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Abstract

Numerous analytical solutions have been developed for modeling thermal 
perturbations to underground formations caused by deep‐well injection of 
fluids. Each solution has been derived for a specific boundary value problem 
and a simplified flow network with one set of parallel fractures. In this paper, 
new generalized solutions G*(x, s) are developed using (existing) global 
transfer functions   and a new memory function g*(s), where x and s are 
the space and Laplace variable. The memory function represents the 
solutions of conductive heat exchange between fractures and matrix blocks 
and between fractured aquifers and unfractured aquitards. The memory 
function is developed to account for multirate exchange induced by different 
shapes, sizes, properties, and volumetric fractions of matrix blocks bounded 
by multiple sets of orthogonal fractures with different spacing. The global 
transfer functions represent the fundamental solutions to convective, 
convective‐conductive, and convective‐dispersive heat transport in fractures 
(or aquifers) without exchange and are available for various (1‐D linear, 1‐D 
radial, 2‐D dipole, and single‐well injection‐withdrawal) flow fields. The new 

solutions with exchange are developed using  , 
thereby greatly simplifying solution development in a novel way, 
where ϑ and B*(s) are a fracture‐matrix scaling factor and the boundary 
condition function. The new solutions are applied to several example 
problems, showing that heat transport in fractured aquifers is significantly 
impacted by (1) thermal dispersion in fractures that is rarely considered, (2) 
multirate heat exchange with a wide range of size and anisotropy of 
rectangular matrix blocks, and (3) heat exchange between aquifers and 
aquitards.

1 Introduction

Thermal perturbations to underground formations can be caused by injecting
fluids of different temperature into the deep subsurface or by natural 
recharge of surface water with sinusoidally time‐varying temperature into 
the shallow subsurface. Relevant applications involving fluid injection may be
directly related to energy storage and production, such as for thermal oil 
recovery (Kuhn & Koch, 1953; Walter, 1957), aquifer thermal energy storage 
(Andersson et al., 2013; Meyer & Todd, 1973; Nordbotten, 2017; Tsang et 
al., 1982), and geothermal energy production (Bodvarsson & Eggers, 1972; 
Gringarten et al., 1975; Harlow & Pracht, 1972), or they may not be energy 



related, such as for waste‐water disposal, water flooding for secondary oil 
recovery, and geological CO2 storage. Relevant applications in the latter 
include estimating the rate of groundwater recharge using field temperature 
measurements (Bredehoeft & Papadopulos, 1965; Constantz et al., 2002; 
Hatch et al., 2006; Silliman et al., 1995; Stallman, 1965; Suzuki, 1960).

Injection‐induced thermal perturbations can propagate through deep 
reservoirs by the processes of convection, conduction, and thermal 
dispersion. Analytical solutions of the convection equation, the convection‐
conduction equation, and the convection‐dispersion equation are available in
the literature for 1‐D linear (Carslaw & Jaeger, 1959; Ogata & Banks, 1961), 
1‐D radial (Carslaw & Jaeger, 1959; Moench & Ogata, 1981; Tang & 
Babu, 1979), and 2‐D dipole (Grove & Beetem, 1971) fluid flow in 
homogeneous reservoirs, with local thermal equilibrium assumed between 
the resident and injected fluids and the porous matrix. These fundamental 
solutions without fracture‐matrix and aquifer‐aquitard exchange are referred 
to as global transfer functions G0(x, t) and  , where x and s are the space
and Laplace variable, respectively, and t is the time.

When fluid injection occurs in aquifers bounded by overlying and underlying 
aquitards, the dynamic heat exchange between the aquifers and the 
aquitards has to be considered. This complexity has led to a large number of 
analytical solutions developed to account for the coupled local heat 
exchange and global heat transport in different flow fields and with various 
boundary conditions (e.g., Avdonin, 1964a, 1964b; Carslaw & Jaeger, 1959; 
Chen & Reddell, 1983; Kocabas, 2004; Lauwerier, 1955; Li et al., 2010; 
Noyer, 1977; Rubinshtein, 1960, 1962; Spillette, 1965). The local heat 
exchange in these solutions has been restricted to semi‐infinite or finite 
aquitards, and the so‐called memory function g*(s) for 1‐D conductive heat 
exchange is either   for the semi‐infinite aquitards or   
for the finite aquitards with fixed temperature.

For thermal perturbations in fractured reservoirs, analytical solutions have 
been developed by exploiting the analogy between fractures and aquifers 
and between matrix blocks and aquitards for single (or parallel) fractures and
semi‐infinite (or finite) slab‐like matrix blocks (Abbasi et al., 2017; Ascencio 
et al., 2014; Bodvarsson, 1969; Bodvarsson & Tsang, 1982; Gringarten et 
al., 1975; Jung & Pruess, 2012; Kocabas, 2005). This configuration of 
nonoverlapping parallel fractures and matrix blocks is oversimplified because
it neglects the complex networks of natural fractures and the multitude of 
matrix blocks with different shapes and sizes. The memory function for heat 
exchange between parallel fractures and finite slabs is  . 
Analytical solutions based on the dual‐continuum concept are available for 
pressure propagation (Moench, 1984) and solute transport (Moench, 1995) in
fractured reservoirs but only for the exact exchanges between fractures and 
isotropic matrix blocks (slab, sphere, and cylinder).



The continuum‐based numerical models with overlapping fracture and matrix
continua, such as the dual‐porosity model (Barenblatt et al., 1960; Warren & 
Root, 1963) and the multiple‐interacting‐continuum model (Pruess & 
Narasimhan, 1985), are not accurate in capturing the dynamic, local heat 
exchange at fracture‐matrix interfaces (e.g., Guan et al., 2008; Lim & 
Aziz, 1995; Zhou et al., 2006). Discrete fracture‐matrix (DFM) models (e.g., 
Sandve et al., 2012) employ fine discretization of both fractures and the 
matrix blocks. However, the accuracy of the DFM models depends on the 
approximation of fracture‐matrix heat exchange and the resolution of 
discretization of each of many matrix blocks. In summary, the weakness of 
existing analytical solutions arises either from the oversimplified geometry of
(nonoverlapping) parallel fractures and slab‐like matrix blocks or from the 
isotropic geometry of matrix blocks in dual‐continuum analytical solutions. 
The gap in numerical models is the limited accuracy of the dual‐porosity and 
multiple‐interacting‐continuum models or the large number of grid blocks 
(nodes) needed to resolve the large number of fractures and matrix blocks at
the reservoir scale.

In this paper, we develop a suite of analytical solutions, G*(x, s), of heat 
transport in fractured reservoirs bounded by aquitards using the concept of 
transfer function for linear transport systems (Danckwerts, 1953; Sardin et 
al., 1991; Villermaux, 1987). A representative elementary volume (REV) of 
the fractured reservoir is conceptualized to contain multiple rectangular 
matrix blocks with different sizes, aspect ratios, properties, and volume 
fractions that are bounded by multiple well‐mixed orthogonal fractures. A 
generalized multirate memory function, g*(s), is developed using the diffusive
flux equation (Zhou, Oldenburg, Rutqvist, & Birkholzer, 2017; Zhou, 
Oldenburg, Spangler, & Birkholzer, 2017) to account for multirate conductive
heat exchange between fractures and matrix blocks per unit matrix volume 
of a REV. The suite of analytical solutions is developed in the 

form:   by plugging the memory function into 
existing global transfer functions   to model global heat convective, 
convective‐conductive, and convective‐dispersive transport in fractured 
reservoirs with different flow fields, where ϑ and B*(s) are a fracture‐matrix 
scaling factor and the boundary condition function, respectively.

