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Figure 7: If a decrypted message contains a 0x00

byte preceded with non-0x00 bytes in at least one
of the marked positions, JSSE responds with an
INTERNAL ERROR alert. The depicted messages are of
1024 (1), 2048 (2), and 4096 (3) bit length.

Side Channel Analysis. In the following, we analyze
the attack on the server with a 2048 bit (256 bytes) key.
Similar analysis could be applied to other key sizes.

Due to a fixed length of the PreMasterSecret

(PMS), the padding string length can easily be deter-
mined to be 205 bytes (see Figure 2). These bytes
must not include a 0x00 byte. The T.I.M.E. frame-
work enabled us to test the JSSE implementation with
specifically formatted messages. The analysis revealed
that 0x00 bytes inserted at specific padding positions
cause an internal ArrayIndexOutOfBoundsException
leading to a different TLS alert message. The
exception was caused when the PreMasterSecret

length check was not correctly applied (cf. Al-
gorithm 1, line 3). Propagation of the unchecked
ArrayIndexOutOfBoundsException to the surface
lead to the communication abort, the server responded
with an INTERNAL ERROR alert.

More precisely, our test revealed that changing ei-
ther the first 8 or last 80 padding bytes led to a
correct HANDSHAKE FAILURE alert. Changing one
of the remaining padding bytes to 0x00 caused a
different INTERNAL ERROR alert. This was caused
by the MasterSecret computation initialized with a
PreMasterSecret of an incorrect length. By apply-
ing 2048 bit RSA keys, the number of bytes causing an
INTERNAL ERROR alert is equal to 117 (depicted in Fig-
ure 7). In case of 4096 bit keys, this number is equal to
373 (see Figure 7).

In addition to the positions described above in 2048
and 4096 bit long ciphertexts, our analysis revealed that
there is also a chance to attack 1024 bit ciphertexts di-
rectly. Independently of the applied key size, the server

responded with an INTERNAL ERROR if the second to last
byte (m|m|−1) contained 0x00 and the preceding bytes do
not contain 0x00.

The different alert messages offered a new oracle
OD−JSSE responding with 1 (INTERNAL ERROR) or 0
(HANDSHAKE FAILURE) according to the structure of the
decrypted PreMasterSecret.

Oracle Strength. In the following, we evaluate the
probability for 2048 and 4096 bit random mes-
sages starting with 0x0002 to contain a structure
causing an INTERNAL ERROR alert. Let n be the
byte size of the PKCS#1 message and |PMS| the
PreMasterSecret length. The number of bytes pro-
voking an INTERNAL ERROR can be derived as:

x = n−3−|PMS|−8−80.

Let us consider that the first two message bytes are 0x00
02. The probability that the following 8 padding bytes
are non-zero and at least one of the following x bytes
becomes 0x00 (and thus the server responds with an
INTERNAL ERROR alert) is:

PD−JSSE (1|A) =
(

255
256

)8

·
(

1−
(

255
256

)x)

For key sizes of 2048 and 4096 bits (256 and 512 bytes)
it results in:

P2048
D−JSSE (1|A) =

(
255
256

)8

·
(

1−
(

255
256

)117
)

≈ 0.356

P4096
D−JSSE (1|A) =

(
255
256

)8

·
(

1−
(

255
256

)373
)

≈ 0.744

This means that a JSSE server (OD−JSSE ) using
a 2048 bit RSA key responds with a probability of
P2048

D−JSSE(1|A) ≈ 35.6% with 1 (INTERNAL ERROR), if
the decrypted PreMasterSecret message starts with
0x0002. In case of using 4096 bit keys, the oracle is
even more permissive. It responds with a probability of
P4096

D−JSSE(1|A) ≈ 74.4% if the message starts with 0x00

02. These probabilities suggest a low number of false
negatives, leading to an efficient Bleichenbacher attack.

On the other hand, when applying 1024 bit long RSA
keys, OD−JSSE is much less permissive. It responds with
an INTERNAL ERROR only if 0x00 is positioned just be-
fore the last byte. Thus, the probability P1024

D−JSSE(1|A) can
be computed as:

P1024
D−JSSE (1|A) =

(
255
256

)124

·
(

1
256

)
≈ 0.0024

9
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Mean Median
2048 bit RSA key 176,797 37,399
4096 bit RSA key 73,710 27,744

Table 2: Number of required queries to execute an op-
timized Bleichenbacher’s attack on a JSSE server using
2048 bit and 4096 bit RSA keys.

