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Abstract 
The classical power law relaxation, i.e. relaxation of current with inverse of 
power of time for a step-voltage excitation to dielectric—as popularly known 
as Curie-von Schweidler law is empirically derived and is observed in several 
relaxation experiments on various dielectrics studies since late 19th Century. 
This relaxation law is also regarded as “universal-law” for dielectric relaxa-
tions; and is also termed as power law. This empirical Curie-von Schewidler 
relaxation law is then used to derive fractional differential equations describ-
ing constituent expression for capacitor. In this paper, we give simple mathe-
matical treatment to derive the distribution of relaxation rates of this Cu-
rie-von Schweidler law, and show that the relaxation rate follows Zipf’s power 
law distribution. We also show the method developed here give Zipfian power 
law distribution for relaxing time constants. Then we will show however ma-
thematically correct this may be, but physical interpretation from the obtained 
time constants distribution are contradictory to the Zipfian rate relaxation 
distribution. In this paper, we develop possible explanation that as to why 
Zipfian distribution of relaxation rates appears for Curie-von Schweidler Law, 
and relate this law to time variant rate of relaxation. In this paper, we derive 
appearance of fractional derivative while using Zipfian power law distribution 
that gives notion of scale dependent relaxation rate function for Curie-von 
Schweidler relaxation phenomena. This paper gives analytical approach to get 
insight of a non-Debye relaxation and gives a new treatment to especially 
much used empirical Curie-von Schweidler (universal) relaxation law. 
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1. Introduction 

The Curie-von Schweidler law relates to relaxation current in dielectric when a 
step DC voltage is applied and is given by ( ) ni t t−

, where 0t >  and the pow-
er (exponent) i.e. n is called relaxation constant or decay constant, where 
0 1n< <  [1] [2] [3] [4]. We note that n is non-integer. This relaxation law is 
taken as universal law, at least for dielectric relaxations. Whereas we are used to 
Debye type of relaxation i.e. exponential decay law given by ( ) 0e ti t τ−


 or 

( ) 0e ti t λ−


 where 0τ  is the relaxation time constant while 0λ  denotes the 
relaxation rate of the process with 1

0 0λ τ −= . The radioactive decay is example of 
ideal Debye law where the exponential decay is governed by “one-lumped” decay 
constant i.e. 0λ . The Curie-von Schweidler behavior has been observed in 
many instances, since late 19th Century, such as those shown in dielectric studies 
and experiments [3]-[10]. 

This power law relaxation of the non-Debye type i.e. ( ) ni t t−
 has been in-

terpreted as a many-body problem but can also be formulated as an infinite 
number of independent relaxing bodies meaning infinite number of time con-
stants τ  or relaxation rates λ  varying from near zero to infinity [11] [12]. 
The observations of power law relaxation are also made in the experiments and 
studies with super-capacitors [13] [14] [15] [16] [17]. These studies also indicate 
the fractional calculus is used as constituent expression to describe su-
per-capacitors. The use of empirical power law i.e. Curie-von Schweidler Law of 
relaxation of current to a step input of voltage to get constituent relation with 
fractional derivative was proposed in [5]. Apart from relaxation of current decay 
in dielectrics and super-capacitors, the power law type or non-Debye relaxation 
is observed in visco-elastic experiments strain relaxation in [18] [19] [20] [21].  

In this paper, we are giving the derivation of the distribution of relaxation 
rates ( λ ) particularly for Curie-von Schweidler law and we observe the distribu-
tion nature as Zipf’s distribution [22]-[27]. We try to reason out as to why this 
distribution of relaxation rates takes Zipfian nature. We also show that Cu-
rie-von Schweidler law has time varying rate of relaxation. This paper will not 
deal with the mathematics of Zipfian distribution (or power law distribution) 
like probability density function, cumulative probability density function, and 
the conditions of finding finite mean, variance or standard deviation for power 
law distribution. This paper describes finding the distribution function of relax-
ation rates (or histogram) by formulating Laplace integral, and show that the 
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distribution thus obtained is a Zipf’s power law.  
We extend this mathematical approach to get the distribution function for 

time constants (τ ). We observe that time constants τ  are also distributed as 
Zipf’s power law; but this observation points to a contrary physical interpreta-
tion derived from this obtained power law distribution for the relaxation rate 
( λ ) distributions. Thus we can conclude that this method developed by Laplace 
integral approach is restricted to get only distribution of relaxation rates i.e. λ  
and not to get the distribution of time constants i.e. τ . Though we are discuss-
ing especially Curie-von Schweidler law, yet we will tabulate relaxation rate dis-
tributions obtained for some other relaxation functions which are obtained via 
this Laplace integral method.  

We shall demonstrate the formation of fractional derivative in the expression 
relating current and voltage considering the relaxation rates as Zifian distribu-
tion; and thus forming a scale dependent power law for relaxation rates as the 
scale varies from zero to infinity. Though by experiments one cannot make his-
togram directly for the rates of relaxation for any non-Debye processes, yet this 
mathematical procedure that we develop helps in extracting this information 
from the observations relaxation function. This is new treatment, and much 
more research is required, across various dynamic processes.  

2. Obtaining Fractional Derivative Directly from Curie-Von  
Schweidler Law for Capacitor 

Practically on applying a step input voltage ( ) BBv t V=  Volts at 0t =  to a ca-
pacitor which is initially uncharged; we get a power-law decay of current given 
by empirical Curie-von Schweidler as ( ) ;0 1ni t t n− < <

 [5]. That we write in 
following way as indicated by experimental studies [5]-[10]: 

( ) , 0BB
n n

Vi t K t
t

= >                          (1) 

The parameter nK  is constant. This is from observation and the evaluation 
of order of power-law function is 0.5 1n< <  [5] [13] [14] [15] [16] [17]. Let the 
capacitor be excited by a step input of VBB Volts, i.e. written as ( ) ( )( )BBv t V u t= , 
where ( )u t  is unit step function at time 0t = . The Laplace transform of step 
input is ( ) ( ){ } ( )( ){ }BB BBV s v t V u t V s= = =  . Then taking Laplace trans-
form of above power-law decay current (1), we obtain  

( ) ( ){ } { } ( )
1

!n
n BB n BB n

n
I s i t K V t K V

s
−

− +

− 
= = =  

 
   [28]. Then using the formula  

for generalization of factorial i.e. ( ) ( )1 !α α− = Γ  [28] [29] [30], we get the fol-
lowing expressions 

( ) ( ) ( )
1

1 1BB BB
n nn n

n V n VI s K K
ss s− −

Γ − Γ −  = =  
 

              (2) 

We get Transfer function [28] of capacitor as following expression 
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( ) ( )
( )

( )

( )( ) ( )( )

1

1 , 1

BB
n n

BB

n n
n n n n

n VKI s ssG s
VV s

s
K n s C s C K n

−

Γ −  
 
 = =

 
 
 

= Γ − = = Γ −

           (3) 

This Expression (3) i.e. ( )G s  is admittance expression in complex frequency 
s-domain of a capacitor. From here we write impedance expression for capacitor 
as following 

( ) 1 , 0 1n
n

Z s n
C s

= < <                       (4) 

From the obtained Expressions (3) (4) i.e. ( ) ( )( )n
nI s C s V s=  and by taking 

inverse Laplace transform by using the identity ( ){ } ( )1
0

n n
ts F s D f t− =     i.e. 

fractional derivative operation [12] [31], we get the constituent relation for ca-
pacity as following 

( ) ( )( )0 , 0 1n
n ti t C D v t n= < <                     (5) 

This fractional derivative Expression (5) gives a new capacitor theory [5] and 
we utilize this above Formula (5) to find characteristics of super-capacitors, like 
the variation of n with the current excitation, and the efficiency of the energy 
discharged to the energy stored [13] [14] [15] [16] [17]. Classically the expres-
sion of capacitor is ( ) ( ) ( )( )1

ti t C D v t=     i.e. with integer “one-whole” order 
classical derivative. Therefore Curie-von Schweidler law gives a different ap-
proach based on fractional calculus [12] [31]. In experimental observations we 
find that capacitor has fractional order impedance [5]-[10] [13] [14] [15] [16], 
[17]. The impedance ( ) ,0 1nZ nω ω− < <

 (is obtained by writing Laplace va-
riable s in (4) as i ;i 1ω = − , i.e. considering steady state analysis [5] [28]. This 
fractional impedance observed in [5]-[10] [13] [14] [15] [16] [17], has implica-
tion in dissipation [5] theory of di-electrics that we will not cover here. We state 
that while classical capacitor unit is in Farad, the nC  the “fractional capacity” is 
in units of 1Farad sec n−  [5]. 