We apply the developed dual‐continuum‐based analytical solutions to several
benchmark problems under different flow conditions. Some of the benchmark
problems contain a collection of multiple sets of orthogonal fractures and 
matrix blocks of multiple shapes (1‐D slabs, 2‐D rectangles, and 3‐D 
rectangular parallelepipeds) and sizes. The solutions to these benchmark 
problems can be used to compare DFM modeling with orthogonal fracture 
networks of different fracture density and spacing. These benchmark 
problems bridge the gap between representing natural fracture networks 
and matrix blocks by existing analytical solutions and DFM modeling.

2 Mathematical Modeling of Multirate Heat Transport in Fractured Reservoirs



In this study, we are interested in heat transport in fractured reservoirs that 
may be overlain and underlain by aquitards (see Figure 1). The REV of the 
fractured medium crosses the entire thickness of the reservoir and may 
contain a number of fractures of different finite lengths and a number of 
matrix blocks that may have different shapes, sizes, properties, and volume 
fractions. To derive analytical solutions, we introduce the following 
assumptions: (1) the fluid flow is 1‐D linear, 1‐D radial, or 2‐D dipole through 
the connected fracture network, (2) the thicknesses of the fractured 
reservoir and overlying and underlying aquitards are constant, (3) the 
volume fraction of the fracture continuum is constant at the REV scale of the 
fractured medium, (4) fracture temperature within a REV is assumed 
uniform, that is, fracture fluid is well mixed, (5) the fractured reservoir is 
homogeneous and isotropic at the REV scale, and (6) only horizontal thermal 
conduction in the fracture continuum and vertical thermal conduction in the 
homogeneous aquitards are considered.

2.1 Thermal Dispersion in Fracture Networks

Heat transport includes two fundamental pore‐scale processes: conduction 
and convection. For heat conduction in porous media, the bulk heat 
conductivity is often used to account for the collective behavior of heat 
conduction through fluids in pores and through solid grains. For heat 
convection through the pore space, the (macroscopic) convection with mean 
pore velocity and thermal dispersion may be used in the same way that 
solute advective and dispersive transport at the macroscopic level are 
considered; that is, thermal dispersion is caused by variations in pore 
velocity from the mean velocity. The coefficient of thermal dispersion has 
been measured in laboratory experiments (e.g., Green et al., 1964; Metzger 
et al., 2004; Rau et al., 2012; Yagi et al., 1960) or calculated from numerical 
experiments (e.g., Kuwahara & Nakayama, 1999; Saada et al., 2006; Vafai & 
Tien, 1981). It has been found that the ratio of the effective to intrinsic 
thermal conductivity is a function of the particle‐based Peclet number (i.e., 
product of the Reynolds number and the Prandtl number), as critically 
reviewed by Ozgumus et al. (2013). In subsurface hydrology, thermal 
dispersion has only been considered in heat‐transport modeling by a few 



researchers (e.g., Kocabas, 2004; Molina‐Giraldo et al., 2011; Sauty et 
al., 1982).

Unlike for ground‐source building‐scale heat‐pump problems with small 
groundwater flow velocity (Molina‐Giraldo et al., 2011), thermal dispersion 
may be important in unfractured reservoirs near large‐volume injection wells
where fluid velocity and the Peclet number are large. For fractured 
reservoirs, both fluid velocity and the Peclet number are very large near 
injection wells, leading to a large radial extent of high thermal dispersion. For
example, the fluid velocity varies from 0.1 m/s at a radius of 1 m to 10−4 m/s 
at a radius of 1,000 m for a fractured reservoir with a thickness of 10 m, a 
volume fraction of the fracture network of 0.01, and a typical injection rate of
2 × 106 m3/year. The actual radial extent of thermal perturbations is, 
however, significantly smaller than the acting radius of thermal dispersion 
because of limited travel distance of convective‐dispersive heat transport 
due to retardation by strong fracture‐matrix heat exchange.

Following the many studies on thermal dispersion, we can write the effective 
thermal conductivity tensor (λe) as the summation of the intrinsic thermal 
conductivity (λ) of fluid and grains and the dispersion‐induced thermal 
conductivity (λd):

(1a)

where λd is a function of the Peclet number (  ) with respect to the length 
scale of velocity variations (e.g., grain size). The two principal components of
the effective thermal conductivity tensor can be written as follows:

(1b)

and

(1c)

where α is the thermal dispersivity, u is the longitudinal fluid velocity, ρw is 
the density of water, cw is the specific heat of water, and 
subscripts L and T denote the longitudinal and transverse values for thermal 
conductivities and thermal dispersivity, respectively. For 1‐D linear fluid and 
heat flow, λeL(=λL + αLuρwcw) can be used easily as it is constant 
because u and   are constant. For 1‐D radially diverging flow, both u and   
decrease with the radial distance away from the injection well, leading 
to λeL decreasing asymptotically to the intrinsic thermal conductivity λL. It is 
often assumed in analytical heat‐transport modeling that λeL(=λL) is constant 
in the case of low u and  , or λeL(=αLuρwcw) is radius dependent in the case 
of a high injection rate. In what follows, we omit subscript L for 1‐D linear or 
radial flow.

2.2 Heat Transport Equations for Fracture Continuum



The governing equation of heat transport in the fracture continuum per unit 
volume of REV of the fractured medium under a steady state fluid flow can 
be written (Bear, 1972) as follows:

(2a)

where θf is the REV‐scale volume fraction of the fracture continuum in the 
fractured medium, ρfcf (=(1 − ϕf)ρgcg + ϕfρwcw) is the volumetric heat 
capacity of the fracture continuum, ρwcw and ρgcg are the volumetric heat 
capacity of water and grains respectively, ϕf is the intrinsic porosity of 
fractures, λef is the effective thermal conductivity tensor of the fractures, 
including intrinsic and dispersion‐induced thermal conductivity, qf (=ϕfuf) is 
the vector of Darcy's velocity in the fractures, uf is the vector of mean pore‐
water velocity in the fractures, Tf is the temperature of fractures, Γfm is the 
heat sink (positive) from fractures to matrix blocks (or the heat source from 
matrix blocks to fractures) per unit volume of REV of the fractured 
media, Γaa is the heat sink (positive) from the aquifer to aquitards (or the 
heat source from aquitards to the aquifer) per unit volume of REV of the 
fractured media, ∇ is the gradient operator, and ∇· is the divergence 
operator.

The heat source/sink term Γfm can be written using convolution (Carrera et 
al., 1998; Dentz & Berkowitz, 2003):

(2b)

where θm (=1 − θf) is the REV‐scale volume fraction of matrix blocks in the 
fractured media, g(t) (T−1) is the normalized conductive heat flux at the 
fracture‐matrix interfaces per unit volume of the rock matrix (in the REV of 
fractured media) per unit (constant) temperature change at fractures. The 
normalization is conducted by scaling the fracture‐matrix conductive heat 
flux by the volumetric heat capacity, ρwcw, of water. This normalized diffusive
flux is often referred to as the memory function in the community of solute‐
transport modeling (Carrera et al., 1998; Dentz & Berkowitz, 2003; Haggerty 
et al., 2000).

Similarly, we can write the heat source/sink term Γaa for a unit volume of REV
of the fractured medium by

(2c)

where gaa is the memory function for the normalized heat flux through the 
aquifer‐aquitard interfaces. In what follows, we will omit Γaa, unless 
mentioned otherwise.

Combining equations 2a and 2b leads to the following heat transport 
equation, with constant fluid and rock properties assumed:



(3a)

with

(3b)

where Rf (≤1) is the enhancement factor (equivalent to the retardation factor
in solute transport), ϑ is the REV‐scale fracture‐matrix scaling factor related 
to the REV‐scale volume fractions of the fracture and matrix continua and 
the fracture enhancement factor, and Def is the effective thermal diffusivity 
tensor for fractures. The longitudinal component of Def is

(3c)

where Df and Ddf are the longitudinal intrinsic and dispersion‐induced thermal
diffusivity for fractures, respectively. Note that for solute transport De is 
called the coefficient of hydrodynamic dispersion, D is the coefficient of 
molecular diffusion, and Dd is the coefficient of mechanical dispersion 
(Bear, 1972).