Attack Evaluation. We used this oracle to perform
a Bleichenbacher attack – the experiment was repeated
1,000 times. Results of this evaluation confirm the find-
ings of our theoretical analysis from the previous section:
Executing the attack using a less restrictive oracle with
a 4096 bit RSA key leads to fewer oracle queries. We
needed about 177,000 queries to a JSSE server applying
2048 bit keys and about 74,000 queries to a JSSE server
applying 4096 bit keys. See Table 2 for details.

We performed full PreMasterSecret recovery at-
tacks against a TLS server working with 2048 bit keys.
With our T.I.M.E. framework we were able to send about
3.85 server queries per second. Thus, sending 177,000
requests lasted about 12 hours. The attack was performed
on localhost.7

Performance evaluation of an oracle using 1024 bit
keys resulted in hundreds of millions of oracle queries.
This is caused by the high restrictiveness of OD−JSSE
when applying keys of this length.

Mitigation. We communicated this problem to the Or-
acle Security response team and the bug was assigned
CVE-2012-5081. The attack is fixed with the Oracle
Java SE Critical Patch October 2012 – Java SE Devel-
opment Kit 6, Update 37 (JDK 6u37).

6 Second Side Channel: Timing Differ-
ences in OpenSSL

The discovery of the aforementioned vulnerability in
JSSE motivated to investigate the source code of open
source SSL/TLS frameworks. We reviewed JSSE,
GnuTLS and OpenSSL and found that they do not im-
plement the countermeasure against Bleichenbacher’s at-
tack as proposed by the TLS 1.2 specification [11].

Side Channel Analysis. The countermeasure against
this attack is mostly implemented as depicted in Algo-
rithm 1. The important observation is that the random
key is generated if, and only if, the received key is not

7Improving the T.I.M.E. sending performance would result in much
faster attack executions. This was however not the primary goal of our
work.

Algorithm 2 Improper implementation of the counter-
measure against Bleichenbacher’s attack (suggested by
TLS 1.0 and TLS 1.1) possibly causing a timing side
channel in all the analyzed implementations.

1: decrypt the ciphertext: m := dec(c)
2: if ( (m �= 00||02||PS||00||k) OR (|k| �= 48)

OR (k1||k2 �= ma j||min) then
3: generate a random PMSR
4: proceed with PMS := PMSR
5: else
6: proceed with PMS := k
7: end if

TLS compliant (see Equation 2). Thus, the random key
generation and the assignment create a new timing side
channel that leaks information about the TLS compli-
ance of a received PreMasterSecret. These processing
steps have independently been observed and criticized by
Matthew Green [18].

Oracle Strength. Timing Reliance. We tested the tim-
ing differences between valid and invalid ciphertexts
with OpenSSL 0.98. Figure 8 shows the filtered results
of our timing analysis over a LAN with 5,000 measure-
ments. The results suggest that we can distinguish TLS
compliant and non-PKCS#1 compliant ciphertexts. We
could achieve similar results for OpenSSL 1.01.

Even though the results clearly showed constant dif-
ferences of about 1.5 microseconds, we are not sure if
the root cause of these differences is additional random
number generation. The OpenSSL code contained sev-

3.2115

3.212

3.2125

3.213

3.2135

3.214

3.2145

Ti
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Secret valid

Figure 8: Timing measurement results for OpenSSL
0.98. The valid secret refers to a TLS compliant cipher-
text. The invalid secret refers to a non-PKCS#1 com-
pliant ciphertext. In the non-PKCS#1 compliant struc-
ture the first byte (which should be 0x00) was altered
to 0x08to provoke a random number generation on the
TLS server.
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eral additional branches and loops in the PKCS#1 pro-
cessing which could blur our results. The analysis of
this problem showed up to be very difficult and related
to compile flags. Despite this uncertainty, our measure-
ments clearly show that a side channel exists.

