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ABSTRACT

The basic theory of sum-frequency generation (SFG) is revisited. A rigorous derivation showing that linear optical transmission and reflection
at an interface result from the interference of the incident wave and induced radiation wave in a medium is presented. The derivation is
extended to SFG in a medium with a finite interface layer to see how SFG evolves. Detailed description on interface vs bulk and electric dipole
(ED) vs electric quadrupole (EQ) contribution to SFG are provided with essentially no model dependence, putting the theory of SFG on a
solid ground and removing possible existing confusions. Electric-quadrupole contributions to SFG from the interface and bulk are discussed.
It is seen that there is a relevant bulk EQ contribution intrinsically inseparable in measurement from the interface ED contribution but plays
a major role among all EQ contributions; its importance relative to the ED part can only be judged by referring to the established reference
cases.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0030947., s

I. INTRODUCTION

Second-harmonic and sum-frequency generation (SHG/SFG)
spectroscopy has become a powerful surface analytical tool for sur-
face studies in many disciplines.1–8 It is based on the simple idea
that optical responses of a surface and bulk of a medium follow
different selection rules. In particular, for media with inversion sym-
metry, SHG/SFG is electric-dipole (ED) forbidden in the bulk, but
at a surface or interface, the symmetry is naturally broken. This
leads to strong suppression of the process in the bulk, leaving it to
stand out at the surface. The underlying theory for SHG/SFG as a
surface probe was worked out in early days9 and has been reformu-
lated over the years and adopted to analyze experimental results.10–16

However, there are always confusions on a number of issues: What
is the proper way to describe an interfacial layer as the division
between the surface and the bulk of a medium is generally vague?
Should it be treated as a thin dielectric layer with a specific refrac-
tive index? What are the appropriate Fresnel coefficients to be used
to relate measured nonlinear susceptibilities with the intrinsic ones?
Is the electric-dipole (ED)-forbidden, but electric-quadrupole (EQ)-
allowed, bulk contribution to SHG/SFG negligible or not? Is the EQ
contribution to SHG/SFG from the interfacial layermore important?

When can the interface ED contribution to SHG/SFG be considered
dominant over all EQ contributions?

The confusions arise because of our lack of detailed micro-
scopic understanding of the process. In this paper, we revisit the
basic theory for surface SFG (with SHG taken as a special case of
SFG), starting from the microscopic origin of wave transmission,
reflection, and mixing. It is known physically that such processes
are all results of radiation from polarization induced in media by
incomingwaves and interference between the incoming and induced
radiation waves. Fearn et al.17,18 showed that because of interference,
an optical wave normally incident on an abrupt interface between
air and a semi-infinite medium is transformed into transmitted and
reflected waves right at the interface with the well-known Fresnel
coefficients; that is, there is no finite transition region around the
interface to establish transmission and reflection. We extend their
derivation to the general cases of linear transmission and reflec-
tion of S- and P-polarized inputs at an oblique incidence angle, as
well as SFG from a semi-infinite medium, with a finite interface
layer between two media. For simplicity, we limit our discussion
to isotropic and cubic media. The derivation provides a realistic
model-independent description of SFG from the surface and bulk
and allows us to put the theory of SFG on a firm basis. While many
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steps of the derivations and the final results are not very different
from what already exist in the literature, the previous loose ends are
tightened up in the description. In particular, we now have a micro-
scopic understanding on how SFG develops in a medium and are
able to remove a great deal of confusions regarding surface vs bulk
contributions and ED vs EQ contributions to SFG.

In the following, we start, in Sec. II, by presenting a rigorous
derivation illustrating that linear transmission and reflection of opti-
cal waves are the result of interference between the incident and
induced radiation waves and occur right at the interface with the
proper Fresnel coefficients. We then review, in Sec. III, the theory
of SFG as a result of radiation induced nonlinearly in a medium by
two input waves and show how it develops in the medium. Our par-
ticular interest is on bulk media with inversion symmetry such that
electric quadrupole nonlinearity is solely responsible for SFG in the
bulk. Section IV describes the surface contribution to SFG from an
interface layer defined by a range of significant variation of the opti-
cal dielectric constant. In general, both the electric dipole (ED) and
electric quadrupole (EQ) nonlinearities of the interface layer could
be important, and their contributions to SFG are larger than the
nominal bulk EQ contribution. In Sec. V, different surface and bulk
contributions to SFG are compared. It is seen that while the nominal
bulk EQ contribution can be made negligible in the experiment, the
surface nonlinear susceptibility measured always contains an effec-
tive bulk EQ contribution that is intrinsically inseparable from the
interfacial ED contribution but is a major part of the overall EQ con-
tribution. We then discuss how, in practice, we can use established
cases as references to see whether SFG as a probe for various inter-
facial systems is surface specific or not. Finally, Sec. VI summarizes
the discussion and gives a perspective on SF spectroscopy. In the
Appendix, we show that surface contribution and nominal EQ bulk
contribution to SFG can be separately deduced frommeasurements.

II. LINEAR TRANSMISSION AND REFLECTION
AT A PLANE INTERFACE

To lay the ground work for a microscopic theory of SFG, we
present here a derivation, following Fearn et al.,17 that shows lin-
ear transmission and reflection at an interface result from interfer-
ence between the incident wave and the induced radiation wave in
a medium. From elementary electrodynamics,19 it is known that the

radiation field, E⃗R(ω, k⃗, r⃗, z′), with wave vector k⃗ and frequency ω,

observed at position r⃗ from a polarization sheet of P⃗(ω, k⃗s, z′)Δz′
≙ ∣P⃗∣Δz′ei⃗ks ⋅⃗r′−iωt at z′ in a uniform medium (z′ > 0), is given by

E⃗R(ω, k⃗, r⃗, z′) ≙ i2πω2

c2kz
ik⃗ × [ik⃗ × P⃗(ω, k⃗s, z′)Δz′ei⃗k⋅(⃗r−z′ ẑ)]. (1)

(note that k⃗ ≠ k⃗s). The field observed at r⃗ from the whole stack of
polarization sheets in a semi-infinite medium (z > 0) is

E⃗p(ω, r⃗) ≙ ∫ ∞

0
E⃗R(ω, r⃗, z′)dz′

≙ ∫ ∞

0

i2πω2

c2kz
ik̂ × ∥ik̂ × P⃗(ω, k⃗s, z′)∥ei⃗k⋅(⃗r−z′ ẑ)dz′. (2)

When a wave, E⃗I
i(ω, k⃗I , z), from medium I is incident at an angle θI

on an abrupt interface (z = 0) between media I and II with dielec-
tric constants εI(ω) and εII(ω), respectively,[Fig. 1(a)] the transmit-

ted field in medium II, E⃗II
t (ω, k⃗II , z), induces a linear polarization

P⃗(ω, k⃗II , z) ≙ 1
4π (ε(1)II − ε(1)II )E⃗(ω, k⃗II , z) in medium II, with εI(ω) of

medium I serving as the reference background. The transmitted field
in medium II should be the sum of the incident field and induced
radiation field from P⃗(ω, k⃗II , z), with medium I as the background,
and has the mathematical expression

E⃗
II
t (ω, z) ≙ ε⃗IIt (ω)eikIIz z′ei(kxx−ωt)

≙ E⃗I
i(ω, z) + E⃗p(ω, z),

E⃗
I
i(ω, z) ≙ ε⃗Ii(ω)eikIzzei(kxx−ωt),
Ep(ω, z) ≙∫ ∞

0

i2πω2

c2kIz
ik̂

× ∥ik̂ × (εII − εI)ε⃗IIt (ω)eikIIz z′∥eikIz ∣z−z′ ∣ei(kxx−ωt)dz′.