This section gives us the understanding that this Curie-von Schweidle law i.e. 
the empirical law gives a relation of voltage and current of capacitor by using 
fractional derivative. In this paper we will show how we get the same relation 
(i.e. via use of fractional derivative) by considering Zipfian distribution of relax-
ation rates ( λ ) that we get for Curie-von Schweidler relaxation law. 

3. About the Zipf’s Power Law Distribution and Probable  
Hypothesis for Its Mechanism 

The Zipf’s law is widely referred in linguistic studies, economics studies, popula-
tion studies [22]-[27]. We use this for a dielectric relaxation law (i.e. Curie-von 
Schweidler law), which is observed as ( ) ,0 1ni t t n− < <

, since late 19th century. 
We derived histogram of relaxation rates for relaxation function ( ) ni t t−

 and 
show that it follows Zipf’s power law. We try to give possible reasons as to why 
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Zipfian distribution is observed for the distribution of relaxation rates. The his-
togram function of Zipf’s law is ( ) mH x x−


 a power law type. In this section 

we assume that relaxation rates λ’s follow a Zipfian histogram say 
( ) mHλ λ λ−


. This we will derive in subsequent section. The λ’s are relaxation 

rates of infinite number of relaxing bodies, simultaneously relaxing as per Debye 
law i.e. e tλ−

 . 
Zipf’s Law is an empirical law formulated using mathematical statistics that 

refers to the fact that many types of data studied in the physical and social 
sciences can be approximated with a Zipfian distribution. This distribution is 
one of a family of related discrete power law probability distributions [22]-[27]. 
This power law distribution help to describe phenomena where large events are 
rare, but small ones are quite common. For example, there are few large earth-
quakes but many small ones. There are a few mega-cities, but many small towns. 
There are few words, such as “and” and “the” that occur very frequently, but 
many which occur rarely.  

The emergence of a complex language is one of the fundamental events of 
human evolution, and several remarkable features suggest the presence of fun-
damental principles of organization. These principles seem to be common to all 
languages. The best known is the so-called Zipf’s law, which states that the fre-
quency of a word decays as a (universal) power law of its rank. The possible ori-
gins of this law have been controversial, and its meaningfulness is still an open 
question. One of the early hypotheses of Zipf of a principle of least effort for ex-
plaining the law is shown to be sound [26] [27]. But still the exact mechanism 
how the Zipf’s distribution manifests is debated.  

Many of the things that we measure have a typical size or “scale”. We ask our-
selves why the relaxation rates λ  cannot be arranged as simple “normal distri-
bution”. Like while we plot the height of person in X-axis and the percentage of 
occurrence of that particular height in Y-axis, we get a “normal distribution” 
peaked around mean height with a spread both ways, that is a histogram. We 
find that ratio of maximum height and minimum height of a person is finite (or 
relatively low value). For example as per Guinness book of records tallest person 
was having height 272 cm and shortest person was having the height of 57 cm, 
making this ratio 4.8. This ratio is relatively low value. We see the most adults 
are about 170 cm tall-there is some variations around this figure notably de-
pending on sex, but we never measure persons having height of 1 cm or 1000 
cm. 

But not all things we measure are peaked around a typical value. Some may 
over a very large dynamic range, sometimes many orders of magnitude. For 
example the ratio of population of largest town to population of smallest town is 
about 250,000. The histogram if plotted for X-axis with population of cities and 
Y-axis with percentage of cities having that population; the distribution will not 
show the “normal-distribution”. The histogram of cities & population is highly 
“right-skewed”, meaning that while the bulk of distribution occurs for fairly 
small sizes—i.e. most cities have small population-there is small number of cities 
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with population much higher than a said typical value, producing the long tail to 
the right of histogram. This “right skewed” form is qualitatively quite different 
from histogram of person’s height. That is because we know that there is large 
dynamic range from smallest to largest city sizes, we can immediately infer that 
there can only be a small number of very large cities. The histogram of this sort 
is like a function i.e. ( ) m

xH x x−


. The distribution of this nature is called Zip’s 
power law distribution. 

The same we observe when relaxation rates call them λ  having a large 
(ideally infinite) spreads follow Zipfian distribution, we call that ( )Hλ λ  and 
will show that the histogram follows the function i.e. ( ) mHλ λ λ−


. Thus one 

reason that this non-Debye relaxation (explained in subsequent sections) of Cu-
rie-von Schweidler Law ( ( ) ni t t−

) in dielectric is having infinite spread of re-
laxation rates of λ’s-thus forming a Zipfian power law.  

4. Zipfian Power Law Distribution as a Result of Connected  
Exponential Processes—A Postulate 

Having discussed the formation of a histogram as power law type, when there is 
very large dynamic spreads amongst the relaxation rates of a complex relaxing 
process we move to a probable postulate of explaining this process via exponen-
tially distributed processes. A much more common distribution than power law 
is the exponential distribution. In this complex relaxation mechanism i.e. 
( ) ni t t−∝  that we are discussing we consider infinite number of bodies relaxing 

simultaneously, in different time scales ( T ). We consider that a complex relaxa-
tion mechanism and a quantity T  say survival time of a relaxing body, has ex-
ponential distribution of probability ( ) TT e ap −


. This means that a probability 

for a body having very large survival time (age) is very low; and vice-versa. Then 
( )T dTp  indicates the fraction of survival numbers of bodies between survival 

time T  and T dT+ . Now suppose that the real quantity that we are interested 
is not T  but other quantity λ , say the relaxation rate of discharge which is 
exponentially related to T ; thus Te bλ −

 . That implies the surviving bodies 
with very large time of survival (age) have a very low rate of relaxation. This also 
states that d dTλ = − . Then if probability distribution of λ  is ( )p λ ; then we 
have ( ) ( )d T d Tp pλ λ = −  (effect of conservation of probability [25]). The 
negative sign indicates opposite movement, as T  is increased from T  to 
T dT+ , then λ  is decreased from λ  to ( )dλ λ+ − . This means that number 
of discharging units having relaxation rates between λ  and dλ λ+  is equal to 
number of surviving bodies having survival time between T  and T dT+ . Thus 
we write following steps: 

( ) ( ) ( ) ( )TT T

T

1 1

TdT e e eT
dd e
dT

; 1

a ba bb

b

a
ab

mb

p
p p

bb

am
b b

λ
λλ

λ λ
λ λ

−
−− −

−

 − − −  − 

= − = − =
 
 
 

= = −



 

            (6) 
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The above discussion in steps (6) gives a power law distribution for relaxation 
rates λ’s where there is combination of exponential processes. Thus we expect 
that in our complex relaxation process governed by Curie-von Scweidler Law 

( ) ni t t−∝  which is having infinite number of simultaneously discharging bodies 
will have a power law distribution for relaxation rates as a histogram 

( ) mHλ λ λ−


. This we will derive subsequently. We proceed with this explana-
tion and hypothesis. This could be one explanation in physical sense, in line with 
exponential distribution in the Boltzmann distribution of energies in statistical 
mechanics. 

5. Complex Relaxation of Non-Debye Type Composing with  
Several Exponentially Relaxing Functions of Debye Type 

We call the Curie-von Shweidler relaxation law ( ) ;0 1ni t t n− < <
 as complex 

process, of non-Debye type. Where a Debye type relaxation is a decay function 
given by function of exponential type as 0

0e ; 0tλ λ− > . We mention that Cu-
rie-von Shweidler relaxation law is not exponential relaxation process of Debye 
type.  