Probability Analysis. The analyzed timing behavior
can be used to construct an oracle

OT−rand(c) =





1 TLS compliant

0
non-TLS compliant (with an addi-
tional random number generation)

However, it does not lead to a practical attack. An
oracle created from this timing leak is very “weak”. It
responds to an oracle request with 1 if, and only if, the
decrypted ciphertext is TLS compliant (see Equation 2).
For a 2048 bit key, the probability that an oracle responds
with 1 in case that the decrypted message starts with
0x0002 is very low:

P2048
T−rand (1|A) =

(
255
256

)205

·
(

1
256

)3

≈ 2.7 ·10−8

The reason is that 205 padding bytes must be non-zero
and the following bytes must contain 0x00||ma j||min.
See Figure 2.

Attack Evaluation. OT−rand is very “weak” and did
not allow to execute a practical Bleichenbacher attack.
We were only able to estimate the number of oracle
queries. According to Bleichenbacher and Bardou et
al. [5, 4], the number of oracle queries for the complete
attack can be computed as:

(217 +16 ·256)/PT−rand = 5 ·1012

Mitigation. The mitigation is described in RFC
5246 [11]. Algorithm 1 illustrates the correct process-
ing: A random value should always be generated, before
processing the decrypted data.

7 Third Side Channel: Internal Exception

We decided to search for different side channels lead-
ing to more practical oracles. As pointed out by James
Manger on the official JOSE (JSON Object Signing and
Encryption) mailing list,8 an additional side channel
could arise from an improper Exception handling in
Java’s PKCS#1 implementation.

8http://www.ietf.org/mail-archive/web/jose/

current/msg01936.html

Side Channel Analysis. The Java PKCS#1 implemen-
tation strictly checks the message format according to
Equation 1. The message must start with 0x0002, con-
tain at least eight non-zero padding bytes, and a 0x00

byte indicating the end of the padding string. If this
format is correct, the secret is extracted. Otherwise, a
BadPaddingException is thrown. The method code
can be found in Listing 9.

1 /∗ ∗
2 ∗ PKCS#1 v1 . 5 unpadding ( b l o c k t y p e 1 and 2 ) .
3 ∗ /
4 p r i v a t e byte [ ] unpadV15 ( byte [ ] padded )
5 throws BadPadd ingExcep t ion {
6 i n t k = 0 ;
7 i f ( padded [ k ++] != 0) {
8 throw new BadPadd ingExcep t ion (
9 ” Data must s t a r t w i th z e r o ” ) ;

10 }
11 i f ( padded [ k ++] != t y p e ) {
12 throw new BadPadd ingExcep t ion (
13 ” B l o c k t y p e mismatch : ” + padded [ 1 ] ) ;
14 }
15 whi le ( t rue ) {
16 i n t b = padded [ k ++] & 0 x f f ;
17 i f ( b == 0) {
18 break ;
19 }
20 i f ( k == padded . l e n g t h ) {
21 throw new BadPadd ingExcep t ion (
22 ” Padding s t r i n g n o t t e r m i n a t e d ” ) ;
23 }
24 i f ( ( t y p e == PAD BLOCKTYPE 1 )
25 && ( b != 0 x f f ) ) {
26 throw new BadPadd ingExcep t ion (
27 ” Padding b y t e n o t 0 x f f : ” + b ) ;
28 }
29 }
30 i n t n = padded . l e n g t h − k ;
31 i f ( n > maxDataSize ) {
32 throw new BadPadd ingExcep t ion (
33 ” Padding s t r i n g t o o s h o r t ” ) ;
34 }
35 byte [ ] d a t a = new byte [ n ] ;
36 System . a r r a y c o p y ( padded ,
37 padded . l e n g t h − n , da t a , 0 , n ) ;
38 re turn d a t a ;
39 }

Figure 9: Java’s PKCS# v1.5 method for format check
and padding removal can throw a BadPaddingException
- Source: sun.security.rsa.RSAPadding

With our T.I.M.E. framework we investigated the
JSSE server implementation which internally uses the
PKCS#1 unpadding method described above. We sent
PKCS#1 compliant and non-PKCS#1 compliant mes-
sages to the JSSE server and found that with non-
PKCS#1 compliant messages an additional Exception
could be provoked. The Exception was correctly han-
dled by the JSSE logic and did not result in a distinguish-

11
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Figure 10: Timing measurement results for Java 1.7
(JSSE). The valid secret refers to a PKCS#1 compliant
ciphertext. The invalid secret refers to a non-PKCS#1
compliant ciphertext. In the non-PKCS#1 compliant
structure the first byte (which should be 0x00) was al-
tered to 0x08 to provoke an exception on the TLS server.

able error message. Thus, it did not help to create a di-
rect PKCS#1 validation oracle. However, Exception
handling in Java (as well as in other object oriented lan-
guages) can introduce timing delays and thus slow down
the whole application. Throwing, catching, and handling
an Exception are time consuming tasks and thus lead to
additional processing time.