(3)

FIG. 1. (a) Beam geometry for linear transmission and reflection at an interface
(z = 0− to 0+) between two media, I and II, with optical dielectric constants εI and
εII, respectively. (b) Beam geometry for sum-frequency generation at the interface
described in (a), but medium II is nonlinearly active with nonlinear susceptibility
↔

χ
(2)

B
. The input beams at ω1 and ω2 have wave vectors k⃗II1 and k⃗II2 in medium II,

respectively, and the SF outputs in transmission and reflection have wave vectors

k⃗II3 in medium II and k⃗I3 in medium I.
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For an S-polarized input, we have E⃗I
i(ω, z) along ŷ and

Ep,y(ω, z) ≙ ikI(εII − εI)
2εI cos θI

∥eikIzz ∫ z

0
ε
II
t,y(ω)ei(kIIz −kIz)z′dz′ + e

−ikIzz ∫ ∞

z
ε
II
t,y(ω)ei(kIIz +kIz)z′dz′∥ei(kxx−ωt)

≙ ikI(εII − εI)
2εI cos θI

[ 1

i(kIIz − kIz)(e
ikIIz z − eikIzz) − 1

i(kIIz + kIz) e
ikIIz z]εIIt,y(ω)ei(kxx−ωt)

≙ kI(εII − εI)
2εI cos θI

[ −1
(kIIz − kIz) e

ikIzz +
2kIz

(kIIz )2 − (kIz)2 e
ikIIz z]εIIt,y(ω)ei(kxx−ωt). (4)

We then find from Eq. (3)

E
II
t,y(ω, z) ≙ εIIt,y(ω)eikIIz z′ei(kxx−ωt)

≙ [εIi,y(ω) − kI(εII − εI)
2εI cos θI

1

(kIIz − kIz) ε
II
t,y(ω)]eikIzzei(kxx−ωt)

+
kI(εII − εI)
2εI cos θI

2kIz

(kIIz )2 − (kIz)2 ε
II
t,y(ω)eikIIz zei(kxx−ωt). (5)

For the above equation to be valid, we must have17

kI(εII − εI)
2εI cos θI

2kIz

(kIIz )2 − (kIz)2 ≙ 1,
ε
I
i,y(ω) − kI(εII − εI)

2εI cos θI

1

(kIIz − kIz) ε
II
t,y(ω) ≙ 0.

(6)

With medium I serving as the known background with kI = ωnI/c
given, the first equation of Eq. (6) leads to kII = ωnII/c, and the
second yields εIIt,y(ω) ≙ FI−II

t,y ε
I
i,y(ω), with FI−II

t,y ≙ ∥2kIz/(kIz + kIIz )∥≙ 2nI cos θI/(nI cos θI+nII cos θII) that can be identified as the trans-
mission Fresnel coefficient. Both are familiar results we should have
expected. The field of the reflected wave into medium I is from all
induced radiation in medium II,

Er,y(ω, z < 0) ≙ Ep,y(ω, z < 0) ≙ ∫ ∞

0

i2πω2

c2kIz
(εII − εI)εIIt,y(ω)eikIIz z′eikIz ∣z−z′ ∣ei(kxx−ωt)dz′

≙ ikI(εII − εI)
2εI cos θI

∥e−ikIzz ∫ ∞

0

−2kIz
kIz + kIIz

ε
I
i,y(ω)ei(kIIz +kIz)z′dz′∥ei(kxx−ωt)

≙ (kIz − kIIz
kIz + kIIz

)εIi,y(ω)e−ikIzzei(kxx−ωt) ≙ FI−II
r,y ε

I
i,y(ω)e−ikIzzei(kxx−ωt),

F
I−II
r,y ≙ kIz − kIIz

kIz + kIIz
≙ nI cos θI − nII cos θII
nI cos θI + nII cos θII

,

(7)

which is again expected for Fresnel reflection with FI−II
r,y being

the reflection Fresnel coefficient. An important finding of the
above derivation is that ε

II
t,y(ω) is independent of z for z > 0.

This indicates that Fresnel transmission and reflection must have
occurred right at the sharp boundary due to interference between

the incident field and the induced radiation field in the (z > 0)
region.

The same is true for a P-polarized wave incident on the sharp
interface [Fig. 1(a)]. Following a similar derivation of Eqs. (2)–(7)

for the S-polarized wave, we have for the field perpendicular to k̂I in
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the x–y plane

ik̂
I × ∥ik̂I × E⃗II

t,P(ω, z)∥ ≙ −k̂I × ∥k̂I × ε⃗IIt,P(ω)∥eikIIz z′ei(kxx−ωt) ≙ E⃗I
i(ω, z) + E⃗p(ω, z),

E⃗
I
i(ω, z) ≙ ε⃗Ii(ω)eikIzzei(kxx−ωt),

E⃗p(ω, z) ≙ ∫ ∞

0

i2πω2

c2kIz
ik̂

I × ∥ik̂I × (εII − εI)ε⃗IIt,P(ω)eikIIz z∥eikIz ∣z−z′ ∣ei(kxx−ωt)dz′

≙ − ikI(εII − εI)
2εI cos θI

∥eikIzz ∫ z

0
k̂
I × (k̂I × ε⃗IIt,P(ω))ei(kIIz −kIz)z′dz′ + e

−ikIzz ∫ ∞

z
k̂
I × (k̂I × ε⃗IIt,P(ω))ei(kIIz +kIz)z′dz′∥ei(kxx−ωt)

≙ −kI(εII − εI)
2εI cos θI

[ −1
(kIIz − kIz) e

ikIzz +
2kIz

(kIIz )2 − (kIz)2 e
ikIIz z]k̂I × (k̂I × ε⃗IIt,P(ω))ei(kxx−ωt).

(8)

For the above equation to be valid, we must have
kI(εII−εI)
2εI cos θI

2kIz
(kIIz )

2−(kIz)
2

≙ 1 that leads to kII = ωnII/c and

ε
I
i,P(ω) − kI(εII − εI)

2εI cos θI

1

(kIIz − kIz) cos(θI − θII)ε
II
t,P(ω) ≙ 0

that yields

ε⃗
II
t,P(ω) ≙ FI−II

t,P ε
I
i,P(ω),

F
I−II
t,P ≙ 2 sin θII cos θI

sin(θI + θII)cos(θI − θII) ≙
2nI cosθI

nI cosθII + nII cos θI
.

(9)

The field of the reflected P-polarized wave is obtained from

E⃗r,P(ω, z) ≙ ∫ ∞

0

i2πω2

c2kIz
ik̂

I × ∥ik̂I × χ(1)II ε⃗
II
t,P(ω)eikIIz z′∥eikIz(z′−z)ei(kxx−ωt)dz′

≙ − ikI(εII − εI)
2εI cos θI

[e−ikIzz ∫ ∞

0
k̂
I × (k̂I × ε⃗IIt,P(ω))ei(kIIz +kIz)z′dz′ei(kxx−ωt)]

≙ −kI(εII − εI)
2εI cos θI

[ 1

(kIIz + kIz) cos(θI + θII) 2 sin θII cos θI
sin(θI + θII)cos(θI − θII) ε⃗

I
i,P(ω)e−ikIzz]ei(kxx−ωt)

≙ FI−II
r,p ε⃗

I
i,P(ω)e−ikIzzei(kxx−ωt),

F
I−II
r,p ≙ − sin(θII − θI)cos(θI + θII)

sin(θI + θII)cos(θI − θII) ≙
nI cos θII − nII cos θI
nI cos θII + nII cos θI

.

(10)

Again, these are familiar results but indicate that Fresnel transmis-
sion and reflection occur right at the sharp boundary.

In reality, an interface can never be abrupt. The above descrip-
tion needs to be revised by considering an interface layer with a
finite layer thickness, characterized by a structural change over a few
monolayers between two media. The structural difference between
the surface and the bulk of a medium is in their atomic arrange-
ment and electronic distribution. The division between the surface
and the bulk is generally vague since the transition from the bulk

to surface cannot be sharp. A dividing plane between the surface
and the bulk is usually defined vaguely as the plane where the inter-
face and neighboring bulk no longer have appreciable differences in
their structures and properties. Such a definition obviously depends
on the interrogating tool. For example, to probe an interface, x-
ray scattering, photoemission spectroscopy, scanning microscopy,
and ellipsometry all probe different structural properties and there-
fore deal with somewhat different interface layers. In our case of
optical studies, naturally, we must focus on differences in optical
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responses of the surface and bulk that arise from their structural
difference.

A significant structural difference of an interface layer from
the bulk media usually extends over 1–3 monolayers. The cor-
responding optical responses likely extend over 3–5 monolay-
ers. On the molecular basis, the linear optical dielectric constant,

ε ≙ 1 + 4π
↔

χ
(1) ≙ 1 + 4πN⟨↔α(1)⟩, comes from the orientation-

averaged molecular polarizability, ⟨↔α(1)⟩, where N is the molecu-

lar density and
↔

α
(1)

is defined to have molecular interactions with
neighbors, including microscopic local field correction, taken into
account. Because of changes in molecular density and arrange-
ment, ε should vary across an interface but is expected to be of
short range because of short-range molecular interactions. For an
interface layer of 1–3 monolayers with a significant structural dif-
ference from neighboring bulk media, ε (or refractive index n) is
expected to vary over ∼5 monolayers from >90% of the bulk value
(ε I or nI) on the one side to >90% of the bulk value (εII or nII)
on the other side. Measurements on ∼1-nm thin film dielectrics
also indicate that their refractive index is close to 90% of their bulk
value.