In this section we formulate the method to extract the histogram of the relaxa-
tion rates call it ( )Hλ λ , for a complex non-Debye relaxation process ( )i t , 
which we assume to be composed of several Debye type exponential relaxation 
functions e tλ− , with λ  varying from zero to infinity. The complex decay may be 
expressed as following with several rate constants 1 2 3, , ,λ λ λ   with weights 

1 2 3, , ,a a a  , where kλ  is having units in sec−1 i.e. “per second”, and is equal to 
inverse of time constant i.e. ( ) 1 ; 1, 2,3,k k kλ τ −= =  . We write following com-
posite relaxation expression as sum of several “discrete” relaxations of Debye 
type i.e. 

( )
( )

31 2
1 2 3

1 2 3

e e e e

0

kt tt t
ki t a a a a

i a a a

λ λλ λ − −− −= + + + =

= + + +
∑



             (7) 

The coefficients ka ’s in (7) can be positive or negative that we will elucidate 
in later section. In the continuum limit, we may write the above discrete expres-
sion as following integral equation 

( ) ( )( )
0

e dti t H λ
λ λ λ

∞
−= ∫                       (8) 

Where the function i.e. ( )Hλ λ  is the distribution-function of the rate of the 
relaxation ( λ ) of the process, or we may call it as histogram of relaxation rates. 
The function ( )Hλ λ  can be positive or negative that we will elucidate in later 
section.  

While for the case with discrete set of relaxation rates i.e. 1 2 3, , ,λ λ λ   the 
rate distribution function would be having discrete delta functions  
( ( ) , 1, 2,3,kt kδ λ− =  ) at points 1 2 3, , ,λ λ λ  ; which we write like following 
expression 
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( ) ( )( ) ( )( ) ( )( )
( )( )

1 1 2 2 3 3

k k

H a a a

a
λ λ δ λ λ δ λ λ δ λ λ

δ λ λ

= − + − + − +

= −∑


      (9) 

From above formulation (9) we infer that if we have only one single Debye re-
laxation i.e. having only one rate constant say 0λ  i.e. ( ) 0e ti t λ−=  then 

( ) ( )0Hλ λ δ λ λ= − . This is verified in the following expression 

( ) ( )( ) ( )( ) 0
00 0

e d e d e tt ti t H λλ λ
λ λ λ δ λ λ λ

∞ ∞ −− −= = − =∫ ∫         (10) 

In above derivation (10) we used the property of delta function [29] [30] [32] 
i.e. ( )( ) ( )( ) ( )0 0dx x f x x f xδ − =∫ .  

6. Extraction of Rate Distribution Function by Formulating  
Laplace Integral  

In this section we formulate Laplace integral of the complex decay given by Cu-
rie-von Shweidler relaxation law ( ) ;0 1ni t t n− < <

 and then getting by inverse 
Laplace transform of time domain response i.e. ( ){ }1 i t−  we get relaxation 
rate distribution function i.e. ( )Hλ λ . Conventionally we are used to get inverse 
Laplace transform of a frequency domain function to time domain function; we 
note here we will be inverting a time domain function i.e. ( ){ }1 i t− . 

The Laplace transform ( )F s  of a function in time domain ( )f t  is defined 
as following integral transform relation [28] [29] [30], i.e. called Laplace integral 

( ) ( )( ) ( )

( ) ( ){ }

def

0

e d , 0 for 0stF s f t t F s s

F s f t

∞
−= = <

=

∫


             (11) 

This Expression (11) is standard integral transform of a function ( )f t  from 
a time domain (t) to a complex frequency domain i.e. { }Re i ;i 1s s ω= + = − ; 
where real part is significant in the transient response and the imaginary part of 
the frequency corresponds to “steady-state” response; in classical “Control 
Science” [28]. Here ( )f t  is “inverse Laplace transform” of ( )F s , and we 
write ( ){ } ( )1 F s f t− =  and ( ){ } ( )f t F s= .  

We have in earlier Section 8 derived ( ) ( )( )0
e dti t H λ

λ λ λ
∞ −= ∫ . Compare this 

with defined Laplace integral expression as follows 

( ) ( )( ) ( ) ( )( )
0 0

e d , e dt sti t H F s f t tλ
λ λ λ

∞ ∞
− −= =∫ ∫            (12) 

Both expressions in (12) above are Laplace transform expressions, (or Laplace 
integrals). The first expression is transforming the function ( )Hλ λ  from λ  
domain to “complex” t time domain; while the second one is transforming 
( )f t  from t domain to “complex” s frequency domain. Thus both expressions 

are Laplace integral expressions with change of variable and symbol. Therefore 
we can say ( )Hλ λ  is inverse Laplace Transform of ( )i t  in the first expres-
sion, i.e. ( ) ( ){ }1H i tλ λ −=  ; as ( )f t  is inverse Laplace of ( )F s  in the 
second expression, i.e. ( ) ( ){ }1f t F s−=  . 
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Therefore in order to get the rate distribution-function ( )Hλ λ  from the de-
cay curve (or relaxation-function ( )i t ), we need to perform inverse Laplace 
Transform of the time function ( )i t . The definition of inverse Laplace Trans-
form is described as following integral expressions 

( ) ( )( ) ( ) ( )( )
i i

i i

1 1e d , e d
2πi 2πi

x x
st t

x x

f t F s s H i t tλ
λ λ

+ ∞ + ∞

− ∞ − ∞

= =∫ ∫         (13) 

In the above Expression (13) x  is real number larger than 0x , where 0x  
being such that ( )i t  has some form of singularity on the real line { } 0Re t x=  
but is analytic in the complex plane to the right of that line, i.e. for { } 0Re t x> , 
[28] [29] [30]. Thus in this formulation we treat time variable as complex quan-
tity say it x y= +  in the Expression (13) of inverse Laplace Transform i.e.  

( ) ( )( )i

i

1 e d
2πi

x t
x

H i t λ
λ λ λ

+ ∞

− ∞
= ∫ . Though we cannot explain presently physical  

meaning of concept an “imaginary time” in the expression of complex time 
quantity it x y= + , yet mathematically there is no restriction in assuming time 
to be complex number. We thus proceed in mathematical sense to invert a func-
tion in complex time variable, by techniques of Laplace inversion. 

7. Extracting the Rate Distribution Function by Performing  
Inverse Laplace Transform on Relaxation Function of  
Time Variable  

Table 1 lists several types’ relaxation functions ( )i t  and its inverse Laplace 
( )Hλ λ  describing the rate distribution function; mostly got from standard 

Laplace transform tables [28]. The integral representations of ( )Hλ λ , shown in 
Table 1 i.e. for entries 12 to 16 is got via Berberan-Santos method [33] [34]. The 
entry 12 is for stretched exponential decay function and entry 13 is Becquerel’s 
compressed hyperbolic radioactive decay function; the entry 15 and 16 is for 
Mittag-Leffler function and the entry 14 is general power law relaxation. These 
integral representations of ( )Hλ λ  are difficult to solve but are easy to plot via 
use of numerical integration techniques.  

We have observed in the previous section that a Debye relaxation of 
( ) 0e ti t λ−


 has rate distribution as ( ) ( )0Hλ λ δ λ λ= −  i.e. it is given by a delta 
function at point 0λ λ=  (10). This we verify with known Laplace relation i.e. 

( ){ } ( )0
0 e stf t t F s−− =  [28], where ( ){ } ( )f t F s= . Also we have  

( ){ } 1tδ = ; thus we can write ( ){ } 0
0 e stt tδ −− = . From here we can write 

with change of variable for ( ) 0e ti t λ−=  the inverse Laplace of this time domain 
function in λ  domain we get as ( ) ( )0Hλ λ δ λ λ= − , i.e. the rate distribution 
function.  

If there is no decay then say ( ) 0
01 e ; 0ti t λ λ−= = = ; the rate distribution func-

tion is delta function at origin i.e. ( ) ( )H tλ λ δ= . 
If the relaxation function is of say ( ) 01 e ti t λ−= − ; then we have  
( ) { }01 1 e tH λ

λ λ −−= − ; giving ( ) ( ) ( )0Hλ λ δ λ δ λ λ= − − . From this observation 
we say that for our earlier Expressions (7) and (9) i.e. ( ) ( )( )k kH aλ λ δ λ λ= −∑ ,  
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Table 1. Several relaxation functions and corresponding rate distribution functions. 