Oracle Strength. Timing Reliance. We analyzed the
timing differences between processing PKCS#1 com-
pliant and non-PKCS#1 compliant messages on TLS
servers running on Java 1.6 and 1.7 platforms. Figure 10
shows the filtered results of our time measurement with
5,000 queries. The results show differences of about 20
microseconds.

Probability Analysis. This behavior allows us to con-
struct a new timing oracle:

OT−exc(c) =





1 PKCS#1 compliant

0
non-PKCS#1 compliant (with an
additional internal exception han-
dling)

OT−exc is very permissive and much stronger than
OT−rand , because it contains fewer plaintext validity
checks. When working with 2048-bit keys, this oracle
responds to a request starting with 0x0002 with 1 with
the following probability:

P2048
T−exc (1|A) =

(
255
256

)8

·
(

1−
(

255
256

)246
)

≈ 0.6

Applying such an oracle results in much lesser queries
and can thus be expected to be used for a practical attack.

Attack Evaluation. We used this timing oracle OT−exc
to perform a real Bleichenbacher attack in a switched
LAN and proved the practicability of OT−exc. The attack
on OpenJDK 1.6 took about 19.5 hours and 18,600 oracle
queries.9 About 20% of PKCS#1 compliant messages
were identified as non-PKCS#1 compliant. The attack
on Java 1.7 took about 55 hours and 20,662 queries. The
larger number of queries and the longer processing time
are caused by a higher value of false negatives (about
50%). The oracle identified about 467 PKCS#1 compli-
ant messages incorrectly.

Mitigation. The object oriented architecture and es-
pecially the Exception handling of the JSSE imple-
mentation makes fixing the timing leak challenging. A
common implementation pattern for RSA decryption is
to provide a (generic) function to which the cipher-
text is passed which returns the plaintext on success or
an Exception otherwise. As stated, the generation of
the Exception creates a detectable timing difference.
Preparing an Exception at function entry, but not throw-
ing it, leads to a smaller time difference, but might still
be exploitable.

As a consequence we implemented a time constant
PKCS#1 processing for SSL/TLS and proposed it as a
fix for this issue to Oracle. The bug was assigned CVE-
2014-411 and it was fixed with the Oracle Java SE Crit-
ical Patch January 2014 – Java SE 7, Update 45 (and
with the previous versions Java SE 5u55 and 6u65).

We verified that a similar timing behavior based on
an additional exception is observable in a widespread
BouncyCastle library.10 BouncyCastle is implemented
in two languages: Java and C#. We tested both imple-
mentations and locally invoked BouncyCastle PKCS#1
decryption methods. We could observe timing differ-
ences of about 20 microseconds between valid and in-
valid PKCS#1 messages in the Java and C# BouncyCas-
tle version. This proved that the described timing behav-
ior is not Java specific, and can be found in other object-
oriented languages as well. We developed a patch for the
Java version of BouncyCastle. We contacted the Boun-
cyCastle developers with the proposed patch in March
2014.

8 Fourth Side Channel: Unexpected Tim-
ing Behavior by Hardware Appliances

The performance and practicability of the previous at-
tacks motivated us to analyze further TLS stacks. We

9One oracle query is not equal to one server request. In order to
respond to an oracle query, OT−exc issued in our scenario up to 750
real server requests. It evaluated the response times and decided if the
ciphertext was valid or not. See Figure 3.

10https://www.bouncycastle.org
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had a chance to evaluate the behavior of F5 BIG-IP
and IBM Datapower which use the Cavium NITROX
SSL accelerator chip. Automated evaluation with our
T.I.M.E. framework revealed that it was possible to ex-
ecute a complete handshake, even though the encoded
PreMasterSecret was of an incorrect format. More
precisely, F5 BIG-IP and IBM Datapower did not ver-
ify the first byte of the PKCS#1 message and accepted
messages which started with 0x??02 (where 0x?? rep-
resents an arbitrary byte).