Taking the Laplace transform of equation 3a leads to the heat transport 
equation in the Laplace domain:

(4)

where   denotes the first two terms (i.e., the conduction‐dispersion term 
and the convection term) in equation 3a,   is the operator for Laplace 

transform,   is the Laplace transform of Tf(t), g*(s) is the Laplace transform
of g(t), and s is the Laplace variable with respect to real time t. Equation 4 is 

a second‐order ordinary differential equation for  .

The general heat transport equations, equations 3a and 4, can be rewritten 
for specific flow fields and different forms of effective thermal diffusivity (see 
Appendix A).

2.3 Multirate Heat Conduction in Matrix and Aquitards

As shown in Figure 1, the fractured reservoir of interest may contain 
thousands to millions of discrete fractures with a varying degree of 
connectivity (Hyman et al., 2015) and finite matrix blocks with irregular 
shapes and different sizes. Convection and conduction/dispersion prevail 
within each connected fracture with variable aperture (Detwiler et al., 2000), 
mixing occurs at the intersections of connected fractures (Park et al., 2001), 
and diffusion is dominant within matrix blocks (Neretnieks, 1980). Within a 
REV of the fractured medium, there are a number of matrix blocks with 
different shapes, sizes, properties, and volume fractions, while the 
temperature of fractures can be assumed uniform because fracture fluid is 
well mixed.



We are interested in the memory function g(t) for the (normalized) transient 
heat flux through fracture‐matrix interfaces per unit volume of the rock 
matrix per unit temperature change at fractures. The REV of fractured media
may contain K classes of matrix blocks of different shapes and different sizes
that have a minimum fracture half‐spacing lk (k = 1, 2, … , K), a fraction of 
matrix volume  , an intrinsic porosity  , and an intrinsic thermal 
diffusivity   The normalized heat flux between the matrix blocks and 
fractures per unit volume of the rock matrix is written as follows:

(5a)

with

(5b)

where   is the enhancement factor of matrix block k, (ρmcm)k is the 

volumetric heat capacity of matrix block k, fk(t) (T−1) and   (−) are the 
normalized and dimensionless normalized heat flux for a unit change in 
fracture temperature and a uniform initial matrix temperature, respectively, 
and  is the dimensionless time. The normalization is conducted 
using θmρwcw as shown in equation 2b.

Note that the memory function defined in equation 5a is only related to the 
properties of intra‐REV matrix blocks and the dimensionless transient heat 
flux in each matrix block. The fracture‐matrix conductive heat flux per unit 
volume of fractured media is represented by θmρwcwg(t). In this way, we 
focus g(t) on the intra‐REV matrix properties and dynamics that are 
separated from the REV‐scale scaling factor ϑ. This is slightly different from 
the memory function φ(t) used by Dentz and Berkowitz (2003) that relates 
the mobile and immobile concentrations by a convolution in time, but 
with ϑg*(s) = φ*(s). Our memory function is also different from that defined 
by Haggerty et al. (2000) that may be physically interpreted as the capacity 
coefficient multiplied by the residence time distribution in the immobile 
domain, given a Dirac pulse at the surface. The memory function defined by 

Carrera et al. (1998) is the same as our dimensionless diffusive flux  , 
with the geometric and rock properties of the matrix blocks considered 

separately. It is of interest to note that   for matrix blocks
of identical Rm; the memory function defined here for heat transport is of the 
same form as that for solute transport, with (Rf, Rm) as the enhancement 
factors for heat transport but as the retardation factors for solute transport. 
We include   inside the memory function to account for multirate heat 
conduction for matrix blocks of different geometric and rock properties. 
Without ρwcw, equation 5a is also applicable for solute transport and pressure
propagation that can consider the intra‐REV heterogeneity of matrix blocks.



Indeed, equation 5a is also applicable to the memory function gaa(t), with the 
two matrix blocks (K = 2) as the overlying and underlying aquitards that may
have different properties and sizes (finite or semi‐infinite). gaa(t) can be 
written as follows:

(5c)

where Bf is the thickness of the reservoir,   is the half‐thickness of 
aquitard k, and   can have a functional form different from slab‐like matrix 
blocks with a no‐flow condition in the center of the aquitards.

The average matrix temperature,  , in the REV can be written (Zhou, 
Oldenburg, Rutqvist, & Birkholzer, 2017; Zhou, Oldenburg, Spangler, & 
Birkholzer, 2017) as follows:

(6a)

with

(6b)

where   is the dimensionless cumulative diffusive flux or average 
temperature for matrix block k in response to unit temperature change in 
surrounding fractures.

For a single (homogeneous and isotropic) matrix block, the governing 
equation for heat conduction, with fluid velocity assumed to be negligible, 
can be written as follows:

(7)

where λm is the intrinsic thermal conductivity of the matrix and Tm is the 
temperature of the matrix. Equation 7 can also be rewritten as follows:

(8)

where Dm (=λm/ρmcm) is the thermal diffusivity of the matrix. Equation 8 has 
been solved for a matrix block of regular shape (cylinder, sphere, slab, 
rectangle, and rectangular parallelepiped) with a unit temperature change at
its boundary (Carslaw & Jaeger, 1959). In this study, we do not solve 
equation 8 but directly use the diffusive flux equation (Zhou, Oldenburg, 
Rutqvist, & Birkholzer, 2017; Zhou, Oldenburg, Spangler, & Birkholzer, 2017) 

to calculate   and g(t).

3 Analytical Solutions of Multirate Heat Transport in Fractured Reservoirs

In this section, we present a suite of semianalytical solutions to multirate 
heat transport in fractured reservoirs. These solutions are obtained using the



concept of transfer function for linear transport systems (Danckwerts, 1953; 
Sardin et al., 1991; Villermaux, 1987). The fracture network is a linear 
system for global heat transport, and each matrix block is a linear system for
local fracture‐matrix exchange. Therefore, we use global transfer 
functions, G0(x, t), and their Laplace transforms,  , to represent global 
heat convective‐conductive‐dispersive transport in the fracture network 
without fracture‐matrix exchange. These  , available in the literature for 
different flow fields, are listed in section 3.3. We also use a local memory 
function, g(t), and its Laplace transform, g*(s), to represent the conductive 
heat flux through fracture‐matrix interfaces per unit temperature change in 
fractures. A new memory function, g*(s), is developed in section 3.2 using 
the diffusive flux equation developed recently (Zhou, Oldenburg, Rutqvist, & 
Birkholzer, 2017; Zhou, Oldenburg, Spangler, & Birkholzer, 2017). With   
and g*(s) available, the new dual‐continuum solutions for heat transport in 

fractured reservoirs are developed using   that is given 
in section 3.1.

This procedure of solution development is simple and different from that for 
traditional analytical solutions with step‐by‐step derivations (e.g., 
Bodvarsson & Tsang, 1982). In the latter, sg*(s) is obtained by solving the 
matrix temperature solution in the Laplace domain and taking its derivative 
with respect to the single space coordinate at the fracture‐matrix interface 
for a specific 1‐D matrix block (sphere, cylinder, or slab). Our solution 
procedure allows for an easy treatment of multirate heat transfer between 
fractures and matrix blocks of different shapes, sizes, properties, and volume
fractions. In our procedure, the developments of   and g*(s) are 
completely separated and can be performed in parallel. The same solution 
procedure has been used for modeling solute transport in fractured and 
other dual‐continuum media (Carrera et al., 1998; Dentz & Berkowitz, 2003; 
Haggerty et al., 2000).