S No. 
Relaxation function 

( )
0

, 0
i

i t t
t x y

>

≡ +
 

Rate distribution function 
( ) , 0Hλ λ λ >

 
( ) ( ){ }1H i tλ λ −=   

1 ( )i t A= : Constant function ( ) ( )( )H Aλ λ δ λ=  

2 ( ) 1i t t −=  ( ) 1, 0Hλ λ λ= >  

3 ( ) ni t t −=  ( ) ( )
11

1 !
nH

nλ λ λ −=
−

 

4 ( ) ( ) 1i t t a −
= +  ( ) e aH λ

λ λ −=  

5 ( ) ( ) ni t t a −
= +  ( ) ( )

11 e
1 !

n aH
n

λ
λ λ λ − −=

−
 

6 ( ) ( ) 11i t at t a −−= +  ( ) 1 e aH λ
λ λ −= −  

7 ( ) ( ) ( )1 1i t t a t b− −
= + +  ( ) ( )1 e ea bH

b a
λ λ

λ λ − −= −
−

 

8 ( ) 0e ti t λ−=  ( ) ( )0Hλ λ δ λ λ= −  

9 ( ) ( ) 12i t t t a
−

= +  ( ) ( )cosH aλ λ λ=  

10 ( ) 12a t a
−

+  ( ) ( )sinH aλ λ λ=  

11 ( ) ( )( ) 12i t a t b a
−

= + +  ( ) ( )e sinbH aλ
λ λ λ−=  

12 ( ) ( )0e ti t
βτ−=  

( ) ( )( )cos π 20
0

0

0

πe cos sin d
π 2

uH u u u

u y

β β β
λ

τ βλ λτ

τ

∞
−   = −   

   
=

∫  

13 ( ) ( )
( )1 1

0

1 1 ti t
β

β
τ

− −
  

= + −     
 

( ) ( ) ( ) ( )( )

( )

1
1 2 120 0

0

0

tan
d (1 ) cos

π 1 1

1

u uH u u

u y

β
λ

τ λτ
λ

β β

β τ

∞ −
− − − 

= +  − − 
= −

∫  

14 ( )
1

0

1 ;0 1ti t
α

α
τ

−
  
 = + < <    

 

( )( ) ( )( )
( )( )0 02 2

2
2

cos 1 cos sin sin0
2 cos 10

0

( ) d

/

u u u u

u u
H u

u y

α ααπ απ

α α απ

τ λ τ λ

λ

τ
λ

π
τ

∞ + +

+ +
=

=

∫  

15 

( ) ( )

( ) ( )
( )0

,

1
1

k

k

k

i t E t

E
k

α

α

ξ ξ τ

ξ ξ
α

∞

=

= − =

−
− =

Γ +∑
 ( ) ( ) ( )2

20

2 cos d
π

H E y y yλ αλ λ
∞

= −∫  

16 ( ) ( )1 2 0i t E t τ=  ( ) ( )2 41 e
π

H λ

λ λ −
=  

 
the coefficients ka ’s can have negative values as well for some type of relaxation 
function.  

For example, if ( ) ( ) 11i t t t −= +  is a relaxation function that initially grows to 
a maximum value and then starts falling as time increases, it has rate distribu-
tion function as ( ) ( ){ }11 1 cosH t tλ λ λ−−= + = , a oscillatory one. Thus in this 
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case the distribution function i.e. ( )Hλ λ  can take positive as well as negative 
values (8). 

One interesting observation is for a relaxation function ( ) 1i t t−=  the relaxa-
tion function is ( ) 1Hλ λ = -a “uniform distribution”, for 0λ ≥ . All these are 
listed in Table 1. 

The inverse Laplace transformation is usually carried out by contour integra-
tion. But the very modern technique of Berberan-Santos [33] [34] method is the 
analytical Laplace inversion without the usual contour integration. We describe 
this now briefly. 

Our aim is to evaluate Laplace inverse ( ) ( ){ }1H i tλ λ −=   which is given as 
Laplace inversion (13) integral expression i.e. 

( ) ( )( )
i

i

1 e d
2πi

x
t

x

H i t tλ
λ λ

+ ∞

− ∞

= ∫                     (14) 

Here we describe Berberan-Santos method formulas for evaluation of the 
Laplace inversion without going for contour integration. First is change of varia-
ble i.e. from “real time variable” to “complex time variable” as it x y= + ; with 
i 1= − . Here the real part i.e. x  is constant as a vertical line calls it 0x x=  a 
constant. The formulas are following [33] [34] 

{ } { }( )
0

0 0

0

e
( ) Re ( i ) cos( ) Im ( i ) sin( ) d

x

H i x y y i x y y y
λ

λ
λ λ λ

π

∞

= + − +∫       (15) 

Consider a very simple case of decay function ( ) ( ) 1i t t a −= −  and convert to 
complex time by putting 0 it x y= +  as ( ) ( )( ) 1

0 0i ii x y x a y
−

+ = − +  [33] [34]. 
We know from standard Laplace pair that is ( ) 11 e ats a −− ± =  . Thus, for 
( ) ( ) 1i t t a −= −  we should get via inverse Laplace the rate distribution functions 

as ( ) eaH λ
λ λ = . The application of the Berberan-Santros formula [17] [35] with 

0x a>  yields the following steps 

{ } { }( )
0

0 0

0 0

0

0 0

0

0

2 2 2 20 0

0 0

0

2 2 2 20 0

0 0

0

e
( ) Re ( i ) cos( ) Im ( i ) sin( ) d

( ) cos( )de e sin( )d

( ) ( )

e ( ) cos( )d e sin( )d

( ) ( )

( ) cos( ) sie

x

x x

x x

x

H i x y y i x y y y

x a y y y y y

x a y x a y

x a y y y y y

x a y x a

x a y y

λ

λ

λ λ

λ λ

λ

λ λ λ
π

λ λ

π π

λ λ

π π ω

λ

π

∞

∞ ∞

∞ ∞

= + − +

−
= +

− + − +

−
= +

− + − +

− +
=

∫

∫ ∫

∫ ∫

2 20

0

n( )
d

( )

y
y

x a y

λ∞

− +
∫

      (16) 

Here we say that eaλ  has integral representation as  
0

0

2 20
0

( ) cos( ) sin( )e
e d

( )

x
a x a y y y

y
x a y

λ
λ λ λ

π

∞ − +
=

− +∫ . 

Particularly for 1a = − , we have ( ) ( ) 11i t t −= + . The condition 0 1x > −  
enables us to choose 0 0x =  we get following integral representation for e λ−  
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[33] [34] which is also rate distribution function ( )Hλ λ  is following 

2 20

1 cos( ) sin( )
( ) e d

1

y y y
H y

y
λ

λ

λ λ
λ

π

∞− +
= =

+∫               (17) 

8. Derivation of Rate Distribution Function for Curie-Von  
Schweidler Law  

For the Curie-von Schweidler relaxation of type function i.e. ( ) ni t t−
 then 

rate distribution function is ( ) { }1 nH tλ λ − −=  . With the known Laplace pair  

i.e. ( ){ }11 1
!

s tα α

α
− +− = , we can write the following steps  

( ) { }

( ) ( ) ( )

( ) ( )

1

1

1

1 1 ; 1; 1 !,
1 ! !