Side Channel Analysis. This behavior does not lead
to a direct attack. In order to correctly complete a hand-
shake flow and receive a Server Finished message,
an authenticated Client Finished message has to be
sent to the server. Otherwise, the analyzed server re-
sponds with a HANDSHAKE FAILURE message. Since
the Bleichenbacher attacker is not in possession of the
PreMasterSecret, he is not able to authenticate the
Client Finished message and thus cannot trigger dif-
ferent messages. However, the server behavior strongly
indicated that there could be a leakage in the PKCS#1
processing. Even though this leakage did not lead to dif-
ferent server responses, we assumed we could observe
timing differences.

In comparison to the analysis described in the previous
sections, we had no chance to review the code, because
it is not publicly available. This turned our work to a
black-box analysis and made it much harder.

Oracle Strength. We had a chance to evaluate the tim-
ing behavior of an IBM Datapower directly in our lab.
The measurement machine was connected with a router
to the IBM Datapower appliance.11 We created different
TLS requests based on our methodology (TLS compliant
requests, PKCS#1 compliant requests, invalid requests
etc.), and sent these requests to the server while the mea-
surement machine observed the response times. The re-
sponse times were finally compared using the NetTimer
library.

The comparison of the response times confirmed our
predictions and we could see clear timing differences by
processing our TLS requests. The most visible timing
difference was produced by requests starting with 0x??

02, see Figure 11. Based on this timing difference, the
server behavior allowed to construct a new timing oracle:

OT−hard =




1 starts with 0x??02

0 otherwise

11In comparison to the previous measurements, the router did not
route real traffic so our experiments were executed in a “lab” scenario.
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Figure 11: Timing measurement results for our IBM Dat-
apower. The valid secret refers to a message, which
starts with 0x??02, where 0x?? indicates an arbitrary
byte. The invalid secret refers to a message starting with
different bytes.

However, this oracle is not compliant to the oracle
used by Bleichenbacher. It responds with 1 to the request
starting with 0x0102, 0x0202, 0x0302, . . . . Thus, we
needed to modify and adapt the original algorithm to
handle this special case. This novel variant is described
in Section 9.

Attack Evaluation. We evaluated the performance of
our algorithm using a test oracle behaving like OT−hard .
We repeated our experiment 500 times, with a 2048 bit
RSA key. We needed about 4700 queries (median) to
decrypt a ciphertext. This high performance is caused
by the higher number of intervals the oracle accepts.
Manger’s attack [19] also reveals similar behavior.

We used the constructed timing oracle OT−hard to per-
form a real attack on an IBM Datapower appliance. Our
attacker needed 7371 oracle queries. The oracle cor-
rectly evaluated 2033 valid ciphertexts, while 1290 valid
ciphertexts were incorrectly evaluated as invalid. The at-
tack lasted 41 hours. The timing oracle OT−hard issued
about 4,000,000 server queries in total.

Mitigation. We communicated our findings to the ven-
dors in November 2013. The current state of these issues
can be tracked on their websites. F5 tracks this problem
in their Bugzilla database under ID 435652. IBM gives
their customers information about the current state in the
Security Bulletin: SSL/TLS side channel attack on Web-
Sphere DataPower (CVE-2014-0852).12

Since the Cavium products are used by other vendors
like Cisco, Citrix or Juniper Networks, we assume that
many other products were vulnerable, too.13

12http://www.ibm.com/support/docview.wss?uid=

swg21678204
13http://www.cavium.com/winning_products.html
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9 Novel Bleichenbacher Attack Variant

In the previous section we described a new oracle
OT−hard . The oracle responds with 1 if a decrypted mes-
sage starts with 0x??02, where 0x?? represents an ar-
bitrary byte. Such an oracle is not strong enough to im-
plement Bleichenbacher’s attack. The original algorithm
from [5] is not able to tolerate false positives, it requires
an oracle responding with 1 only if the decrypted mes-
sage starts with 0x0002. Note that OT−hard is much
weaker, as it responds with 1 if the message starts with
0x??02. In the following we describe a novel variant
of Bleichenbacher’s attack, which is more robust than
the original one and works also with the weaker oracle
OT−hard .