Thus, for optical studies, we define the interface layer as a layer
from z = 0− to z = 0+, in which ε is appreciably different from that
of neighboring bulks. The precise locations of 0− and 0+ are not
important because the results do not depend on them as we shall
see. With the finite interface layer, Eq. (2) for the induced radiation
field becomes

E⃗p(ω, r⃗) ≙ (∫ 0+

0−
dz
′
+∫ ∞

0+
dz
′)2πω2

ic2kz
k̂

× ∥k̂ × P⃗(ω, k⃗s, z′)∥ei⃗k⋅(⃗r−z′ ẑ)e−iωtdz′. (11)

For linear transmission and reflection, the radiation field from the
induced P⃗ in the few monolayers of the interface layer is clearly
negligible in comparison with the total induced radiation field from
medium II, and the earlier derivation for Fresnel transmission and
reflection should still apply for E⃗t(z > 0+) and E⃗r(z < 0−), i.e., Fres-
nel transmission occurs at z = 0+ and Fresnel reflection at z = 0−.
The exact location of 0+ and 0− is clearly not important. The field
inside the interface layer is somewhat more complex. The sudden
change in E⃗ (and B⃗) across an abrupt interface should now become
a continuous variation across the finite interface layer. There are
two propagating fields in the interface layer, one forward and one
backward. The forward transmitted wave amplitude continuously
changes from ε⃗Ii at z = 0− to ε⃗IIt at z = 0+, and the incident angle
θI changes to the exit angle θII . The backward reflected wave ampli-
tude continuously changes from ε⃗IIr ≙ 0 with reflection angle θII at
z = 0+ to ε⃗Ir with reflection angle θI at z = 0−. The total field varies
in accordance with variation of ε(z) in the interface layer following
the field continuity rules: the field component along x or y is con-
stant in the layer, i.e., Ex,y ≙ (Et + Er)x,y ≙ (EI

i + EI
r)x,y ≙ (EII

t )x,y
independent of z, and the displacement current component along
z is constant, leading to Ez(z)ε(z) ≙ (Et + Er)zε(z) ≙ (EI

i + EI
r)zεI≙ (EII

t )zεII .

III. SUM-FREQUENCY GENERATION FROM BULK

Sum-frequency generation is a result of radiation from non-
linearly induced polarization in a medium, and the microscopic
theory for the process follows a similar derivation presented in
Sec. II for linear optics. As sketched in Fig. 1(b), two input waves

E⃗I
1 ≙ ε⃗

I
1e

i⃗kI1 ⋅⃗r−iω1t and E⃗I
2 ≙ ε⃗

I
2e

i⃗kI2 ⋅⃗r−iω2t are incident from medium
I. The transmitted fields induce a second-order nonlinear polar-

ization in medium II and the interface layer, P⃗(2)(ω3, k⃗s, z)
≙ ↔χ(2)(ω3, k⃗s, z) : E⃗1(z,ω1)E⃗2(z,ω2), at the sum frequency ω3 = ω1

+ω2 andwave vector k⃗
II
s ≙ k⃗II1 +k⃗II2 . Coherent radiation from the stack

of polarization sheets, P(2)(ω3, k⃗s, z)Δz, from z = 0− to∞ leads to

SFG in both the transmitted and reflected directions. In the multi-
pole expansion form, the nonlinear polarization P⃗(2)(ω3, k⃗) induced
by E⃗1 and E⃗2 in a medium can be written as1,3

P⃗
(2)(ω3, z) ≙ ↔χ(2)d (z) : E⃗1(ω1, z)E⃗2(ω2, z)

+
↔

χ
(2)

q1 (z) : ∇E⃗1(ω1, z)E⃗2(ω2, z)
+
↔

χ
(2)

q2 (z) : E⃗1(ω1, z)∇E⃗2(ω2, z)
−∇ ⋅ ∥↔χ(2)q (z) : E⃗1(ω1, z)E⃗2(ω2, z)∥ (12)

up to the electric-quadrupole (including magnetic-dipole) terms.

Here,
↔

χ
(2)

d (z) and ↔

χ
(2)

qi (z) denote electric-dipole (ED) and electro-

quadrupole (EQ) nonlinear susceptibilities, respectively, with the
former being a rank-3 tensor and the latter being a rank-4 tensor.

On the molecular basis,
↔

χ
(2)′

s are related to nonlinear molecular

polarizabilities
↔

α
(2)

by
↔

χ
(2) ≙ N⟨↔α(2)⟩; again, ↔α(2) is defined to have

neighboring molecular interactions taken into account.
We consider first the ideal case of an abrupt interface between

media I and II. If
↔

χ
(2)

d ≡ ↔

χ
(2)

BD of bulk medium II is nonvanishing,

then in comparison, the bulk
↔

χ
(2)

qi is negligible, and so is the nonlin-

earity of the interface layer. Following the derivation in Eqs. (2)–(4)

with P⃗(2)(ω3, z) ≙ ↔χ(2)BD : E⃗1(ω1, z)E⃗2(ω2, z) replacing P⃗ and having

k⃗II3 �E⃗II(ω3) ∝ P⃗(2)(ω3) so that k̂II3 × [k̂II3 × P⃗(2)(ω3)] ≙ −P⃗(2)(ω3),
we find the SF field generated at z in medium II to be

E⃗
II
B (ω3, z) ≙ i2πω2

3

c2kII3z

↔

χ
(2)

BD : ε⃗
II
1 ε⃗

II
2 e

i(k3xx−ω3t)[∫ z

0
e
i(kII1z+k

II
2z)z

′

e
ikII3z(z−z

′)
dz
′

+ ∫ ∞

z
e
i(kII1z+k

II
2z)z

′

e
ikII3z(z

′−z)
dz
′]

≙ i2πω2
3

c2kII3z

↔

χ
(2)

BD : ε⃗
II
1 ε⃗

II
2 e

i(k3xx−ω3t)
⎡⎢⎢⎢⎢⎣
ei(k

II
1z+k

II
2z)z − eikII3zz

i(kII1z + kII2z − kII3z)
− ei(k

II
1z+k

II
2z)z

i(kII1z + kII2z + kII3z)
⎤⎥⎥⎥⎥⎦
, (13)

which shows that due to interference, the SF field variation with
z in medium II is, unlike the linear transmission and reflection
case, quite complicated. However, at sufficiently large z such that
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practically unavoidable phase fluctuations of the input fields would
make exp[i(kII1z + kII2z)z] vanish, we still obtain the usual expression
for SFG in transmission or in the forward direction as

E⃗
II
Bt(ω3, z) ≙ i2πω2

3

c2kII3z

↔

χ
(2)

BD : ε⃗
II
1 ε⃗

II
2
−ei(kII3zz+kII3xx−ω3t)

i(kII1z + kII2z − kII3z) . (14)

At z = 0, we have the expression for SFG in the reflection direction
as

E⃗
II
Br(ω3, z ≙ 0) ≙ i2πω2

3

c2kII3z

↔

χ
(2)

BD : ε⃗
II
1 ε⃗

II
2
−ei(kII3xx−ω3t)

i(kII1z + kII2z + kII3z) . (15)

We can recognize that E⃗II
Br(ω3, z ≙ 0) is associated with the SF

wave in the reflected direction from the expression of E⃗II
Bt(ω3, z)

at small z,

E⃗
II
B(ω3, z << 1

kII
)

≃ i2πω2
3

c2kII3z

↔

χ
(2)

BD : ε⃗
II
1 ε⃗

II
2 e

i(k3xx−ω3t)[1 − 1 + i(kII1z + kII2z)z
i(kII1z + kII2z + kII3z)]

≃ i2πω2
3

c2kII3z

−↔χ(2)BD

i(kII1z + kII2z + kII3z) : ε⃗
II
1 ε⃗

II
2 e

i(−kII3zz+k3xx−ω3t). (16)

This SF wave in the reflection direction in medium II can be
regarded as an incident wave onto medium I, and as described in
Sec. II, the transmitted SF field into medium I should be given by

E⃗
I
B(ω3, z < 0−) ≙ ↔FII−I ⋅ E⃗II

B (ω3, 0
+)e−ikI3zz+i(kxx−ω3t)

≙ (kII3z/kI3z)↔FI−II ⋅ E⃗II
B (ω3, 0

+)e−i(kI3zz−kxx+ω3t). (17)

We note that there is a reflected SF field at the interface back into
medium II that should be superimposed on E⃗II

Bt(ω3, z) in medium II
to form the total forward propagating SF wave.