3.1 Generalized Solutions G*(x, s) With Exchange Coupling

We use   to denote the analytical solutions to 
equation 4 with ϑg*(s) = 0 and a Dirac delta heat pulse at the inlet boundary.
Physically,   are the global transfer functions in the Laplace domain for 
convection, convection‐conduction, and convection‐dispersion in a single 
continuum (i.e., the fracture network) without coupling with matrix blocks.

The generalized solutions, G*(x, s), to the general heat equation in the 
Laplace domain, equation 4, with ϑg*(s) ≠ 0 can be written directly as 
follows:

(9)

where x represents the longitudinal coordinate for 1‐D linear, 1‐D radial, and 
2‐D dipole systems and B*(s) is the subsidiary function for the inlet boundary 



condition. For a fractured reservoir bounded by aquitards, the generalized 
solutions G*(x, s) can be written as follows:

(10)

where ϑaa = (θfRf)−1 and   follows equation 5c.

For a Dirac delta heat pulse, B*(s) = 1. For a constant unit temperature 
change, B*(s) = 1/s. For a finite‐duration unit temperature 
change, B*(s) = [1 −  exp (−tDs)]/s, where tD is the time duration of the unit 
temperature change. The Laplace transform variable s in 
equations 9 and 10 is with respect to real time t.

Note that g(t) and g*(s) are used to represent the linear system of the rock 
matrix for heat conduction, and G0(x, t) and   are used to represent the 
linear system of the fracture continuum only for heat convection, conduction,
and dispersion in a given flow field. The system comprising the fractured 
reservoir including fracture continuum and matrix continuum represented 
by G(x, t) and G*(x, s) is also linear for a given flow field. All of these functions
are for the condition of a unit step temperature change at the inlet 
boundary. For any value of boundary temperature change, the corresponding
solutions can be easily calculated using the superposition of linear systems, 
that is, ∆TG(x, t), where ∆T is the temperature change specified at the inlet 
boundary. This method is the same as the normalization of temperature in 
the step‐by‐step derivation of conventional solutions for boundary value 
problems.

3.2 Multirate Memory Function g*(s) for Fracture‐Matrix Heat Exchange

To be consistent with the dual‐continuum‐based governing equations in 
section 2, we use the memory function g(t) to represent the transient 
conductive heat flux through fracture‐matrix interfaces per unit volume of 
REV of matrix blocks per unit temperature change in fractures. g(t) can have 
contributions either from uniform matrix blocks of the same shape, size, and 
properties or from a collection of matrix blocks of different shape, size, 
properties, and volume fraction.

For a single matrix block of regular shape (sphere, cylinder, slab, square, 
rectangle, cube, and rectangular parallelepiped), we use the unified‐form 
diffusive flux equation with the first‐order approximation (Zhou, Oldenburg, 
Rutqvist, & Birkholzer, 2017; Zhou, Oldenburg, Spangler, & Birkholzer, 2017):

(11)

where fd is the dimensionless transient flux with  , td = Dmt/l2 is 
the dimensionless time, a1, a2, and a3 are the parameters for the early‐time 
polynomial solution fe(td), b1j, b2j, and N are the parameters for the late‐time 



exponential solution fl(td), and td0 is the switchover dimensionless time for 
partitioning the entire time domain. td0 = 0.22 is used for any shapes of 
matrix blocks. These parameters for various regular matrix blocks are given 
in Appendix B.

Equation 11 for matrix block k can be rewritten as follows:

(12)

where U() is the Heaviside function that vanishes for negative values and is 
unity for positive values and fe and fl are the early‐time and late‐time 
solutions shown in equation 11.

Taking Laplace transforms of equation 12 with respect to dimensionless 
time   leads to the following:

(13a)

with the three terms on the right‐hand side represented by

(13b)

(13c)

(13d)

(13e)

(13f)

where p is the Laplace variable with respect to  , superscript c denotes the 
parameter values for a cylinder (see Appendix B), I0 and I1 are the modified 
Bessel functions of the first kind of the zeroth and first order, respectively, 
and β1 (=2.4048255577) is the first positive root of the Bessel function of the
first kind of order zero. The derivation of   is detailed in Appendix C.

We finally take Laplace transforms of equation 5a and obtain

(14)

where  . Equation 14, along with equations 13a–13f, is used to 
calculate the memory function g*(s) for multirate fracture‐matrix heat 
transfer. Note that g*(s) is dimensionless, unlike g(t) that has dimensions of 
inverse time.

3.3 Global Transfer Functions   Without Coupling

In this section, we list a number of independent  , that is, the solutions 
for heat transport in a single continuum under 1‐D linear, 1‐D radially 



diverging, and 2‐D dipole flow. The fundamental boundary conditions include
(1) a Dirac delta heat pulse at the inlet boundary (i.e., x = 0 for 1‐D linear 
flow or at r = rw for a 1‐D diverging and 2‐D dipole flow, where rw is the 
radius of the injection well) and (2) no temperature perturbation 
at x =  + ∞ or r =  + ∞.

3.3.1 One‐Dimensional Linear Flow

The subsidiary equation for heat transport in 1‐D linear flow, equation A2, 
with g*(s) = 0 is a second‐order ordinary differential equation, and its 
solution can be directly written (Avdonin, 1964a; Sudicky & Frind, 1982; Tang
et al., 1981):

(15a)

with

(15b)

where τ is the mean residence time and Pe is the Peclet number with respect 
to the flow length scale x. The velocity uf in the 1‐D linear flow is constant 
and the dispersion‐induced thermal diffusivity Ddf is thus constant, leading to 
a constant effective thermal diffusivity Def. Equations 15a and 15b are 
applicable for any combinations of intrinsic thermal diffusivity Df and 
dispersion‐induced thermal diffusivity Ddf.

In the case of dominant convection with negligible Def (Lauwerier, 1955), 
equation A2 degrades to a first‐order ordinary differential equation, and the 
solution is simplified to

(16)

with τ = x/uf.

3.3.2 One‐Dimensional Radially Diverging Flow

In the case of no thermal dispersion with Def = Df, the solution to the 
subsidiary equation for heat transport, equation A5, with g*(s) = 0 can be 
written (Avdonin, 1964a; Carslaw & Jaeger, 1959, p. 389; Chen & 
Reddell, 1983) as follows:

(17)

where Kν is the modified Bessel function of the second kind with 
order ν and Γ is the gamma function. The solution in equation 17 can be 
rewritten as follows:



(18a)

in terms of the mean residence time τ calculated by

(18b)

the constant Peclet number Pe calculated by

(18c)

and the dimensionless number ν defined by

(18d)

where the dimensionless well radius rwd = rw/r.

In the case of dominant dispersion‐induced thermal diffusivity 
with Def ≈ Ddf = αLuf/Rf, the solution to the subsidiary equation for heat 
transport, equation A8, with g*(s) = 0 can be written (Chen, 1985; Moench & 
Ogata, 1981; Reimus et al., 2003; Tang & Babu, 1979):

(19)

where Ai() is the Airy function of the first kind (Abramowitz & Stegun, 1972). 
We introduce the Peclet number Pe = ufr/(αfuf/Rf) = Rfr/αL and the mean 
residence time in equation 18b. The solution in equation 19 can be rewritten 
as follows:



(20)

In the case of dominant convection with negligible Def (Bodvarsson & 
Tsang, 1982; Malofeev, 1960), equation 16 works with the mean residence 
time calculated by equation 18b.

3.3.3 Two‐Dimensional Dipole Flow

It is assumed that   in equation 15a for 1‐D linear flow is applicable for 
the convective‐conductive‐dispersive heat transport along each streamline 
between the injection well and the withdrawal well. The mean residence time
and the length, L, for the streamline with a given central 
angle ω (Alishaev, 1979; Gringarten & Sauty, 1975; Grove & Beetem, 1971), 
as well as the Peclet number, can be calculated as follows:

(21)

where d is the half‐distance between the two wells. The central angle ω is 
formed between the central line of the two wells and the straight line 
connecting a point on the central line and the injection well. In this case, the 
dispersion‐induced thermal diffusivity is dominant with Def ≈ αLuf/Rf and the 
Peclet number, one of the two key parameters, is constant, even though the 
velocity and thermal diffusivity vary along the streamline.