We assume that the original message is PKCS#1 com-
pliant and lies in the interval [2B,3B), where B = 28(�−2).
In this case the Bleichenbacher algorithm sets the start-
ing interval containing the message of interest m0 ∈ [a,b],
where a = 2B and b = 3B

In the first step, the original algorithm searches for
values s > (2B + N)/3B such that c = (c0 · se) mod N
is decrypted to a PKCS#1 compliant message. This is
not possible by applying OT−hard , since the oracle would
respond with many false positives. We know that if
OT−hard responds with 1, the decrypted message starts
with 0x0002, 0x0102, . . . or 0xFF02. This means the
message lies in one of the following intervals: [2B,3B),
[258B,259B), [514B,515B), . . . . If we start the algo-
rithm with a large s value, we can easily produce a mes-
sage from one of those intervals.

The basic idea behind our algorithm is to use the
additional intervals and make the search more fine-
grained. For this purpose, we define q, where q ∈
{1 . . .(N/256B)}. In the first step, we set r0 = 0 and iter-
atively search si j values by setting q j = 1 . . .(N/256B):

2B+ riN +q j(256B)
b

≤ si j <
3B+ riN +q j(256B)

a
.

We send (c0 · se
i j) mod N to the server and observe its

response. With each valid request, we can reduce the
interval, where the original plaintext m0 lies in:

a = max
(

a,
2B+ riN +q j(256B)

si j

)

b = min
(

b,
3B+ riN +q j(256B)

si j

)

Afterwards, we increment r and repeat the same steps
for q = 1 . . .(N/256B).

The algorithm repeats these steps and reduces the pos-
sible solutions for m0, until only one solution is left.

10 Other TLS Stacks

During our research we also analyzed other SSL/TLS
implementations. Microsoft Schannel (Secure Channel)
revealed no significant timing differences and behaves
quite differently to any other stack: In case of process-
ing errors of any kind, the connection is immediately
terminated instead of sending alert messages. The tim-
ing measurements were too noisy to distill boundaries
for distinguishing different processing branches. Due to
the fact that the product is closed-source a code analysis
was not possible.

11 Related Work

In this section we give a short overview on scientific pub-
lications analyzing side channel attacks and security of
SSL/TLS. For a comprehensive list of SSL/TLS attacks
we refer to [21].

Bleichenbacher Attacks. After publication of the
original attack [5], several variants were discovered.
Klima et al. found out that a strict verification of the
TLS version number in the PreMasterSecret can lead
to a side channel enabling Bleichenbacher’s attack [16].
In [4] Bardou, Focardi, Kawamoto, Simionato, Steel
and Tsay significantly improved Bleichenbacher’s at-
tack, and applied it to other PKCS#1-based environ-
ments.

Although Daniel Bleichenbacher conjectured that
there might be timing-based side channels for Bleichen-
bacher attacks, they were discovered only for other pro-
tocols. For example, Jager et al. [13] describe a prac-
tical timing-based Bleichenbacher attack against imple-
mentations of the XML Encryption standard. They were
able to exploit this side channel over a very noisy net-
work (Planetlab) which was possible because timing dif-
ferences could be increased by the attacker. During their
research, they measured timing differences in the order
of milliseconds whereas we had to cope with microsec-
onds.

Timing Attacks on SSL/TLS. In 2003, Brumley and
Boneh described an attack based on a timing side chan-
nel SSL/TLS [7], applicable if RSA is used for key ex-
change. Based on timing differences during processing
of specially crafted ClientKeyExchange messages the
private key of a server could successfully be extracted.
Additionally, in 2011 Brumley and Tuveri [6] success-
fully attacked ECDSA based TLS connections (only
OpenSSL stacks) by exploiting performance tweaks of
the implementation.
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Recent Attacks on SSL/TLS. The BEAST attack by
Rizzo and Duong exploits predictable initialization vec-
tors used by AES-CBC in TLS 1.0 [24]. The CRIME at-
tack of the same authors shows that application of a com-
pression method on plaintexts transported over SSL/-
TLS can lead to serious practical attacks. Both attacks
were theoretically discussed before [3, 15]. The authors
showed how to apply them practically in specific scenar-
ios by exploiting additional side channels. AlFardan and
Paterson presented the Lucky13 padding oracle attack on
AES-CBC [2] which exploits timing differences revealed
by the HMAC computation over the decrypted data.