For media with inversion symmetry,
↔

χ
(2)

BD ≙ 0, SFG now comes

from the bulk EQ contribution. We can find E⃗II
B (ω3, z) by simply

replacing
↔

χ
(2)

BD in Eq. (13) by the EQ bulk nonlinear susceptibility

↔

χ
(2)

BBQ ≡ ↔χ(2)q1 ⋅ ik⃗II1 +
↔

χ
(2)

q2 ⋅ ik⃗II2 − i(k⃗II1 + k⃗
II
2 ) ⋅ ↔χ(2)q3 , (18)

which is obtained from Eq. (12) by writing P⃗(2)(ω3)with ↔χ(2)d ≙ 0 as
↔

χ
(2)

BBQ : E⃗1(ω1)E⃗2(ω2) after the ∇ operation on E⃗1(ω1) and E⃗2(ω2).
However, as we shall see later, the interfacial part of Eq. (11) for the
SF field will produce an additional EQ term that is effectively a bulk
contribution, which is generally non-negligible and actually insepa-
rable from the interfacial ED contribution because of ambiguity in
dividing ED and EQ terms in the multipole expansion.9,10,13

IV. SUM-FREQUENCY GENERATION
FROM INTERFACE LAYER

We now consider contribution from a finite interface layer to

SFG when
↔

χ
(2)

BD ≙ 0. For the derivation, we still have the induced
polarization given by Eq. (12). As described in Sec. II, we define
the interface layer as the region where the dielectric constant varies
significantly, say, from 90% of εI to 90% of εII over a few monolay-
ers. Accordingly, the z components of the three fields, satisfying the
relation Ez(ωi, z)ε(ωi, z) ≙ EI

z(ωi)zεI(ωi) ≙ EII
z (ωi)zεII(ωi), vary

significantly and very rapidly across the interface, greatly enhanc-
ing the EQ interfacial contribution to SFG, but their phase variation
with z is negligible. We focus on reflected SFG here and define3

fα(ωj, z) ≡ Eα(ωj, z)/EII
0,α(ωj) with EII

0,α ≡ EII
α (ωj, z ≙ 0+) and α = x,

y, or z and use the notations f⃗ E⃗II
0 ≡ x̂fxE

II
0,x + ŷfyE

II
0.y + ẑfzE

II
0,z and

∇(f⃗ E⃗II
0 ) ≡ (∇fx)x̂EII

0.x + (∇fy)ŷEII
0,y + (∇fz)ẑEII

0,z . Because only Ez

varies with z, we have f x = f y = 1. The backward propagating SF
field at r⃗ in medium I generated from the interfacial layer (z = 0− to
0+) can be written as

E⃗
I
Sr(ω3) ≡ i2πω2

3

c2kII3z

↔

F
II−I ⋅ ∫

0+

0−
f⃗ (ω3, z

′) ⋅ P⃗(2)(ω3, k⃗s, z
′)ei⃗kI3 ⋅⃗r−iω3tdz

′ ≙ i2πω2
3

c2kII3z

↔

F
II−I ⋅ ∥↔χ(2)SD +

↔

χ
(2)

SSQ∥E⃗II
10(ω1)E⃗II

20(ω2)ei⃗kI3 ⋅⃗r−iω3t ,

↔

χ
(2)

SD ≙ ∫ 0+

0−
f⃗ (ω3, z

′) ⋅ ↔χ(2)d (z′) : f⃗ (ω1, z
′)f⃗ (ω2, z

′)dz′,
↔

χ
(2)

SSQ ≙ ∫ 0+

0−
f⃗ (ω3, z

′) ⋅ {∥↔χ(2)q1 (z′) : ∇f⃗ (ω1, z
′)f⃗ (ω2, z

′) + ↔

χ
(2)

q2 (z′) : f⃗ (ω1, z
′)∇f⃗ (ω2, z

′)∥ −∇ ⋅ ∥↔χ(2)q3 (z′) : f⃗ (ω1, z
′)f⃗ (ω2, z

′)∥}dz′.

(19)

The Fresnel coefficient
↔

F
II−I

appears on conversion of the field to E⃗I
Sr(ω3) in medium I, as in the case of Eq. (17). The last term in the integral

of Eq. (19) can be transformed as

−∫
0+

0−
f⃗ (ω3, z

′)∇ ⋅ ∥↔χ(2)q3 (z′) : f⃗ (ω1, z
′)f⃗ (ω2, z

′)∥dz′ ≙ −∫ 0+

0−
∇ ⋅ ∥f⃗ (ω3, z

′) ⋅ ↔χ(2)q3 (z′) : f⃗ (ω1, z
′)f⃗ (ω2, z

′)∥dz′
+ ∫

0+

0−
∇f⃗ (ω3, z

′) : ↔χ(2)q3 (z′) : f⃗ (ω1, z
′)f⃗ (ω2, z

′) ∥dz′,
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in which the first integral can be performed to yield −ẑ ⋅ ↔χ(2)q3 (0+)
because f⃗ (0+) ≙ 1 and

↔

χ
(2)

q3
(0−) ≙ 0. We show here that this term

appears rigorously and naturally from the derivation, but in the lit-
erature, its presence seems to have caused much confusion and is
often ignored. Actually, this is a term that cannot be theoretically

and experimentally separated from
↔

χ
(2)

SD because the division of the
ED and EQ terms in the multipole expansion is not unique as we
shall explain in Sec. V, but it is a major part of the overall EQ
contributions. We can see in the above derivation that even if the
interface is composed of an adsorbed molecular layer on a substrate,

the −ẑ ⋅ ↔χ(2)q3 (0+) term still appears but describes an EQ bulk con-

tribution of the substrate. In this respect, it is truly an effective bulk
contribution. The SF field of Eq. (19) now becomes

E⃗
I
Sr(ω3) ≙ i2πω2

3

c2kII3z

↔

F
II−I ⋅ ∥↔χ(2)SD − ẑ ⋅ ↔χ

(2)

q3 (0+) + ↔

χ
(2)

SQ ∥

× E⃗II
10(ω1)E⃗II

20(ω2)ei⃗kI3 ⋅⃗r−iω3t ,

↔

χ
(2)

SQ ≙ ∫ 0+

0−
[↔χ(2)q1 (z′) : ∇f⃗ (ω1, z

′)f⃗ (ω2, z
′)

+
↔

χ
(2)

q2 (z′) : f⃗ (ω1, z
′)∇f⃗ (ω2, z

′) +∇f⃗ (ω3, z
′)

×↔χ(2)q3 (z′) : f⃗ (ω1, z
′)f⃗ (ω2, z

′)]dz′.

(20)

The total reflected SF field is

E⃗
I
r(ω3) ≙ E⃗

I
Sr(ω3) + E⃗

I
Br(ω3), (21)

with E⃗I
Sr(ω3) given by Eq. (20) and E⃗I

Br(ω3) by Eqs. (16) and (17)

with
↔

χ
(2)

BD replaced by
↔

χ
(2)

BQQ.
Several interesting points come out of this derivation. First, −ẑ ⋅

↔

χ
(2)

q3 (0+) appears independent of the interface layer and acts like a

bulk contribution from medium II. Second, inclusion of this term

into the EQ bulk contribution ofmedium II changes
↔

χ
(2)

BBQ

−iΔkIIz
in Eq. (14)

to
↔

χ
(2)

BQ

−iΔkIIz
≡ ↔

χ
(2)

BBQ

−iΔkIIz
− ẑ ⋅ ↔χ(2)q3 , with ΔkIIz ≡ kII1z + kII2z + kII3z and

↔

χ
(2)

BQ ≡ ∥↔χ(2)q1 ⋅ ik⃗II1 +
↔

χ
(2)

q2 ⋅ ik⃗II2 − ik⃗II3 ⋅ ↔χ
(2)

q3 ∥. (22)

Both Eq. (20) for the interface layer and Eq. (22) for the bulk show
that the three fields involved in SFG play equivalent roles as they
should in a three-wave mixing process. Finally, in the expression of
the SF output, all fields have reference to their values at z = 0+ in

medium II through the definition of f⃗ . To express the SF field in
the reflected direction in medium I in terms of the input fields in
medium I, we can use the Fresnel coefficients for transmission from
I to II to transform the fields in medium II to the counterparts in
medium I. Variation of the fields in the interface layer is taken care

by f⃗ instead of modifying the Fresnel coefficients.
We summarize the results here. The SF field generated in the

reflected direction into medium I is given by

E⃗
I
3(ω3, z < 0) = i2πω2

3

c2kI3z

↔

X
(2)