In the case of negligible thermal dispersion, Def(=Df) is constant, and 
thus, Pe is variable along the streamline. An effective Peclet number with a 
mean velocity may be used to minimize the approximation errors, while still 
using the same solution for 1‐D linear flow.

Similarly, the solution in equation 15a with equation 21 is applicable for a 
stream tube with the central angle in the range [ω − 0.5∆ω, ω + 0.5∆ω]. The
entire 2‐D flow field can be represented by ns stream tubes, each with the 
identical angle increment between the two bounding streamlines: ∆ω = π/ns. 
The thermal breakthrough curve at the withdrawal well can be obtained by 
flux weighting the breakthrough curve for each stream tube. This solution for



either dominant or negligible dispersion‐induced thermal diffusivity may 
result in two types of approximation errors. The first type of approximation 
error is caused by the nonconstant Peclet number along each streamline and
can be evaluated using numerical particle tracking (Zhou et al., 2007) along 
the streamline with each tracked streamline segment represented by 
constant velocity and equations A1 and A2. The second type of 
approximation error is caused by the assumption of no heat exchange 
between different stream tubes and can be evaluated using high‐resolution 
numerical simulations.

For the single‐well injection‐withdrawal (SWIW) flow, the solutions to 
equations A9 and A10 are complicated in the case of g*(s) = 0 because 
equations A9 and A10 are inhomogeneous ordinary differential equations. 
The generalized solutions with g*(s) ≠ 0 are more complicated because of 
the contributions from the nonuniform initial matrix temperature for the 
withdrawal period. These solutions are beyond the scope of the paper and 
will be included in future work.

3.3.4 A Note on the Similarity Between Heat and Solute Transport

The global transfer functions   presented above have the same 
functional forms as those for solute transport in fractures or fractured 
reservoirs, with the same physical definitions of the mean residence time 
and the Peclet number. There are the following correspondences between 
the mean residence time, τS, and the Peclet number,  , for solute transport 
and those for heat transport:

(22)

With these correspondences, equation 15a is identical to equation 23 in Tang
et al. (1981), equation 19 in Sudicky and Frind (1982), equation (A6) in 
Reimus et al. (2003), and equation (1) in Hawkins et al. (2017) for 1‐D linear 
flow and solute transport, while equation 20 is identical to equation (A7) in 
Reimus et al. (2003) and equations A9 and A10 in Zhou et al. (2007) for 1‐D 
radial advective‐dispersive solute transport.

As shown in equations 16 and 22, the (actual) retardation factor for heat 

transport in fractures is  . For example,   for the fractures with 

parameters listed in Table 1, while   if the rock matrix is the 
single continuum for heat transport. The thermal retardation factor denotes 
the ratio of the fracture (or matrix) heat capacity to flowing‐water heat 
capacity in the pore space per unit volume of fracture (or matrix) 

media:   (  ). The difference between solute and 
thermal retardation factors can be attributed to the nature of heat storage 
which occurs in both pores and grains while solute storage occurs only in 
pores. Similarly, the difference between Pe and   is caused by (1) that Pe is 
the ratio of convective heat transport in the pore space to the conductive 



heat transport in the continuum with the pore space and grains and (2) 
that   is the ratio of advective to dispersive solute transport, all within the 
pore space in a continuum.

Due to the intrinsic thermal diffusivity of matrix blocks being orders of 
magnitude higher than the solute coefficient of matrix diffusion, fractures 
and matrix blocks with a small fracture half‐spacing may reach thermal 
equilibrium after a sufficient time. In this case, the retardation factor is

(23)

which can be used to estimate the travel distance of the thermal front 
relative to the fracture water front.



The similarity of global transfer functions between heat and solute transport 
in fractured reservoirs has not been widely recognized by the two (heat‐ and 
solute‐transport) modeling communities. For example, the solute‐transport 
solution of Tang et al. (1981) without solute decay is the same as the heat‐
transport solution of Avdonin (1964a). The former considers a single fracture 
with an embedded infinite matrix, while the latter deals with a single aquifer 
bounded by two semi‐infinite aquitards. On the other hand, the recent 
advances in modeling solute transport have not been introduced to the heat‐
transport modeling community, including (1) the analog between thermal 
and solute dispersion and (2) the concept of transfer and memory functions. 
Indeed, the generalized memory function presented in section 3.2 is 
applicable to the exchange by heat conduction, solute diffusion, and 
hydraulic diffusion between fractures and the matrix and between aquifers 
and aquitards.

3.4 SHPALib

We coded the above solutions with the global transfer functions and the 
generalized memory function into a Fortran package, referred to as SHPALib 
(Solute and Heat Transport and Pressure Propagation: An Analytical Solutions
Library). The SHPALib extends to heat‐transport modeling from the TRAT 
code that was developed for analytical modeling of tracer transport in 
fractured reservoirs (Zhou et al., 2007). The TRAT code was developed based
on the Fortran code in Moench (1995) and was extended for pressure 
propagation (Zhou et al., 2009). The SHPALib also includes the subroutines 
for unified‐form diffusive flux equations for various matrix blocks and 
intrablock solutions of solute, heat, and pressure transport (Zhou, Oldenburg,
Rutqvist, & Birkholzer, 2017; Zhou, Oldenburg, Spangler, & Birkholzer, 2017).

Because of the complexity of the memory function g*(s), there are no 
analytical Laplace inversions available for the solutions, G*(x, s). We use the 
method developed by de Hoog et al. (1982) for efficient numerical inversion 
of Laplace transforms. This method has been widely used for analytical 
modeling of pressure propagation (e.g., Zhou et al., 2009), tracer transport 
(e.g., Moench, 1995; Zhou et al., 2007), and heat transport (Ruiz Martínez et 
al., 2014; Yang & Yeh, 2009).

In this study, SHPALib was tested by numerically inverting memory 
function g*(s) in equations 13a–13f and 14 for a slab, three rectangles, and 
three rectangular parallelepipeds with different (Rl2, Rl3) (see equation B6), all
matrix blocks with identical minimum half‐spacing and thermal diffusivity. 
The true solutions of the diffusive flux for these matrix blocks were 
calculated using the diffusive flux equations 11 and B1–B7 in the real‐time 
domain. Note that a unit temperature change was specified at the 
surrounding fractures and a uniform initial temperature was specified for the 
matrix blocks. As shown in Figure 2, excellent agreement is obtained in all of 
the cases between the analytical solutions in the real‐time domain and the 
semianalytical solutions with Laplace transform and inversion, indicating that



the memory function g*(s) in equations 13a–13f and 14 and the inversion 
algorithm of Laplace transforms work properly.

4 Benchmark Examples

The developed analytical solutions were demonstrated for three heat‐
transport benchmark problems: a single‐continuum reservoir, a fractured 
reservoir, and a fractured reservoir bounded by aquitards, with or without 
the A‐A (aquifer‐aquitard) and F‐M (fracture‐matrix) coupling. By comparison,
these problems were used to better understand the retardation of heat 
transport in fractures by the rock matrix and aquitards. For each benchmark 
problem, a number of sensitivity analyses were conducted for fluid‐flow fields
(1‐D linear and radial), heat‐transport mechanisms (convection, conduction, 
and dispersion), shape and size of matrix blocks, and key model parameters. 
Here, we considered reservoirs with a thickness of Bf = 20 m. For radial flow, 
a realistic injection rate of Q = 2 × 106 m3/year for geothermal fields and the 
operations of aquifer thermal energy storage was used, with fracture pore 
velocity of uf = 0.01, 0.001, and 0.0001 m/s at a distance of 5, 50, and 
500 m, respectively. For linear flow, the three velocities were used for 
sensitivity analysis. For transport mechanisms, four longitudinal 
dispersivities αL = 0, 0.01, 0.1, and 1 m were considered, along with the case
of convection only with Def = 0. A unit temperature change was specified at 
the inlet or well boundary and a uniform initial temperature was specified for
the systems.