1 1 ; 0
1

n

n m

n m

H t

m n
n m

n m

λ λ

λ λ α α α

λ λ λ

− −

−

−

=

= = = − Γ = − ∈
−

= = >
Γ Γ +





    (18) 

Therefore above discussion suggests that for a power law type relaxation, i.e. 
Curie-von Schweidler law i.e. ( ) ; 0 1ni t t n−∝ < < , the relaxation rates λ’s are 
having a power law distribution of type i.e. ( ) mHλ λ λ , 1m n= − , 

1 0m− < < , 0λ > . This is Zipf’s power law with 0m < .  
For dielectric relaxation as observed that 0 1n< <  in Curie-von Schweidler 

relaxation ( ) ni t t−
, the rate relaxation distribution function ( ) mHλ λ λ  has 

exponent in power in the range i.e. 1 0m− < < . Considering graph of 

( ) ; 0mH mλ λ λ= <  as histogram, we infer that for Curie-von Schweidler relaxa-
tion function i.e. ( ) ;0 1ni t t n− < <

 there are very large number of relaxations 
with small λ  i.e. large number of slower decay takes place, compared to fewer 
faster decay rates-and the histogram ( ) ; 0mH mλ λ λ= <  is highly right skewed 
with long tail.  

From the above discussion (18) and using our Laplace integral (8) i.e. 

( ) ( )( )0
e dti t H λ

λ λ λ
∞ −= ∫  we write for Curie-von Schweidler relaxation function 

the following 

( ) ( )1
0

1 e dn n tt
n

λλ λ
∞− − −=

Γ ∫                     (19) 

The above Expression (19) is integral representation of the nt−  shows 
weighted averaging of infinite Debye relaxations i.e. e tλ−  with weight 1nλ −  ap-
plied for all λ  from zero to infinity. 

Using Berberan-Santos method [33] [34] we get the Laplace inversion of 
( ) ni t t−= . In reality of decay functions, we can take 0 0x = ; in complex time va-

riable i.e. 0 it x y= +  as the decay function is not expected to have singularity at 
time 0t > . Choosing 0 0x =  in 0 it x y= +  we have ( ) ( )i i ni y y −= , that is  

( ) ( )
1

π πi i cos i sin
2 2

n n n ni y y y
−

− −     = = +    
    

 where we used 
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( )i π 2 π πi e cos i sin
2 2

nn n n   = = +   
   

. The real part of the complex function is 

( ){ } πRe i cos
2

n ni y y−  =  
 

. Now using the Berberan–Snatos formula [33] [34], we  

get following steps 

{ } { }( )

( ) ( )( )

( )

0

0 0

0

2 2

0

20

e
( ) Re ( i ) cos( ) Im ( i ) sin( ) d

1
cos cos( ) sin sin( ) d

1
cos d

x

n nn n

n n

H i x y y i x y y y

y y y y y

y y y

λ

λ

π π

π

λ λ λ
π

λ λ
π

λ
π

∞

∞
− −

∞ −

= + − +

= +

= −

∫

∫

∫

   (20)
 

From Laplace transform tables [28] (and Table 1) we have ( ) ( )
11 nH

nλ λ λ −=
Γ

  

i.e. from inverse Laplace transformed of ( ) ni t t−= , therefore we write following 
representation  

( )1

20

1 1
( ) cos d

( )
n n nH y y y

n
π

λ λ λ λ
π

∞− −= = −
Γ ∫        (21) 

From (21) we write the following 

( )1

20

( )
cos dn n n

n
y y yπλ λ

π

∞− −Γ
= −∫             (22) 

Now by changing variable λ  to t , 1n −  to n− , and rearrange above  

expression (22) to get 
( ) ( ) ( ) ( )( )( )1

0

2 1 1 π
cos cos d

π 2
nn n n

t u tu u
∞ −− Γ − − 

=  
 

∫ .  

Considering now u  as λ  we write another integral representation of nt−  as 
follows 

( )1 (1 )

20

(1 )
cos dn n nn

t t πλ λ λ
π

∞− − −Γ −
= −∫          (23) 

This means that if we chose basic relaxation function as ( )cos tλ , then Cu-
rie-von Schweidler relaxation ( ) ni t t−=  is weighted sum of all ( )cos tλ ’s with 
weights 1nλ − , as λ  is varied from zero to infinity.  

9. Zipf’s Distribution for Relaxation Time Constants for  
Curie-Von Schweidler Law—A Contradiction 

Now converting to 1τ λ−= , we assume the Distribution of time-constants call it 

( ) mHτ τ τ −


, is the Zipf’s power law distribution. However direct taking of re-
ciprocal of obtained inversion of ( )Hλ λ  i.e. the rate distribution function got 
via Laplace inversion of ( )i t  is not possible. This we demonstrate in this sec-
tion.  

As we have formulated Laplace integral (8) i.e. ( ) ( )( )0
e dti t H λ

λ λ λ
∞ −= ∫ , just  
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by replacing 1λ τ −= , ( ) 2d dλ τ τ−= −  we will get  
( ) ( )( )( )0 2 e dti t H τ

λ λ τ τ− −

∞
= −∫  that is ( ) ( )( )( ) 2

0
e dti t H τ

λ λ τ τ
∞ − −= ∫ . This is 

not Laplace integral. Now we do the following steps, for ( ) ni t t−=  and obtained  

( ) ( )
11 nH

nλ λ λ −=
Γ

  

( ) ( )

( )

( )
( )

21 1
0

1 2
0

1

0

1 e d ;

1 e d

1 e d

n n t

n t

n t

t
n

n

n

τ

τ

τ

λ τ τ λ τ

τ τ τ

τ τ

∞ −− − − −

∞ − − −

∞ − + −

 
= =  Γ 

=
Γ

=
Γ

∫

∫

∫

              (24) 

We write the two representations of nt−  as following integrals 

( )
( )( ) ( )

( )( )1 1

0 0

1 1e d , e dn nn t n tt t
n n

λ τλ λ τ τ
∞ ∞− − +− − − −= =

Γ Γ∫ ∫        (25) 

Thus we have ( ) ( )1nHτ τ τ − +
 , as we have ( ) 1nHλ λ λ −


. Now we verify the 

above obtained result in the subsequent discussion. 
By the logic that we had constructed ( ) ( )( )0

e dti t H λ
λ λ λ

∞ −= ∫  which is Lap-
lace integral (8); we will similarly get the integral ( ) ( )( )0

e dti t H τ
τ τ τ

∞ −= ∫  
which is not a direct Laplace Transform formula. Following steps will convert 
this expression into the Laplace Transform formula, and from there we will ex-
tract ( )Hτ τ :  

( ) ( )( )
( )( )( )( ) ( )( )

( )( )

1 2
0
0 2 2

0

e d ; , d d

e d ; F

F e d

t

t

t

i t H

H H

τ
τ

λ
τ τ

λ

τ τ τ λ τ λ λ

λ τ λ λ τ

λ

∞ − − −

− − −

∞

∞ −

= = = −

= − =

=

∫

∫

∫

          (26) 

Proceeding further we obtain following result 

( ){ } ( )
( )

( )( ) ( )
( )

( )

( )

11

12

1 2
1

1

1F

1

( ) ;
( )

n

n

n

n

i t
n

H
n

H
n

n

τ

τ

λ

λ τ λ

λ λ
τ λ τ

τ

−−

−−

−
−

− +

= =
Γ

=
Γ

= =
Γ

=
Γ



                     (27) 

Now we take different approach to verify the above (26) (27) obtained expres-
sion for ( )Hτ τ . Let us have set of relaxation functions with various time con-
stants τ  ranging from 0 to infinity that is { }31 2e ,e ,e ,tt t ττ τ −− −

 , comprising of 
infinite number of functions, in continuum in τ . The relaxation function varies 
from very-very quick decay (when 0τ ≈ ) to very-very slow decay curve (when 
τ ≈ ∞ ). We construct a weighted decay function as em t ττ − − . This shows that we 
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are multiplying by weight ; 0m mτ − >  the decay function e t τ− . We are assum-
ing Zipf’s type distribution of τ , in form of ( ) mHτ τ τ −


, meaning the lowest 

time constant i.e. fastest decay occurs more frequent than slow decay i.e. large 
time constant. The time constant parameter τ  let vary from 0 to infinity and 
construct the following integral I , i.e. 