To practically deploy these attacks, a strong attacker is
needed who is able to force the victim to repeatedly send
the same data to the server. In contrast, our attacks ex-
ploit new side channels to mount Bleichenbacher’s attack
which enables to decrypt the whole PreMasterSecret

(and thus the whole SSL/TLS session) without the need
to control the user’s client software.

Theoretical Results on TLS Security. After publica-
tion of Bleichenbacher’s paper, the security of encoding
schemes for RSA-based TLS was discussed intensively.
However, due to the fact that the Finished messages
are sent encrypted, no full security proof for TLS was
available prior to 2012. In [12], a new security model
(ACCE) was introduced by Jager et al., and a full proof
for TLS-DHE with mutual authentication was given.

One year later, Krawczyk et al. gave a proof for the
two remaining families of ciphersuites, TLS-RSA and
TLS-DH, and for server-only authentication [17]. They
prove security against Bleichenbacher attacks by propos-
ing the following countermeasure: The server should use
the ClientFinished message as a Message Authenti-
cation Code (MAC) for the ClientKeyExchange mes-
sage. Only if ClientFinished is verified successfully,
the server should continue the handshake by making fur-
ther computations.

These two papers contain extensive related work sec-
tions, where all previous theoretical publications on TLS
can be found. Theoretical security proofs must be treated
carefully: The results can only be applied to practical
implementations if all preconditions are satisfied, and if
all cryptographic building blocks are implemented in an
ideal way (i.e. yielding no side channels). Our results
thus do not contradict the proofs, but simply show that
the implementations of the building blocks are not ideal.

12 Future Work

TLS for non-HTTP protocols. The search for new er-
ror or timing-based side channels can be broadened to
cover cryptographic protocol implementations in other

1 /∗ ∗
2 ∗ PKCS#1 v2 . 1 OAEP unpadding (MGF1 ) .
3 ∗ /
4 p r i v a t e byte [ ] unpadOAEP ( byte [ ] padded )
5 throws BadPadd ingExcep t ion {
6 byte [ ] EM = padded ;
7 i n t hLen = lHash . l e n g t h ;
8
9 i f (EM[ 0 ] != 0) {

10 throw new BadPadd ingExcep t ion (
11 ” Data must s t a r t w i th z e r o ” ) ;
12 }
13 . . .

Figure 12: OAEP unpadding function of Java 7.

application scenarios. Especially, protocols that use parts
or concepts of SSL/TLS, such as EAP-TLS [1] or SSL/-
TLS stacks of other languages and frameworks provide
space for further investigation.

OAEP Comes to the Rescue. Many problems related
to the old PKCS#1 are supposed to disappear with the in-
troduction of OAEP [14]. However, during our research
we also found problems in Java’s OAEP processing.
Listing 12 shows the code of Java’s RSAPadding.java
class which contains the logic for OAEP processing.

Line 9-12 outline a conditional branch that could be
used to apply Manger’s attack [19]. Patching is required.
This example shows that OAEP is only of help if imple-
mented correctly, i.e. without side channels.

We notified Oracle about this issue. The code was
patched in the Java release from April 2014.

13 Conclusion

The problem of side channels leaking partial infor-
mation about cryptographic computations seems to be
much more persistent than expected: Error messages
from standard libraries, and especially timig issues make
generic solutions impossible.

The results of this paper show that Bleichenbacher at-
tacks can still be used to break SSL/TLS implementa-
tions. Timing side channels underline the need for cryp-
tographic libraries with branch independent, nearly time
constant execution paths. The uncovered side channels
motivate for the development of cryptographic penetra-
tion testing tools, able to detect such implementation de-
ficiencies in the development phase.

Our results are alarming, especially when consider-
ing that Bleichenbacher attacks are known for about 15
years. They also show that PKCS#1 compliance check-
ing is of prime importance to the security of a TLS im-
plementations: Strict checks on TLS-PKCS#1 compli-

15



748 23rd USENIX Security Symposium USENIX Association

ance as performed by OpenSSL prevent Bleichenbacher
attacks, even if side channels are present.

The question whether the introduction of RSA-OAEP
padding would solve the problem still remains open:
Only if RSA-OAEP is implemented without any side
channels, the cryptographic features of this padding
scheme can be enforced.
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