For the sensitivity analyses of fracture‐matrix heat exchange, seven matrix 
blocks of uniform sizes and three values of minimum fracture half‐
spacing l = 0.2, 1, and 5 m were used for single‐rate heat exchange. The 
matrix blocks include (1) a slab, (2) three rectangles with (Rl2, Rl3) pairs with 
values (1.0, 0.0), (0.5, 0.0), and (0.2, 0.0), and (3) three rectangular 
parallelepipeds with (Rl2, Rl3) equal to (1.0, 1.0), (0.5, 0.2), and (0.2, 0.1). For 
multirate heat exchange, five collections of matrix blocks of different shapes 



and sizes were used. The first two collections consist of either three 2‐D or 
three 3‐D rectangular matrix blocks above with the same l values, and the 
last three collections consist of (1) three 2‐D, (2) three 3‐D, and (3) six 2‐D 
and 3‐D rectangular matrix blocks above with l = 0.2, 1, and 5 m mixed. The 
volumetric fraction of each component matrix block in the five collections 
is 1/3, 1/3, 1/9, 1/9, and 1/18, respectively.

A water‐convection distance of 100 m was used for comparison among the 
different cases of sensitivity analyses. The transport time for observation 
was accordingly determined for each velocity and flow field, and the different
times were used to investigate the different regimes of fracture‐matrix heat 
exchange. Table 1 lists relevant rock and model parameters.

4.1 Heat Transport in Single‐Continuum Reservoirs Without Coupling

In this example, we are interested in heat‐transport mechanisms in a single‐
continuum reservoir without the A‐A and F‐M coupling. For linear flow in the 
single‐continuum reservoir (i.e., the matrix continuum with θm = 1), three 
pore velocities: u = 0.5 × 10−3, 0.5 × 10−4, and 0.5 × 10−5 m/s (matrix 
porosity is 0.2) are used and the corresponding transport time for 
observation is 2.315, 23.15, and 231.5 days. The effective thermal diffusivity
is calculated using Dem = Dm + αLu = 8.45 × 10−7 + αLu m2/s. In addition, 
twelve cases for fractures (i.e., the fracture continuum with θf = 1) are 
considered with three pore velocities: u = 10−2, 10−3, and 10−4 m/s and the 
above four dispersivities. The effective thermal diffusivity is calculated 
using Def = Df + αLu = 1.52 × 10−7 + αLu m2/s. The corresponding transport 
time is 0.116, 1.16, and 11.6 days, respectively.

Figure 3 shows the temperature profiles centered (with a relative distance of 
0) at the same distance scaled by the actual thermal retardation 

factor   (or   for the 12 cases in the matrix (or fracture) 
continuum. The relative distance of 0 is located at the heat‐convection 
distance with thermal retardation, which is 28.37 m for the matrix continuum
and 93.46 m for the fracture continuum. These heat‐convection distances 
show the effects of thermal retardation by the conductive solid grains in the 
matrix and the fractures when comparing to the water‐convection distance 
of 100.0 m. The retardation factor for the matrix is  , leading to 
significant thermal retardation caused by local equilibrium between water 

and solid grains. The retardation factor for fractures is  , leading to 
moderate thermal retardation.



As shown in Figure 3a, thermal dispersion has a significant effect on 
temperature profiles for the matrix in each velocity case, showing a larger 
spreading (defined here by the distance between T = 0.98 and 0.02) for a 
higher longitudinal dispersivity. The spreading is 2.4, 7.4, and 22.2 m in the 
three velocity cases with no dispersion, while it varies slightly from 52.4 to 
55.8 m in the cases of αL = 1 m. In the latter, Pe for the heat‐convection 
distance varies slightly from 28.3 to 24.3, leading to similar temperature 
profiles for the three velocities. In all cases of lower αL, a stronger effect of 
pore velocity on Pe and thus on temperature profiles is observed because of 
less dominance of heat dispersion over heat conduction. Note that the 
temperature at the relative distance of 0 is not 0.5 in some cases because of 
the effect of the fixed‐temperature condition at the inlet (Kreft & 
Zuber, 1978; Ogata & Banks, 1961).

As shown in Figure 3b, thermal dispersion also has a significant effect on 
temperature profiles for fractures in all velocity cases. In the cases 
of αL = 1 m, thermal dispersion is dominant in the effective thermal 
diffusivity because of higher velocities than those for the matrix, leading to 
identical Pe (=93.46) and identical temperature profiles with a spreading over
55 m in the three velocity cases. In the cases with convection‐conduction 
only, Pe is very large (6.16 × 106, 6.16 × 105, and 6.16 × 104), leading to 
slightly different but sharp profiles with a spreading of less than 2.0 m. These
sharp profiles are similar to the step function (with transition from 1 to 0) 
without thermal conduction and dispersion. In the other two cases of αL, the 
spreading is 6.0 and 18.0 m. The temperature profiles calculated above for 
fractures only are the envelopes of those calculated for heat transport in a 
fractured reservoir with the F‐M coupling (to be discussed below).

4.2 Heat Transport in Fractured Reservoirs



In this example, we focus on (1) effective thermal diffusivity and (2) single‐
rate and multirate heat exchange between fractures and matrix blocks and 
related effects on global convective‐conductive‐dispersive heat transport in a
fractured reservoir under 1‐D linear and radial flow.

4.2.1 One‐Dimensional Linear Fluid Flow

Convective‐conductive or convective‐conductive‐dispersive heat transport is 
simulated using equations 15a and 15b, and the convective heat transport is
simulated using equation 16, along with the memory function in 
equations 13a–13f and 14 and the generalized solution in equation 9. 
Figure 4 shows the profiles of fracture temperature, as functions of effective 
thermal diffusivity, shape of isotropic matrix blocks (slabs, squares, and 
cubes), and l (0.2, 1, and 5 m) of the matrix blocks, in the three cases of 
fracture velocity. Note that the solutions for αL = 0.01 m and convection only
(not shown) are almost identical to those with intrinsic thermal diffusivity 
(Df).

Thermal dispersion in fractures has a moderate impact on temperature 
profiles as shown by the difference between αL = 1 m and αL = 0.1 m in all 
cases of matrix blocks. It appears that the relative difference increases with 
the reduction in l from 5.0 to 0.2 m. For an effective thermal diffusivity 



smaller than that with αL ≤ 0.1 m, the temperature profiles are almost 
identical, indicating that the convection‐conduction and convection‐
conduction‐dispersion solutions for the fracture continuum can be 
approximated by the convection solutions (e.g., Bodvarsson & Tsang, 1982; 
Jung & Pruess, 2012; Lauwerier, 1955). This conclusion may not be valid for 
the single fracture or matrix continuum (see Figure 3), indicating that the 
fracture‐matrix heat exchange overshadows the effect of heat conduction 
and dispersion in fractures.