0
I e dm t ττ τ

∞ − −= ∫                           (28) 

The integral of (28) i.e. 
0

I e dm t ττ τ
∞ − −= ∫  gives notion of weighted average of  

infinite relaxation functions. We do the substitution i.e. t y
τ
= , i.e. t

y
τ =  and  

( ) ( )2d dy t yτ −= −  in the above integral to get following steps 

( ) ( )

0

0 2

1 2
0

I e d

e d

e d

m t

m
y

m y m

t y t y
y

t y y

ττ τ
∞ − −

−
−−

∞

∞− + − −

=

 
= − 

 

=

∫

∫

∫

                    (29) 

By using the definition of the Gamma function [29] [32] in integral form i.e. 
( ) 1

0
e dy y yαα

∞ − −Γ = ∫ , we write the above integral as following  
( ) ( ) ( )( )

( )

1 12
0

10

I e d 1

1
e d

m my m

m t
m

t y y t m

m
t

ττ τ

∞− − − −− −

∞ − −
−

= = Γ −

Γ −
=

∫

∫
               (30) 

Putting 1m n− =  in above we get integral representation of the power law 
nt−  and we represent this by time constant distribution function ( )Hτ τ  in 

following expressions 

( )
( )

( )( )

1

0

0

1 e d

e d

nn t

n t

t
n

t H

τ

τ
τ

τ τ

τ τ

∞ − +− −

∞− −

=
Γ

=

∫

∫
                     (31) 

Earlier in (19) we have obtained 
( ) ( )1

0

1 e dn n tt
n

λλ λ
∞− − −=

Γ ∫ ; where we called  

rate distribution function as ( ) ( )
11 nH

nλ λ λ −=
Γ

. Now from above (31) weighted 

average logic we get ( ) ( )
( )11 nH

nτ τ τ − +=
Γ

. We note that these two are not  

reciprocal of each other. 
Therefore we can conclude that Curie-von Schweidler law ( nt− ) relates to 

weighted averaging of several classical Debye relaxations (of type e t τ− ) over 
several time constants from zero to infinity, that is having Zipf’s power-law with 
time constant distribution as ( ) ( )1nHτ τ τ − +

 . What does it say for 0 1n< < , 
that ( ) ( )1nHτ τ τ − +

  is also a right-skewed distribution, where the lower time 
constants (faster decay) appear more than larger time constant (slower decay). 
This is contradiction to what we inferred for ( ) 1nHλ λ λ −


. 
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10. Demonstration of Contradiction of Obtained Zipf’s  
Power Law Distribution for Relaxation Rates and  
Time Constant Distributions 

This contradiction we demonstrate now. For ( ) 0e ti t λ−=  we got  
( ) ( )0Hλ λ δ λ λ= − ; we expect ( ) ( )0Hτ τ δ τ τ= −  for ( ) 0e ti t τ−= ; let us see 

what happens in following steps 

( ) ( ){ }

{ } ( ) ( )( )
( )( ) ( )

( ) ( )( )
( ) ( )

0

0

1

1 2
0

2
0

2 1
0

0
02

e ; F

F e ; F

;

t

t

i t i t

H

H

H

λ

λ
τ

τ

τ

δ λ λ λ τ

λ τ δ λ λ

τ λ δ λ λ λ τ

δ τ τ
δ τ τ

τ

− −

−− −

−

−

= =

= = − =

= −

= − =

−
= ≠ −





            (32) 

Though mathematically we can get integral representation for any relaxation 
function as ( ) ( )( )0

e dti t H τ
τ τ τ

∞ −= ∫  but physically it will be contradictory to 
Laplace integral i.e. ( ) ( )( )0

e dti t H λ
λ λ λ

∞ −= ∫ . Hence we will deal with the relax-
ation rate distribution function that we extracted as ( )Hλ λ  from ( )i t  via our 
devised method of Laplace inversion. 

11. Experimental Validation of Range of Relaxation  
Exponent in Curie-Von Schweidler Law 

The Curie-von Schweidler empirical law of power law relaxation, i.e. ( ) ni t t−∝  
states that 0 1n< < . This is validated via experiments on dielectric relaxations. 
A 100V step input applied to a completely discharged capacitor of 0.47 μF hav-
ing metalized paper dielectric, and the current decay is recorded with time. The 
graphs of log-log plot i.e. ( )( )log i t  vs. ( )log t  show a straight line of average 
slope −0.86 [5]-[10]. This experiment indicates a Curie-von Schweidler law, with

( ) ni t t−∝ , having 0.86n = . This gives ( ) 0.14Hλ λ λ−


. The exponent n is in the 
range of 0.85 1n< <  in several di-electric relaxation experiments [5]-[10]. The 
experiments with super-capacitors [13] [14], show range as 0.5 1n< < . A very 
low value of exponent n is found in relaxation of Laponite studies averagely 

0.09n =  [35]. Thus in case of Laponite studies we have relaxation rate distribu-
tion function as ( ) 0.91Hλ λ λ−


. In this Laponite study [35] though the expo-

nent n was obtained on “self-discharge” curves with various charging time his-
tory-showing memory effect, the expression obtained for self-discharge decay of 
voltage assumes fractional capacity-that in turn assumes Curie-von Schweidler 
law as current relaxation function.  

12. Time Variant Relaxation Rate for Non-Debye  
Relaxation & Curie-Von Schweidler Law 

Any decay function ( )i t  is written as a general formulation in following way 
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( ) ( )( )( )0
exp d

t
i t λ ξ ξ= −∫                      (33) 

where ( )λ ξ  is the time (ξ ) dependent rate coefficient. When the relaxation is 
pure exponential, one has ( )λ ξ  as constant say 0λ  described as ( ) 0tλ λ= , 
expressed in following steps 

( ) ( )( )( ) ( )( )
( ) 0

00 0

0 0

exp d exp d

exp e

t t

t t

i t

λ

λ ξ ξ λ ξ

λ ξ −

= − = −

= − =

∫ ∫
            (34) 

Thus we get a Debye relaxation for a system having constant rate of relaxa-
tion. To extract ( )tλ  that is time dependent rate coefficient we have to follow 
the following steps by taking logarithm of (33) and then differentiating both 
sides 

( )( ) ( )( ) ( ) ( )( )0

dln d , ln
d

t
i t t i t

t
λ ξ ξ λ= − = −∫            (35) 

We use the above rule for Mittag-Leffler relaxation function i.e. ( ) ( )i t E tα= − ,  

this is defined as [29] [30] [31] ( ) ( )
( )0

1 k
k

kE t t
kα α β

∞

=

−
− =

Γ +∑ . For ( ) ( )i t E tα= −   

the ( )tλ  is extracted as in following steps 

( ) ( )( ) ( )
( )

( )
( )
( )

( )
( )( )
( )

0

0

dd 1ln
d d

11 d
d 1

11
1

k k

k

k

k

E t
t E t

t E t t

t
E t t k

k t
E t k

α
α

α

α

α

λ

α

α α

∞

=

∞

=

−
= − − = −

−

 −
 = −
 − Γ + 

 + −
 = −
 − Γ + + 

∑

∑

            (36) 

For Curie-von Schweilder relaxation law ( ) ni t t−
, we have time dependent 

rate relaxation rate as 

( ) ( ) ( ) ( )

( ) ( )

1d dln ln
d d
1

nt t n t n t
t t

tt
t n

λ

τ
λ

− −= − = − − =

= =
             (37) 

Therefore we have two observations that Curie-von Schweidler relaxation 

( ) ni t t−
 has time constant distributed as Zipfian power law  
1;0 1nH nλ λ − < < , while the relaxation rate constant is variable in time as a 

function ( )t n tλ = . Thus implying the relaxation starts with very-very fast re-
laxation at a very-very high rate ( λ ) and as the time goes the rate constant de-
creases indicating slow rate of current decay. This is a case of “equivalent” single 
body relaxation where the rate is varying with time; whereas the multi-body re-
laxation gives simultaneous relaxations with rates distributed as Zipf’s power 
law. 
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13. Scale Dependence Relaxation Rates Give Capacitors  
Charging Current as per Curie-Von Schweidler Law  

Let a uncharged capacitor C  be connected to a voltage source ( )v t  Volts, at 
time 0t = ; obviously this capacitor will get charged to the battery voltage. Let 
this capacitor is uncharged at 0t < , thus there is no charge held by it, therefore 
the voltage across the capacitor is zero at 0t < , and the circuit current is 
( ) 0; 0i t t= < . The voltage balance equation assuming R  be the total resistance 

of the circuit (including internal resistance of Capacitor) at 0t >  is the follow-
ing 

( ) ( ) ( )
0

1 d
t

i x x Ri t v t
C

 
+ = 

 
∫                     (38) 

where ( )i t  is the charging current flowing into the capacitor. The above 
integral Equation (38) is differentiated and is put as following, for 0t >  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1
0 0 0

1 1
0

d d1 , ,
d d

1;

i t v t
i t RC RC

t R t

i t i t f t f t v t
R

λ λ τ

λ

− + = = = 
 

+ = =

          (39) 

The RHS of above Expression (39) first order system indicates “forcing  

function” which is ( )f t . The forcing function is ( ) ( ) ( )11f t v t
R

=  in this case.  