S,eff : ε⃗
I
1(ω1)ε⃗I2(ω2)e−ikI3zz+ik3xx−iω3t ,

↔

X
(2)

S,eff ≡ ↔FI−II(ω3) : ↔χ(2)S,eff :
↔

F
I−II(ω1)↔FI−II(ω2) ≙ ↔FI−II(ω3) :

⎡⎢⎢⎢⎢⎢⎣
↔

χ
(2)

S −
↔

χ
(2)

BQ

iΔkIIz

⎤⎥⎥⎥⎥⎥⎦
:
↔

F
I−II(ω1)↔FI−II(ω2) ≙ ↔X(2)S −

↔

X
(2)

B

iΔkIIz
,

↔

χ
(2)

S ≙ ↔χ(2)SD +
↔

χ
(2)

SQ ,

↔

χ
(2)

SD = ∫
0+

0−
f⃗ (ω3, z) ⋅ ↔χ(2)d (z) : f⃗ (ω1, z)f⃗ (ω2, z)dz,

↔

χ
(2)

SQ ≙ ∫ 0+

0−
∥f⃗ (ω3, z) ⋅ ↔χ(2)q1 (z) : ∇f⃗ (ω1, z)f⃗ (ω2, z) + f⃗ (ω3, z) ⋅ ↔χ(2)q2 (z) : f⃗ (ω1, z)∇f⃗ (ω2, z) +∇f⃗ (ω3, z) ⋅ ↔χ(2)q3 (z) : f⃗ (ω1, z)f⃗ (ω2, z)∥dz,

↔

χ
(2)

BQ ≡ ↔χ(2)q1 ⋅ ik⃗II1 +
↔

χ
(2)

q2 ⋅ ik⃗II2 − ik⃗II3 ⋅ ↔χ
(2)

q3 ,

F
I−II
xx

2εIk
II
z

εIIkIz + εIkIIz
, F

I−II
yy ≙ 2kIz

kIz + kIIz
, F

I−II
zz ≙ 2εIk

I
z

εIIkIz + εIkIIz
.

(23)

With Ii ≙ (nic/2π)∣E⃗I
i(ωi)∣2, the intensity of the reflected SFG takes

the form

I(ω3) ≙ ⎛⎝
8π3nIω4

3

nI1n
I
2c

3(kIz)2
⎞
⎠∣ê ⋅

↔

X
(2)

S,eff :ê1ê2∣2I1(ω1)I2(ω2). (24)

A note of caution is in order here. Because
↔

χ
(2)

SD is from ED mono-
layers that likely occupy only a fraction of the interface layer and

usually situate toward medium I, we have
↔

χ
(2)

d (z) in the integral of
↔

χ
(2)

SD significant only in a narrow range close to z = 0− with associated
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f⃗ (ωi, z) close to f⃗ (ωi, z ≙ 0−). This effectively reduces the Fresnel

coefficients on
↔

χ
(2)

SD as suggested earlier in the three-layer model of

SFG from an interface.20

V. COMPARISON OF ELECTRIC QUADRUPOLE BULK
CONTRIBUTION WITH ELECTRIC DIPOLE
AND QUADRUPOLE CONTRIBUTIONS TO SUM
FREQUENCY GENERATION

We discuss here the relative importance of the EQ contribu-

tions,
↔

χ
(2)

SQ and
↔

χ
(2)

BQ , with respect to
↔

χ
(2)

SD in SFG and also what can
be separately measured and what cannot. For SFG to be a surface

spectroscopy tool, we are interested in extracting
↔

χ
(2)

SD from mea-
surement, particularly, because current theoretical calculations to

simulate surface SFG spectra are limited to
↔

χ
(2)

SD . In many cases,
↔

χ
(2)

SD can, indeed, be distinguished from
↔

χ
(2)

SQ and
↔

χ
(2)

BQ in the mea-

surement. For example,
↔

χ
(2)

SD may have its characteristic spectrum

clearly different from
↔

χ
(2)

SQ and
↔

χ
(2)

BQ , or the interface layer is known
to possess highly ordered, strongly polar monolayers of molecules.

In many other cases, however, the spectra of
↔

χ
(2)

SD and
↔

χ
(2)

SQ /↔χ
(2)

BQ are
not distinguishable especially if they come from the same molecu-

lar subgroup, and
↔

χ
(2)

SQ /
↔

χ
(2)

BQ may not be negligible although many
reports in the literature simply assumed they were. In the fol-
lowing, we provide some physical argument and detailed descrip-

tion for estimation of
↔

χ
(2)

SQ and
↔

χ
(2)

BQ in comparison with
↔

χ
(2)

SD ,
considering that all of them originate from the same molecular
subgroup.

We realize that
↔

χ
(2)

S,eff ≙ ↔

χ
(2)

SD +
↔

χ
(2)

SQ − ↔

χ
(2)

BQ /iΔkIIz is the quan-

tity usually measured in the SFG experiment with known Fresnel
coefficients, but its expression in Eq. (18) can be rewritten as

↔

χ
(2)

S,eff ≙ ↔χ(2)SS +
↔

χ
(2)

BBQ/iΔkIIz ,
↔

χ
(2)

SS ≙ ↔χ(2)SD +
↔

χ
(2)

SQ − ẑ ⋅ ↔χ
(2)

q3 ,

↔

χ
(2)

BBQ ≙ ↔χ(2)BQ + ẑ ⋅ ↔χ(2)q3 ≙ ↔χ(2)q1 ⋅ ik⃗II1 +
↔

χ
(2)

q2 ⋅ ik⃗II2 − i(k⃗II1 + k⃗
II
2 ) ⋅ ↔χ(2)q3

(25)

such that
↔

χ
(2)

SS is independent of wave vectors, but
↔

χ
(2)

BBQ is not. Thus,

measurement with two different sets of k⃗II1 and k⃗II2 allows separate

deduction of
↔

χ
(2)

SS and
↔

χ
(2)

BBQ. In the Appendix, it is shown that with
different beam polarization combinations, differences of some ten-

sor elements of
↔

χ
(2)

qi in
↔

χ
(2)

BBQ, namely, χ
(2)

q1,α(β̄α)β
− χ(2)

q3,(ᾱβ)βα
, χ
(2)

q2,αβ(β̄α)

−χ(2)
q3,(ᾱβ)βα

, and χ
(2)

q1,α(β̄α)β
−χ(2)

q2,αβ(ᾱβ)
in an explicit tensorial notation,

can be extracted from measurement to provide estimated values for
↔

χ
(2)

qi , but
↔

χ
(2)

BBQ can always be made small compared to
↔

χ
(2)

qi by setting

the angle between k⃗II1 and k⃗II2 small (vanished if k⃗II1 and k⃗II2 are paral-

lel).15 We can therefore neglect
↔

χ
(2)

BBQ in our consideration and focus

on
↔

χ
(2)

S,eff ≙ ↔χ(2)SS .

We are now left with a comparison between the ED and EQ

contributions in
↔

χ
(2)

SS . We first compare
↔

χ
(2)

SQ with χ
(2)
SD in

↔

χ
(2)

SS . We

can simplify the expression of
↔

χ
(2)

SQ in Eq. (20), knowing that only

the spatial variation of fz with z is nonvanishing (∇f⃗ ≙ ẑ∂fz/∂z).
In an explicit tensorial notation, the only nonvanishing EQ terms in
↔

χ
(2)

SQ are those of χ
(2)

q1,α(z̄z)α
, χ
(2)

q2,αα(z̄z)
, and χ

(2)

q3,(z̄z)αα
, where the brack-

eted z̄z in the subindices denote the EQ field component and its gra-
dient along z. With fz(ωi, z) ≡ Ez(ωi, z)/EII

0,z(ωi) ≙ εII(ωi)/ε(ωi, z)
and ∂f z(ωi)/∂z = −[εII(ωi)/ε

2(ωi, z)]∂ε(ωi)/∂z, each of the three

nonvanishing
↔

χ
(2)

qi terms can be expressed in terms of ε(ωi, z). We

have, for example,

∫
0+

0−
fy(ω3)χ(2)q1,y(z̄z)y

(z)∂fz(ω1)
∂z

fy(ω2)dz

≙ ∫ 0+

0−
χ
(2)

q1,y(z̄z)y
(z)−εII(ω1)

ε2(ω1, z)
∂ε

∂z
dz.