The shape and size of matrix blocks have a more significant effect on the 
profiles of fracture temperature, reducing the penetration depth in fractures 
and changing the shape of temperature profiles. The effect increases with 
the enhancement of the fracture‐matrix heat exchange by the dimensionality
of matrix blocks from 1 (slabs) to 3 (cubes) and by the reduction in l. The 
effect also depends on the velocity‐dependent transport time that allows 
heat exchange to take effect, which is different from the negligible effect for 
the fracture continuum only without the F‐M coupling (see Figure 3b). The 
block shape and size and transport time together determine the regimes of 
fracture‐matrix heat exchange: the early‐time regime when dimensionless 
time td ≤ 0.22 or the equilibrium regime when td ≥ 2.0 (Zhou, Oldenburg, 
Spangler, & Birkholzer, 2017). During the equilibrium regime, matrix and 
fracture temperatures are at quasi‐equilibrium, and the additional effect of 
matrix blocks is negligible. In this case, the fracture temperature profiles 

become sharp again, slowed by a retardation factor of   
relative to fracture water convection. For example, the temperature profiles 
are centered at 1.27 m in the cases with pore velocity of 10−4 m/s, transport 
time of 11.6 days, l = 0.2 m, and td = 21.2 (see Figures 4d–4f).

Figure 5 shows the profiles of fracture temperature for four (anisotropic) 
rectangular matrix blocks with different aspect ratios (Rl2, Rl3) and five 
collections of matrix blocks for the three fracture velocities (0.01, 0.001, 
0.0001 m/s) with αL = 1 m. As shown in Figure 5a for l = 5 m, the aspect 
ratios of matrix blocks affect temperature profiles in the three cases of 
velocity because matrix conduction (thermal diffusion) is in the early‐time 
regime (see equation 11) with td ≤ 0.034. This effect disappears in 
Figures 5b and 5c for l = 0.2, 1 m in some velocity cases with td ≫ 0.22. The 
same is true for the two collections of 2‐D and 3‐D rectangular matrix blocks.
The variations of fracture temperature in the six cases are bounded by the 
temperature profiles of cubes and slabs (see Figure 4). As shown in 
Figure 5d, fracture temperatures for the three collections with mixed aspect 
ratios and l values are impacted most by the matrix blocks with 
smallest l value (0.2 m) and largest aspect ratios (1.0). The effect can be 
seen from the comparison between the resulting temperature profiles and 
those for the collections with uniform l = 0.2 m and l = 5.0 m for the velocity
of 0.0001 m/s. This is because the matrix blocks with l = 0.2 m are at 



thermal equilibrium with fractures at the time scale of 11.6 days, 
significantly retarding the penetration depth of fracture temperature.

4.2.2 One‐Dimensional Radial Fluid Flow

For 1‐D radial flow, we also focus on the effects of effective thermal 
diffusivity and shape and size of matrix blocks on heat transport using (1) 
heat convection with solutions of equation 16 and (2) heat convection‐
dispersion with αL = 0.01, 0.1, and 1 m with solutions of equation 20. The 
transport time for observation is 103.3 days calculated using equation 18b, 
and the lowest Pe at a radial distance of 100.0 m is 96.3. Only three isotropic 
matrix blocks (slabs, squares, and cubes) with l = 0.2, 1, and 5 m are 
considered as these cases produce bounding temperature profiles for 
anisotropic matrix blocks and collections of matrix blocks of identical l.

As shown in Figure 6, the profiles of fracture temperature in radial flow with 
a longer transport time are very different from those in the linear flow with 
shorter transport times in all of the cases of effective thermal diffusivity, 
shape, and l of matrix blocks. For the transport time of 



103.3 days, td = 188.5, 7.54, and 0.30 for l = 0.2, 1.0, and 5.0 values, 
respectively. For l = 0.2 m and convection only, the temperature fronts for 
slabs, squares, and cubes are identically sharp with Tf ≈ 1 °C at r ≤ 11.28 m, 
with  , indicating that fractures and matrix blocks are at equilibrium 
at r ≤ 11.28 m. The temperature profile for l = 0.2 m is affected only by 
thermal dispersion, with the spreading of 12.1 m for αL = 1.0 m. 
For l = 1.0 m, the spreading is between [4.3 m, 18.1 m] for αL = 1.0 m, 
without any effect of block shape, while it is [7.9 m, 14.8 m] for convection 
only, with a small effect of block shape. For l = 5.0 m, the spreading for 
convection only varies from [3.0 m, 27.2 m] for slabs to [3.3 m, 21.3 m] for 
squares to [3.9 m, 18.8 m] for cubes, indicating the shape of matrix blocks 
affects the thermal penetration depth in fractures. For these wider 
spreadings, thermal dispersion only slightly affects the smeared temperature
profiles. Note that the thermal penetration depth in fractures is significantly 
impacted by block size, thermal dispersion, and block shape in radial flow, 
and the fracture‐matrix heat exchange significantly retards thermal fronts, 
limiting the penetration depth to less than 30 m in all the cases.

In the case of αL ≤ 0.01 m, the global transfer function of convection only in 
fractures, equation 16, can be used with high accuracy for simplification of 
equation 18a or 20. The thermal penetration depth in all of the cases is less 



than 30 m, where fracture velocity is uf = 1.68 × 10−3 m/s and the 
dispersion‐induced thermal diffusivity is αLuf/Rf = 1.74 × 10−5 m2/s 
for αL = 0.01 m, 2 orders of magnitude higher than intrinsic thermal 
diffusivity. This means that in the radial extent of thermal perturbations, 
intrinsic thermal diffusivity in fractures is negligible and its effect on fracture 
temperature can be neglected because of strong fracture‐matrix heat 
exchange.

4.3 Heat Transport in Fractured Reservoirs Bounded by Aquitards

This example is used to demonstrate the flexibility of the developed 
analytical solutions in equation 10 when simultaneously handling both 
fracture‐matrix and aquifer‐aquitard systems. We add the upper aquitard 
with   m and the lower aquitard with   m to the fractured reservoir
with a thickness of 20 m, with no heat flow condition on the other sides of 
the half‐aquitards. The aquitards are assumed to have the same properties 
as the rock matrix of the reservoir. As shown in Figure 7 for the radial flow, 
the effect of block shape is strongest for l = 5.0 m and disappears 
for l = 0.2 m, depending on the dimensionless time of the transport time, 
while the effect of block size is strong for the three cases of l. The effect of 
thermal dispersion is significant for all of the cases of matrix blocks. By 
comparison, the fracture temperature front is further retarded in all cases by
the heat exchange between the reservoir and the aquitards with large half‐
thickness, leading to more smeared temperature profiles.

5 Conclusions

Numerous analytical solutions have been developed since the 1950s for 
modeling temperature perturbations in the subsurface in support of various 
field applications, such as thermal oil recovery, fluid disposal by deep‐well 
injection, aquifer thermal energy storage, geothermal energy production, 
and groundwater recharge. Each solution has been presented, with detailed 
derivation, for a specific boundary value problem, with heat exchange 
between fractures and matrix blocks and between aquifers and aquitards. 
The nonoverlapping fracture‐matrix and aquifer‐aquitard setting is often 
used with a simplified network with one set of parallel fractures.



In this work, a suite of new analytical solutions G*(x, s) was developed by 
plugging a generalized multirate memory function g*(s) into existing, 
independent global transfer functions   for modeling heat transport in 
fractured reservoirs with various flow fields. These new solutions in the 
Laplace domain can be written in the simple 

form:   that also depends on the inlet boundary 
condition function B*(s). The multirate memory function was developed for a 
REV of fractured reservoirs by Laplace transforming the unified‐form 
diffusive flux equation recently developed by Zhou, Oldenburg, Rutqvist, and
Birkholzer, (2017) and Zhou, Oldenburg, Spangler, and Birkholzer (2017). 
The REV was conceptualized to contain well‐mixed multiple fractures and 
multiple matrix blocks of different shapes, sizes, properties, and volume 
fractions. This conceptualization can easily handle fractured reservoirs with 
one, two, and three orthogonal sets of discrete fractures with different 
fracture density and spacing and with resulting matrix blocks (e.g., finite 
slabs, rectangles, and rectangular parallelepipeds) with different sizes and 
aspect ratios. The new dual‐continuum‐based solutions facilitate the 
consideration of fracture‐matrix heat exchange and aquifer‐aquitard heat 
exchange in fractured reservoirs bounded by aquitards using the generalized
multirate memory function.