If we take ( ) BBv t V=  i.e. a constant, then considering ( ) 1; 0u t t= ≥  and 
( ) 0; 0u t t= < , i.e. “unit-step function”, we have for RHS of the above Equation 

(39) as following 

( ) ( ) ( )

( ) ( )
( )( ) ( )( )

1

1

d
d

d
dBB BB

v t
v t

t
u t

v t V V t
t

δ

=

= =

                 (40) 

Thus substituting the above (40) into (39) we get following equation for 
( ) BBv t V=  for 0t ≥  the following 

( ) ( ) ( ) ( )

( ) ( ) ( )

1
0 0 0

0 0 0

d
, ,

d
d

,
d

BB

BB

i t Vi t t RC RC
t R

i t Vi t I t I
t R

λ δ λ τ

λ δ

−+ = = =

+ = =

          (41) 

We see that forcing function of above first order Equation (41) is by delta 
function ( ) ( )0f t I tδ= . The solution to the above equation gives Debye relaxa-
tion function i.e. 

( ) 0
0e

ti t I λ−=                           (42) 

This solution ( ) 0e ti t λ−


 is the “impulse response” of the circuit equation. 
The relaxation current of the above system (41) follows Debye’s relaxation, with 
one relaxation rate 0λ  (also termed as Debye law). The rate distribution func-
tion is ( ) ( )0Hλ λ δ λ λ= − ; that we discussed in previous sections. With this 
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( ) 0e ti t λ−=  as Green’s function call it ( ) 0e tg t λ−=  i.e. solution of differential 
equation with “unit” impulse excitation ( 0 1I = ) or say Homogeneous solution, 
i.e.  

( ) ( ) ( ) ( ) ( ) 0
0

d
, e

d
ti t

i t t i t g t
t

λλ δ −+ = = =               (43) 

Now we find if the input is step function at time 0t = , call it ( )0I u t , where 
( ) 1u t =  for 0t ≥  and ( ) 0u t =  for 0t < ; then we get relaxation function for 

current as convolution integral, i.e. depicted as in following steps 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )

0

0 0

0

0 0

0 0 0 0

0

0

d
, e

d

e d e d

1 e

t

t tt x t x

t

i t
i t I u t g t

t

i t I u t g t I u x x I x

I
i t

λ

λ λ

λ

λ

λ

−

− − − −

−∞

−

+ = =

= ∗ = =

= −

∫ ∫     (44) 

We saw in earlier sections the relaxation rates ( λ ) distribution, for a Cu-
rie-von Schweidler relaxation law, i.e. ( ) ni t t−

 is ( ) 1;0 1nH nλ λ λ − < <
; for 

relaxations in dielectrics. This is histogram of rates. It says that the relaxation of 
current is with several relaxation rates, which are distributed as discussed in 
Zipf’s law fashion with right-skewed-histogram. Thus if we represent the equiv-
alent relaxation rate say 1 ;0 1q

eq qλ λ < <
 with λ  as scale of relaxation 

where the scale λ  varies from zero to infinity; we will not be incorrect in as-
suming this. That is as we slide from a low scale λ  to high scale λ  the equiv-
alent relaxation rate eqλ  will be different at different scales of relaxation. If the 
index parameter i.e. 1q =  then we have single rate constant system given by 

eqλ λ=  always at all scales of relaxation i.e. ( ) 11
0 0 RCλ λ τ −−= = = , and with 

solution as ( ) 0e ti t λ−= , i.e. Debye relaxation function.  
We thus modify the capacitor discharge current equation, with 0eqλ λ λ= =  

i.e. with one relaxation rate at any scale of relaxation (λ), i.e. ( ) ( ) ( ) ( )1
0i t i t tλ δ+ =  

to following i.e. variable 1 q
eqλ λ=  at any scale of relaxation rate ( λ )  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1d d
,

d d
q

eq
i t i t

i t t i t t
t t

λ δ λ δ+ = + =           (45) 

The initial condition is given as ( ) 0i t =  for 0t < . The above equation is 
having a free “scale” parameter λ  varying from zero to infinity. The solution of 
the above is ( ) e eqti t λ−= . We call this ( ) ( ) ( )1exp exp q

eqi t t tλ λ= − = −  as “im-
pulse response function” at a particular scale λ , i.e. we call it ( ) ( ), ; 0,h tλ λ∈ ∞  

( ) ( ) ( )1

, e ; 0 1
qt

i t h t q
λ

λ
−

= = < <                   (46) 

The above Expression (46) actually is valid for all scale λ  varying from zero 
to infinity. Thus on integrating this “impulse response function” ( ),h tλ  on the 
free variable ( λ ) from 0 to ∞ , we get the function of time and that is called 
“impulse response” or the Green’s function ( )g t  as depicted in following deri-
vation 
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( ) ( ) ( ) ( )1

0 0

1
, d e d

qt

q

q
g t h t

t
λ

λ λ λ
∞ ∞

− Γ +
= = =∫ ∫              (47) 

To get above Expression (47), we substitute in ( ) ( )1

0
e d

qt
g t

λ
λ

∞ −
= ∫ , 1 qt xλ =   

that makes following changes:  

( )
( )

1

1
11 1

1 1

;

1d d d d

d d

q
q

q q
qq q

q

x x
t t

q x qqx x x x
t t t t

q x
t

λ λ

λ λ

λ λ

−
−−

−

   = =   
   

      = = =      
      
 =  
 

         (48) 

Then by using definition of Gamma function i.e. ( ) 1
0

e dy y yαα
∞ − −Γ = ∫ , and its 

property ( )( ) ( )1α α αΓ = Γ +  the following steps are followed to get the desired  

expression i.e. ( ) ( )1
q

q
g t

t
Γ +

=  

( ) ( ) ( )

( )

( )( ) ( )

1
1 1

0 0

1

0

1 1

0
0

1
1

1
0 0

e d e d

e d ,

e d e d

1
e d e d

qt qx

q
qx

q q
x x

q
x x q

q q q

qg t x
t

q xx
t t

q x x q x xx x
t t t t t t

q q qq x qx x x
t t t t

λ
λ λ

λλ λ

∞ ∞− −−

∞
−−

− −∞
∞ − −

∞ ∞−
− − −

−

 = =  
 

   = =   
   

          = =          
          

Γ Γ +   = = = =   
   

∫ ∫

∫

∫ ∫

∫ ∫ qt

    (49) 

By changing q to n we get integral representation of nt−  as following 

( )( )
( )1

0

1 e d
ntnt

n n
λ

λ
∞ −− =

Γ ∫                      (50) 

For q = 1 case we have scale invariance λ thus ( ) ( ) ( )0 0, exp ; 1i t h t t qλ λ= = − = , 
where 0eqλ λ=  at all scales. For this case 1q =  “impulse response” or Green’s 
function is ( ) ( ) 0

0 , e tg t h t λλ −= =  same as “impulse response function” i.e. 
( )0 ,h tλ . 
We find that for a system where the equivalent relaxation rate is 1 n

eqλ λ= ; 
similar to a distribution function that we obtained as ( ) 1nHλ λ λ −


 gives relax-

ation current as ( ) ni t t−
. We write the two currents expressions ( ) ni t t−

 
obtained as following for 0 1n< <   

( ) ( )( )
( )1

1
0 0

1 1e d , e d
ntn n t nt t

n n n
λλλ λ λ

∞ ∞ −− − − −= =
Γ Γ∫ ∫          (51) 