If we assume that χ
(2)

q1,y(z̄z)y
(z) has a similar z dependence across the

interface layer as ε(ωi, z) [or χ
(1)(ω, z)], i.e.,

χ
(2)

q1,y(z̄z)y
(z) ≙ χ(2)

q1,y(z̄z)y
(0+)

×{1 − ∥εII(ω1) − ε(ω1, z)∥/∥εII(ω1) − εI(ω1)∥},
we find

∫
0+

0−
χ
(2)

q1,y(z̄z)y
(z)−εII(ω1)

ε2(ω1, z)
∂ε

∂z
dz

≙ χ(2)
q1,y(z̄z)y

(0+)εII(ω1)[ εI − εII
εIεII

+
1

εI
+
log(εII/εI)
εI − εII ]. (26)

The first term comes from field variation, or f z(ωi, z), with z, and the

next two terms come from additional spatial variation of χ
(2)

q1,y(z̄z)y
(z)

with z. We should note that the choice of 0− and 0+ to define the
interface layer is not critical and does not depend on any specific
model. As long as the span from 0− to 0+ covers nearly the whole
range in which optical responses vary significantly due to structure
variation, the final result is the same.

For εI = 1 and εII = 2.7, we obtain from Eq. (26)

∫
0+

0−
fx(ω3)χ(2)q1,y(z̄z)y

(z)∂fz(ω1)
∂z

fy(ω2)dz ≙ −0.6χ(2)q1,y(z̄z)y
(0+).

A larger difference between εI and εII leads to a larger nega-
tive value as expected. On the other hand, this quantity van-
ishes if εI = εII as the field gradient disappears. Similarly,

we obtain ∫ 0+

0− fy(ω3)χ(2)q2,yy(z̄z)
(z)fy(ω1)∂fz(ω2)

∂z
dz ≙ −0.6χ(2)

q2,yy(z̄z)
(0+)

and ∫ 0+

0−
∂fz(ω3)

∂z
χ
(2)

q3,(z̄z)yy
(z)fy(ω1)fy(ω2)dz ≙ −0.6χ(2)q3,(z̄z)yy

(0+).
The expression of χ

(2)
SS for the SSP polarization combination as

a representative case is

(χ(2)SS )SSP ≙ χ(2)SD,yyz + χ
(2)

SQ,yy(z̄z)
− χ(2)

q3,(z̄y)yz

≙ χ(2)SD,yyz − 0.6χ(2)q2,yy(z̄z)
− χ(2)

q3,(z̄y)yz
. (27)
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We expect ∣χ(2)q2 ∣ < ∣χ(2)q3 ∣ from their microscopic expression. There-

fore, to see if χ
(2)
SD dominates over the EQ contribution χ

(2)
SQ and χ

(2)
q3

in χ
(2)
SS , we only need to compare χ

(2)
SD with χ

(2)
q3 .

It turns out that χ
(2)
SD and χ

(2)
q3 actually are not separable both

theoretically and experimentally, as has been pointed out repeat-
edly in the literature.9,10 This is because division of ED and EQ
terms in the multipole expansion is intrinsically not unique and
depends, for example, on the position of the molecular center cho-
sen on molecules.13 A group of molecules appearing to have only
EQ polarization with a particular choice of molecular center may
appear to have partly EQ polarization and partly ED polarization

when the center is shifted. Here, we make the division of χ
(2)
SD and

χ
(2)
q3 unique by defining χ

(2)
SD as solely from molecular layers with

polar orientation and χ
(2)
qi (with ⟨α(2)

d
⟩ ≙ 0) from regions with

centro-symmetric molecular orientation distribution and χ
(2)
d
≙ 0,

but χ
(2)
SD and χ

(2)
q3 are still inseparable in measurement. To see if χ

(2)
SD

dominates over χ
(2)
q3 , we have to resort to other means to get an

estimate on χ
(2)
q3 . As described in the Appendix, we can separately

measure, for example, χ
(2)

q2,αβ(β̄α)
−χ(2)

q3,(ᾱβ)βα
, and knowing that all χ

(2)
qi

elements are likely to have the same order of magnitude, we assert

∣χ(2)
q3,(ᾱβ)βα

∣ ∼ ∣χ(2)
q1,α(β̄α)β

−χ(2)
q3,(ᾱβ)βα

∣. It is also seen in the Appendix that
we are not able to measure individual elements of χ

(2)
qi ; this is again

because of ambiguity in defining EQ susceptibilities: values of indi-

vidual χ
(2)
qi elements would change if the assigned molecular center

is shifted, but the difference of two χ
(2)
qi elements would not.13

Because χ
(2)
SD and χ

(2)
q3 are characteristic of molecules and, for

different materials, molecular arrangements are different, we can
only provide a qualitative description in comparing them. Gener-

ally, χ
(2)
qi arises from two sources, one from molecular arrangement

and the other from electronic response of individual molecules. It
has been shown that the former vanishes if the molecular arrange-
ment has inversion symmetry.1 Thus, for isotropic or cubic media,

both χ
(2)
SD and χ

(2)
q3 are directly related to their respective ED and

EQ molecular polarizabilities,
↔

χ
(2)

SD ≙ ∫ 0+

0− N
↔

α
(2)

d dz ≙ N
↔

α
(2)

d ηdMl

and ẑ ⋅ ↔χ(2)q3 ≙ Nẑ ⋅ ⟨↔α(2)q3 ⟩ ≙ Nẑ ⋅ ↔α(2)q3 ηq, where l is the thick-

ness of a monolayer, M is the effective number of ED monolay-

ers, ⟨↔α(2)d ⟩ ≡ ηd
↔

α
(2)

d , and ⟨↔α(2)q3 ⟩ ≡ ηq
↔

α
(2)

q3 . (Because
↔

α
(2)

d refers to

polarizability per molecule andNMl is the surface molecular density

in an effective layer of thickness of Ml in which ⟨↔α(2)d ⟩ is signifi-
cantly different from zero, we have

↔

χ
(2)

SD ≙ NMl⟨↔α(2)d ⟩). By defining
a ≡ ẑ ⋅ ↔α(2)q3 /↔α(2)d , we have χ

(2)
SD /χ(2)q3 ≙ Mlηd/aηq. We expect ηd/ηq≫ 1 if the surface layer is highly ordered in orientation, but the

bulk is random. As an example, consider an isotropic material with
oriented polar end groups of molecules in the interface layer. We

assume, for simplicity, that
↔

α
(2)

d is dominated by α
(2)

d,ζζζ
and

↔

α
(2)

q3 by

α
(2)

q3,ζζζζ
in the molecular coordinates of (ξ, η, ζ). With θ being the

angle between ζ̂ and ẑ, we have

ηd ≙
⟨α(2)

d
⟩
d,zzz

α
(2)

d,ζζζ

≙ ⟨(ẑ ⋅ ζ̂)(ẑ ⋅ ζ̂)(ẑ ⋅ ζ̂)⟩d ≙ ⟨cos3θ⟩d,

ηq ≙
⟨α(2)q3 ⟩q,(z̄z)zz

α
(2)

q,ζζζζ

≙ ⟨(ẑ ⋅ ζ̂)(ẑ ⋅ ζ̂)(ẑ ⋅ ζ̂)(ẑ ⋅ ζ̂)⟩q ≙ ⟨sin2θ cos2θ⟩q.
We find ηq = 2/15 for an isotropic orientation distribution and
ηd = 1 and ∼0.9 for an ED layer of molecules, respectively, with a
δ(θ = 0) orientation distribution and with a uniform distribution
of ζ̂ about ẑ from θ = 0 to π/6. In such cases, we would expect

χ
(2)
SD /χ(2)q3 ≙ Mlηd/aηq >> 1 if Ml/a > 1. Usually, M = 1 or 2, l is

somewhat larger than the size of the molecule, and a is a characteris-
tic size of the molecular subgroup. For the samemolecular subgroup

on different molecules of different sizes, χ
(2)
SD /χ(2)q3 is expected to be

larger for larger molecules. Unfortunately, there is no general way
to evaluate a for various types of molecular subgroups. We have to

resort to practical experience for a comparison of ∣χ(2)SD ∣ and ∣χ(2)q3 ∣.
For SF vibrational spectroscopy, we can use the dangling OH

stretch of the vapor/ice interface and CH3 and CH2 stretches of a
monolayer of hydrocarbons as references. For the SSP-SFG process,

for example, the former has ∣χ(2)SD ∣ ≙ 1 × 10−21 m2/V2, and the latter

has ∣χ(2)SD ∣ ≙ (2 − 3)× 10−21 m2/V2.21,22 Other stretch modes of small
molecular groups such as COx, NOx, and NHx have roughly the

same value of ∣χ(2)SD ∣. For molecular groups with weaker polarity and

broader orientation distribution, ∣χ(2)SD ∣ is smaller. In contrast, ∣χ(2)SQ ∣
for OH stretches (of water)23 and CHx stretches