The new solutions were applied to three benchmark problems of heat 
transport in a single‐continuum reservoir, a fractured reservoir, and a 
fractured reservoir bounded by aquitards. The sensitivity analyses on fluid‐
flow fields, transport mechanisms, and shape and size of matrix blocks can 
be summarized as follows: (1) large thermal dispersion (αL ≥ 1 m) has a 
significant effect on smearing temperature fronts in fractures, while the 
solutions of fracture convection only can be used to accurately approximate 
solutions with convection‐conduction, and convection‐conduction‐dispersion 
with αL ≤ 0.01 m in fractured reservoirs, (2) the shape and size of matrix 
blocks significantly affect fracture‐matrix heat exchange during the early‐
time heat exchange regime, while the effect disappears during the fracture‐
matrix equilibrium regime, depending on the dimensionless times for 
involved matrix blocks, and (3) thermal retardation is significant in both 
linear and radial flow, regardless of the heat exchange regimes, due to the 
high intrinsic thermal diffusivity of the rock matrix.
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Appendix A: Heat Transport Equations for Different Flow Fields

For 1‐D linear fluid and heat flow, qf and Def are constant in space and time. 
Equation 3a can be rewritten as follows:

(A1)

where x is the single space coordinate and qf is the Darcy's velocity in 
the x direction. Taking the Laplace transform of equation A1 leads to

(A2)

Equation A2 is a second‐order ordinary differential equation for  .

For 1‐D radial fluid and heat flow, we have qf = Q/(2πBfr) = Q′/r, where Q is 
the injection rate, Bf is the reservoir thickness, r is the radial coordinate, 
and Q′ = Q/2πBf. In the case of constant Def = Df with only intrinsic thermal 
conduction considered, equation 3a can be rewritten as follows:

(A3)

Taking the Laplace transform of equation A3 leads to

(A4)

Equation A4 can be rewritten, following Avdonin (1964a), Carslaw and Jaeger
(1959, p. 389), and Chen and Reddell (1983), in the form

(A5)

where ν = Q/4πBfDefRf.

In the case of dominant dispersion‐induced thermal diffusivity in the region 
with temperature perturbations, Def = αLuf/Rf = αLQ′/ϕfrRf. Equation 3a can be 
rewritten as follows:

(A6)

Taking the Laplace transform of equation A6 leads to

(A7)



Equation A7 can be further rewritten, with the introduction of dimensionless 
radius ϱ = r(ϕf/αL) (Chen, 1985; Moench & Ogata, 1981; Tang & Babu, 1979), 
in the form:

(A8)

For 1‐D SWIW flow, equations A3 through A8 are applicable to the 1‐D 
diverging fluid and heat flow during the injection period. For the 1‐D 
converging flow during the withdrawal period, we change the sign of the 
convection, keep the radial coordinate unchanged, and obtain the subsidiary 
equations for convective‐conductive heat transport:

(A9)

and for convective‐dispersive heat transport:

(A10)

The right‐hand side of equations A9 and A10 is the summation of (1) the 
contribution from the initial fracture temperature Tf0 and (2) the contribution 
from the normalized fracture‐matrix heat flux,  , induced by the 
nonuniform initial matrix temperature. The initial temperatures of the 
fractures and matrix blocks are the solved nonuniform temperatures at the 
end of the injection period, and the real time starts from the beginning of the
withdrawal period. Note that the existing SWIW solutions (Jung & 
Pruess, 2012; Kocabas, 2005) only account for 1‐D linear convection coupled 
with 1‐D conduction in semi‐infinite slabs.

For 2‐D dipole flow, each streamline between the injection well and the 
withdrawal well corresponds to a given central angle that varies in the 
range [0, π] from the injection well (Alishaev, 1979; Grove & Beetem, 1971). 
Equations A1 and A2 may be applicable for the heat transport (with variable 
longitudinal velocity) along the streamline.

Appendix B: Coefficients for the Diffusive Flux Equation and Memory Function

The parameters in equations 11 and 13a–13f for a slab‐like, square‐like, 
cubical, rectangular, and rectangular parallelepiped matrix block can be 
obtained using the following general equations written for a rectangular 
parallelepiped with matrix block dimensions nd = 3 (Zhou, Oldenburg, 
Rutqvist, & Birkholzer, 2017):

(B1)

(B2)

(B3)



(B4)

(B5)

where Rli (i = 1, 2, 3) are the aspect ratios for the three local 
coordinates xi and nij are the integers in the order 1, 2, 3, … , nij. The aspect 
ratios, fracture half‐spacing li, and dimensionless area‐to‐volume ratio R are 
written as follows:

(B6)

where A and V are the surface area and volume of the matrix block. The 
number of exponential terms (N) is determined practically for anisotropic 
matrix blocks by

(B7)

where 𝜖 is a cutoff that depends on the degree of anisotropy (Zhou, 
Oldenburg, Spangler, & Birkholzer, 2017). The cj in equation B7 is used to 
account for the anisotropy effect while maintaining the first‐order 
approximation in the late‐time solution, the same order of approximation as 
for the early‐time solution. N decreases with increased aspect ratios of the 
matrix block, with N = 1 for an isotropic, cubical matrix block (l = l1 = l2 = l3).
For a rectangular 2‐D matrix block, Rl3 = 0, and nd = 2, while for an isotropic 
slab, Rl2 = Rl3 = 0, nd = 1, and N = 1.

The switchover dimensionless time td0 of 0.22 is used for all shapes of matrix 
blocks in this study, although there is a slight difference between the optimal
values for slabs, spheres, cylinders, squares, cubes, rectangles, and 
rectangular parallelepipeds; see Table 1 in Zhou, Oldenburg, Spangler, and 
Birkholzer (2017). As a result, we refit a2 and a3 for spheres using the 
corresponding exact exponential solutions with N = 2,000 and td0 = 0.22, by 
following the same fitting for cylinders in Zhou, Oldenburg, Spangler, and 
Birkholzer (2017), and obtain   and   with a relative 
approximation error less than 0.1%, where superscript s denotes the 
parameters for spherical matrix blocks. Similarly, we have 
,  ,  ,  ,  , and N = 1 for a cylinder denoted by 
superscript c.

Appendix C: Laplace Transforms of 

The following Laplace transform with respect to dimensionless time   leads 
to

(C1)

with

(C2)



(C3)

Because   is difficult to derive, we use the exact Laplace 
transform of the dimensionless diffusive flux for a slab‐like matrix block 
written in terms of dimensionless time   (Dentz & Berkowitz, 2003; Haggerty 
et al., 2000; Villermaux, 1987; Zhou et al., 2009):

(C4)

to match the Laplace transform in equations B1–B6 for a slab with 
, a2 = a3 = 0, b11 = 8/π2, b21 = π2/4, and N = 1 and obtain

(C5)

Because   is also difficult to derive, we use the exact Laplace 
transform of the dimensionless diffusive flux for a spherical matrix block 
(Dentz & Berkowitz, 2003; Haggerty et al., 2000; Moench, 1995; 
Villermaux, 1987):

(C6)

to match equations B1–B6 for a sphere with 
, a2 =  − 3.013, a3 = 0.068, b11 = 6/π2, b21 = π2, and N = 1 and obtain

(C7)

Alternatively, we can use the exact Laplace transform of the dimensionless 
diffusive flux for a cylindrical matrix block (Haggerty et al., 2000; 
Villermaux, 1987):

(C8)

to match equations B1–B6 for a cylinder with 
, a2 =  − 0.9608, a3 =  − 0.5748,  ,  , and N = 1 and obtain

(C9)

Note that equation 13e is the same as equation C5 and equation 13f is the 
same as equation C9.   and   can be referred to equation 13b for spheres 
and cylinders.
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