22 are ∼1.1 × 10−22

m2/V2 and ∼(1.5 − 3) × 10−22 m2/V2, respectively. Nonresonant

∣χ(2)qi ∣ values of small molecules with all frequencies in the near IR

or visible are about ∼1 × 10−22 m2/V2.24 For molecular groups with

larger electron orbits, ∣χ(2)qi ∣ is expected to be larger although ∣χ(2)SD ∣
may also increase. Overall, onmaterials with weak

↔

α
(2)

d (weaker than
that of the dangling OH stretch), small ηd (larger spread of polar
orientation), more delocalized electron orbits, and molecular sub-
groups comparable in size to the whole molecule, we need to be

cautious that χ
(2)
SD may not dominate over χ

(2)
q3 in χ

(2)
SS or χ

(2)
S,eff

. Eval-

uation of χ
(2)
q3 or employment of other approaches to assure surface

specificity of reflected SFG is advised.

VI. SUMMARY AND PERSPECTIVE

A rigorous microscopic calculation is presented to show that
linear optical transmission and reflection result from interference
between the incoming wave and the induced electric-dipole radi-
ation wave in transmitting through a semi-infinite medium, and
the Fresnel formulas apply right at the interface. The derivation is
extended to sum-frequency generation in a semi-infinite nonlinear
optical medium with a finite interface layer. It describes how SFG
evolves in the medium and puts the basic theory of SFG on a more
solid ground. Electric-quadrupole (including magnetic-dipole) con-
tribution to SFG that could be important in media with inversion
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symmetry is properly formulated and thoroughly discussed. It can
be decomposed into two parts, one depending on the wave vec-
tors of the inputs and the other not. The former, belonging to the
bulk medium, is adjustable by input beam geometry to allow sepa-
rate determination of surface and bulk nonlinear susceptibilities of
SFG. It can be made negligible compared with the latter. The lat-
ter, consisting of an EQ contribution from the interface layer and
an effective bulk EQ contribution, appears together with the surface
electric dipole contribution in the effective surface nonlinear suscep-
tibility to be measured. The interface layer is naturally defined by the
region where the optical dielectric constant varies appreciably, but a
precise definition of the region is not needed. The interface EQ con-
tribution to SFG can be described in terms of variation of the optical
dielectric constant across the interface. Because of the high field gra-
dient along the surface normal, it is comparable to or larger than the
bulk EQ contribution. The interface ED contribution, usually from
1 to 2 monolayers, may or may not be significantly larger than the
EQ contribution.

In comparing various contributions to SFG, it is seen that the
bulk EQ contribution can be made negligible, but there is still an
effective EQ term intrinsically inseparable from the surface ED con-
tribution in measurement. This term can be considered as repre-
sentative of all EQ contributions since it has a value comparable to
or larger than other EQ contributions. For SFG to be ED surface-
specific, we only need to see if this term is dominated over by the
surface ED contribution. Unfortunately, for this comparison, there
are no general rules one can refer to.We have to resort to established
cases as references, such as dangling OH and terminal CHx stretch
modes on surfaces in SF vibrational spectroscopy that are known to
be surface-specific. SFG on amaterial with a polar-oriented interface
layer specified by similar molecular polarity, polar orientation distri-
bution, and size of molecules or subgroups of molecules is likely to
be surface-specific.

Now that we have a clear picture of the basic theory of SFG,
we can make a few general remarks. We are interested in employ-
ing SFG as a surface tool, and the most disturbing problem often
encountered is that the SF signal contains a part arising from non-
surface-specific EQ contribution of the participatingmedium.While
the EQ contribution could be discriminated from the surface ED
contribution inmany cases, it could not in many other cases. Its neg-
ligence without justification could lead to erroneous interpretation
of experimental results and cause confusion and controversy. The
OH stretching spectra of ice interfaces and the OH bending mode of
vapor/water interfaces are good examples. In this respect, molecular
dynamics simulations considering only the surface ED contribution
cannot help.25 One would hope that in the future, such simula-
tions could be extended to provide information about whether EQ
contribution is negligible or not.

SF spectroscopy has already been established as a surface-
specific tool in many applications without the need of worrying
about complication caused by EQ contribution. We discuss here
only cases that may suffer from non-negligible EQ contribution. The
obvious cases are interfaces of neat liquids and solids, when their
surface and bulk spectra are not clearly distinguishable. To be sure
that a SF spectrum is dominated by interfacial ED contribution, one
would have to be able to estimate the EQ contribution separately
by transmission SFG or resort to other means such as perturbing
the interface and see if the observed spectrum drastically changes.

Application of SFG to probe buried interfaces is particularly vulner-
able to possible EQ contribution because the input beams unavoid-
ably have a long interaction length in the bulk medium to generate
an unwanted SF signal. A special beam or sample arrangement is
required to avoid the problem. For example, in the polymer case, a
reflected SF spectrum from a polymer/metal interface can be identi-
fied to be from the interface if it does not vary with the thickness of
the polymer film on the metal.26

As a surface analytic tool, SFG also faces similar ambiguity in
dividing the surface and bulk as other surface techniques. However,
as we have seen, in comparison with x-ray diffraction and scanning
tunneling microcopy, SFG enjoys the advantage of essentially no
dependence on surface/bulk division and model fitting in the data
analysis. The basic theory described in this paper applies equally to
both the surface SF electronic and surface SF vibrational spectro-
scopies, providing information on surface molecular and electronic
structures, respectively. So far, the reported surface SF electronic
spectroscopy work has been relatively rare presumably because cur-
rent researchers are less interested in surface electronic functions of
materials. The situation, however, may change as interfacial elec-
tronic properties of condensed matter, such as surface topolog-
ical effects and surface-induced superconductivity, have recently
attracted more attention. On crystalline solids whose electronic and
phonon properties are described in terms of band structure and band
states, their optical transitions and responses are generally charac-

terized by k⃗ dependent optical constants. In such cases, the EQ con-
tribution is naturally taken into consideration by the linear depen-

dence of the optical constants on k⃗. Details on how it affects surface
nonlinearity still need to be worked out.

Surface SF spectroscopy has been proven to be an effective
and versatile tool for probing adsorbates at all types of interfaces
accessible by light, often without the need to worry about com-
plication from EQ contribution. SF spectroscopic studies on func-
tions and properties of adsorbed molecular contaminants, macro-
molecules, and biomolecules at various interfaces, in situ probing
of electronic and optoelectronic device interfaces during operation,
and surface reactions of adsorbates in different environments are
clearly areas ready to be explored more in depth. Difficulties that
impede advances in these areas are probably related to the com-
plexity of experimental setup, assignment of spectral features, and
absence of the algorithm for the spectral analysis, all of which hope-
fully could be improved in the near future. A unique feature of
SF vibrational spectroscopy is its ability to provide information
about polar orientation of surface molecules or molecular subgroups
through measurement of ratios of their surface ED nonlinear sus-
ceptibility elements. This has not been covered in our discussion.
We should, however, remark that usually less than two such ratios
are measured by different polarization combinations of SFG, per-
mitting determination of only two parameters in an orientation dis-
tribution function. This deficiency indicates that accurate measure-
ment of the ratios cannot be of much help to provide more infor-
mation on orientation although how to measure the ratios accu-
rately has been an issue addressed by a number of reports in the
literature.

A major advancement of surface SF spectroscopy probably
would come from further improvement of SFG techniques, such
as extension of the spectral range to mid-IR and THz, construc-
tion of portable experimental setups, and enhancement of detection
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sensitivity. What we advertise here is that conformation of the spectral analysis and interpretation to the basic theory by researchers in the
field are also crucial.

APPENDIX: NONVANISHING NONLINEAR SUSCEPTIBILITY ELEMENTS EXTRACTABLE FROM SFG
MEASUREMENTS WITH VARIOUS BEAM POLARIZATION COMBINATIONS

Consider the SFG process described in Fig. 1. If medium II is isotropic or cubic, the nonvanishing surface nonlinear susceptibility

elements of
↔

χ
(2)

SS due to structural symmetry are (χ(2)SS,zαα, χ
(2)
SS,αzα, χ

(2)
SS,ααz , χ

(2)
SS,zzz) given here in an explicit tensorial notation with the Cartesian

coordinates. Each
↔

χ
(2)

qi tensor in the bulk EQ nonlinear susceptibility
↔

χ
(2)

BBQ of Eq. (22) has only two independent, nonvanishing elements,

χ
(2)

q1,α(β̄α)β
≙ χ(2)

q1,α(ᾱβ)β
, χ
(2)

q1,α(β̄β)α
, and χ

(2)

q1,α(ᾱα)α
≙ χ(2)

q1,α(β̄α)β
+ χ
(2)

q1,α(ᾱβ)β
+ χ
(2)

q1,α(β̄β)α
,

χ
(2)

q2,αβ(ᾱβ)
≙ χ(2)

q2,αβ(β̄α)
, χ
(2)

q2,αα(β̄β)
, and χ

(2)

q1,α(ᾱα)α
≙ χ(2)

q2,αβ(ᾱβ)
+ χ
(2)

q2,αβ(β̄α)
+ χ
(2)

q2,αα(β̄β)
,

χ
(2)

q3,(ᾱβ)βα
≙ χ(2)

q3,(β̄α)αβ
, χ
(2)

q3,(ᾱα)ββ
, and χ

(2)

q3,(ᾱβ)αβ
≙ χ(2)

q3,(β̄α)βα
+ χ
(2)

q3,(β̄α)αβ
+ χ
(2)

q3,(ᾱα)ββ
,

with α = x, y, or z and α ≠ β. Here, the bracketed sub-indices indicate
the EQ field component with the subindex under a bar referring to
the direction of the associated wave vector component. The surface
nonlinear susceptibility measured in SFG is, from Eq. (25),

(χ(2)
S,eff
)αβγ ≡ (χ(2)SS )αβγ −

(χ(2)BBQ)αβγ
iΔkIIz

. (A1)

For SSP polarization combination with k⃗II2 in the x–z plane, we
have15

(χ(2)
S,eff
)SSP ≙ (χ(2)SS )yyz −

(χ(2)BBQ)yyz(P̂ ⋅ ẑ) + (χ(2)BBQ)yyx(P̂ ⋅ x̂)
iΔkIIz

,

(χ(2)BBQ)yyz ≙ χ(2)q1,y(z̄y)z
(ikII1,z) + χ

(2)

q2,yy(z̄z)
(ikII2,z)− i(kII1,z + k

II
2,z)χ(2)q3,(z̄y)yz

,

(χ(2)BBQ)yyx ≙ χ(2)q1,y(x̄y)z
(ikII1,x)+ χ(2)q2,yy(x̄x)

(ikII2,x) − i(kII1,x + kII2,x)χ(2)q3,(x̄y)yx
.

(A2)

With kII2,x/kII2,z ≙ sin θII2 /cos θII2 , P̂ ⋅ x̂ ≙ cos θII2 , and P̂ ⋅ ẑ ≙ −sin θII2 , we
find

(χ(2)
S,eff
)SSP ≙ (χ(2)SS )yyz +

kII2,xcos θ
II
2

kII2,zΔk
II
z

[(χ(2)
q1,y(z̄y)z

− χ(2)
q3,(z̄y)yz

)kII1,z

+ (χ(2)
q2,yy(z̄z)

− χ(2)
q3,(z̄y)yz

)kII2,z] − cos θII2
ΔkIIz

× ∥(χ(2)
q1,y(x̄y)x

− χ(2)
q3,(x̄y)yx

)kII1,x + (χ(2)q2,yy(x̄x)
− χ(2)

q3,(x̄y)yx
)kII2,x∥

≙ (χ(2)SS )yyz + cos θII2
kII2,zΔk

II
z

(χ(2)
q1,α(β̄α)β

− χ(2)
q3,(ᾱβ)βα

)(k⃗II1 × k⃗II2 ) ⋅ ŷ.
(A3)

The above equation shows that if k⃗II1 ∣∣k⃗II2 , then the χ
(2)
BBQ part van-

ishes, and (χ(2)
S,eff
)
SSP
≙ (χ(2)SS )yyz . On the other hand, if kII2,x

≙ 0, then (χ(2)SS )yyz ≙ 0, and (χ(2)
S,eff
)
SSP
≙ −(χ(2)BBQ)ijk/iΔkIIz

∝ (χ(2)
q1,α(β̄α)β

− χ(2)
q3,(ᾱβ)βα

). Similarly, for SPS and PSS polarization

combinations, we can show

(χ(2)
S,eff
)SPS ≙ (χ(2)SS )yzy + cos θII1

kII1,zΔk
II
z

(χ(2)
q2,αβ(ᾱβ)

− χ(2)
q3,(ᾱβ)βα

)(k⃗II2 × k⃗II1 ) ⋅ ŷ,
(χ(2)

S,eff
)PSS ≙ (χ(2)SS )zyy + cos θII3(kII1,z + kII2,z)ΔkIIz (χ

(2)

q1, α(β̄α)β
− χ(2)

q2,αβ(ᾱβ)
)

× ∥k⃗II2 × (k⃗II1 + k⃗
II
2 ) ⋅ ŷ∥.

(A4)

Again, if k⃗II1 ∣∣k⃗II2 , we have (χ(2)
S,eff
)SPS ≙ (χ(2)SS )yzy, and (χ(2)S,eff

)
PSS≙ (χ(2)SS )zyy. If we set kII1,x ≙ 0 and kII3,x ≙ 0 for SPS

and PSS polarization combinations, respectively, we can measure

(χ(2)
q2,αβ(ᾱβ)

− χ(2)
q3,(ᾱβ)βα

) and (χ(2)
q1, α(β̄α)β

− χ(2)
q2,αβ(ᾱβ)

). Note that for

individual χ
(2)
qi elements, we can only determine their values to a

common arbitrary constant. This is because of intrinsic ambiguity in
dividing ED and EQ terms in the multipole expansion, as discussed
in Sec. V.

The description here shows that (χ(2)SS )yyz , (χ(2)SS )yzy, (χ(2)SS )zyy,(χ(2)
q1,α(β̄α)β

− χ
(2)

q3,(ᾱβ)βα
), (χ(2)

q2,αβ(ᾱβ)
− χ

(2)

q3,(ᾱβ)βα
), and (χ(2)

q1, α(β̄α)β

− χ(2)
q2,αβ(ᾱβ)

) can be separately measured. In principle, it is also pos-

sible to deduce frommeasurement (χ(2)SS )zzz and other differences of
↔

χ
(2)

qi tensor elements, for example, (χ(2)
qi, α(ᾱα)α

− χ(2)
qj,(ᾱα)αα

), using sets
of selected k⃗IIi with PPP polarization combination, but the procedure

is muchmore complicated. Since we are not really interested in
↔

χ
(2)

BBQ
for characterization of materials, we will not go into more detailed

discussion. By keeping the angle between k⃗II1 and k⃗II2 small, we

can make −(χ(2)BBQ)αβγ/iΔkIIz negligible in comparison with (χ(2)SS )αβγ,
especially in reflected SFG because of the large ΔkIIz . In transmit-

ted SFG with ∣ΔkIIz ∣ << ∣kIIiz ∣, the signal from −(χ(2)BBQ)αβγ/iΔkIIz can

be strong as long as the angle between k⃗II1 and k⃗II2 is not small. For

J. Chem. Phys. 153, 180901 (2020); doi: 10.1063/5.0030947 153, 180901-11

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

PERSPECTIVE scitation.org/journal/jcp

media of hexagonal symmetry, the above results are approximately
valid if optical responses parallel and perpendicular to the uni-axis
are not very different.

The
↔

χ
(2)

qi tensor elements for a molecular group are likely of the

same order of magnitude. This is particularly true for SF vibrational
spectroscopy with ω2 near vibrational resonance and ω1 ∼ ω3. From
themicroscopic expression of EQ nonlinear susceptibility, we expect

χ
(2)

q1,α(β̄α)β
∼ χ

(2)

q3,(ᾱβ)βα
, but ∣χ(2)

q2,αβ(ᾱβ)
∣ < ∣χ(2)

q3,(ᾱβ)βα
∣ because the EQ

electronic orbit of χ
(2)

q2,αβ(ᾱβ)
is connected to the ground electronic

state and that of χ
(2)

q1,α(β̄α)β
and χ

(2)

q3,(ᾱβ)βα
to the excited states.
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