Therefore we infer that the Curie-von Schweidler relaxation current for di-
electric excited by a step voltage that follows the relation ( ) ;0 1ni t t n− < <

 has 
distribution function ( ) 1nHλ λ λ −


 a power law or Zipfian distribution, with 

scale dependent relaxation rate described as 1 n
eqλ λ= . 
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Here we mention that in this study, we have derived mathematically several 
integral representations of Curie-von Schweidler relaxation function 
( ) ;0 1ni t t n− < <

, (19), (23), (24), (50). Those we list as  

( )
1

0

1 e dn n tyt y y
n

∞− − −=
Γ ∫ , ( )1 (1 )

20

(1 )
cos dn n nn

t y yt yπ

π

∞− − −Γ −
= −∫ ,  

( )
( )1

0

1 e dnn t yt y y
n

∞ − +− −=
Γ ∫  and 

( )
( )1

0

1 e d
ny tnt y

n n
∞ −− =

Γ ∫ . These are mathemati-  

cally equivalent representations of the function ( ) ;0 1ni t t n− < < , yet using for 
physical explanations one needs care. However, these are formulations for few 
definite integrals giving the same result as nt− .  

14. Appearance of Fractional Derivative—In the System  
Having Zipfian Power Law Distribution in  
Relaxation Rates, where the Equivalent  
Relaxation Rate Is Scale Dependent  

The delta-function for excitation as shown in above section gives homogeneous 
system with solution as ( ) ( )( )1ng t t n−= Γ +  i.e. described as following 

( ) ( ) ( ) ( ) ( ) ( ) ( )1d 1
; 0 1;

d
n

n

i t n
i t t n i t g t

t t
λ δ

Γ +
+ = < < = =        (52) 

Now let the system described above be excited by a signal proportional to 
( ) ( ) ( )1f t v t

, a derivative of voltage excitation function ( )v t ; so we write this 
as following 

( ) ( ) ( ) ( ) ( )1 1d
d

ni t
i t v t

t
λ+ =                      (53) 

Note that if ( ) ( )v t u t= , that is unit-step-function at time 0t =  then 
( ) ( ) ( )1v t tδ= , we recover the above homogeneous differential Equation (52). 

Then the response to this new excitation function ( ) ( )1v t  is convolution of  

Green’s function obtained i.e. ( ) ( )1
n

n
g t

t
Γ +

=  above (52), with the forcing  

function ( )f t  i.e. now ( ) ( )1v t
. We write the following steps to get ( )i t  for 

a forcing function ( )f t  

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )

( )
( ) ( )

( )

1

1

0

1

0

1
d ;

1 d , 0 1

t

n

t

n

i t g t f t g t v t

n
g t x v x x g t

t

v x
n x n

t x

= ∗ = ∗

Γ +
= − =

= Γ + < <
−

∫

∫

            (54) 

Multiplying and dividing the above Expression (54) with ( )1 nΓ −  and using 
the definition of fractional integral [6] [34] that is 

( )( ) ( )( ) ( ) ( ) ( )( )1
0 0

0

1 d , 0
t

t tf t D f t t x f x xαα α α
α

−−= = − >
Γ∫    (55) 

we get the following derivation 
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( ) ( ) ( ) ( )( )

( )
( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1

0

1 1
0

1 1
0

11
0 0

0

1 1 d
1

1 1 ; 1 0

1 1

1 1

1 1 , 1

nt

n
t

n
t

n
t t

n
t

t x
i t n n v x x

n

n n v t n

n n D v t

n n D D v t

n n D v t n

−

−

− −

−

−
= Γ + Γ −

Γ −

 = Γ + Γ − − > 

 = Γ + Γ −  

 = Γ + Γ −  

= Γ + Γ − <  

∫



         (56) 

In above derivation (56) we have used the relation 0 0 ; 0t tDα α α−= >  and 
the composition rule i.e. 0 0 0 ; 0; 0t t tD D Dα β α β α β+ = > <  [12] [31]. This deriva-
tion implies the appearance of fractional derivative for cases where several relax-
ation rates (ideally infinite of them) define a relaxation process; which are hav-
ing a scale dependence behavior, i.e. 1 n

eqλ λ=  with histogram distributed as 
Zipf’s power law i.e. ( ) 1nHλ λ λ −

 , and the relaxation is by Curie-von Schweid-
ler law i.e. ( ) ,0 1ni t t n− < < . Thus we have current through a system (having a 
complex relaxation process with several rate distributed as power law excited by 
a voltage ( )v t  as fractional derivative of it, i.e. ( ) ( )0

n
ti t D v t∝    . 

Let this system with scale dependent relaxation rates with ( ) 0i t =  for 0t <  
i.e.  

( ) ( ) ( ) ( )11d
; 0 1

d
ni t
i t v t n

t
λ+ = < <                  (57) 

be excited by a source which is a delta function say ( ) ( ) ( ) ( )( )1
0v t I tδ= ; at 

0t = . This means ( ) ( ) ( )0v t I u t= ; where ( )u t  is unit step function at 0t = . 
With this excitation the relaxation current would be fractional integral of the 
input excitation that is from as depicted in above derivation (56) i.e. 
( ) ( ) ( ) ( ) ( )( )1

0 01 1 n
ti t n n I tδ−= Γ + Γ −    . We have fractional integration of delta  

function [12] [31] as ( ) ( )
1

0
1

x x xα αδ
α

−=   Γ
 ; and using this formula we get  

following 

( ) ( ) ( ) ( ) ( )( )
( ) ( )

1
0 0

0

1 1

1

n
t

n

i t n n I t

n
i t I

t

δ−= Γ + Γ −   

Γ + 
=  

 



             (58)
 

This ( ) ( )( )0 1 ni t I n t−= Γ +  was what was derived in (49) above as impulse 
response (where 0 1I = ) i.e. ( ) ( )( )1ng t t n−= Γ + .  

If the excitation source of (57) is a step function as ( ) ( ) ( )( )1
0v t I u t=  at 

0t = ; meaning ( ) ( )0 ; 0v t I t t= ≥  where the unit step function is ( ) 1, 0u t t= ≥ ; 
( ) 0, 0u t t= <  then the relaxation current is fractional integration of order 

( )1 n− ; that is ( ) ( ) ( ) ( ) ( )( )1
0 01 1 n

ti t n n I u t−= Γ + Γ −    . Using the formula for  

fractional integration of a constant i.e. 
( )0

CC
1x xα α

α
=
Γ +

  [12] [31] we have;  

the relaxation current as following 
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( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )( ) ( )

( ) ( )

1
0 0

1

0

1
0

1 1

1 1
2

1
, 0 1

1

n
t

n

n

i t n n I u t

ti t n n I
n

n
I t n

n

−

−

−

= Γ + Γ −   

= Γ + Γ −
Γ −

Γ +
= < <

−



              (59) 

15. Conclusion 

The empirical law that is Curie-von Schweidler law, which is a type of 
non-Debye relaxation, (that is also considered to be universal law of dielectric 
relaxation of current, since late 19th century), states when dielectric is stressed 
with a constant voltage, gives relaxation current as ( ) ,0 1ni t t n− < < . We de-
rived the rate distribution-function (the histogram function) for current relaxa-
tion as Zipf’s power law distribution. The histogram function we found out to be 
of a function of type ( ) 1,0 1nH nλ λ λ − < < . We infer the Curie-von Schweidler 
relaxation ( ) ,0 1ni t t n− < <  is simultaneous multi-body relaxations which has 
a distribution for relaxation rates i.e. right-skewed. That is with large number of 
relaxations with lower value of rate (slow rates) followed with long tail of small 
number of relaxations with faster relaxation rates, relaxing simultaneously. We 
noted that the possibility of having Zipfian distribution arises due to very-very 
large ratio of maximum to minimum spread in the relaxation rates λ’s, and pos-
sibility of connected exponential distribution of many body simultaneous relaxa-
tions. The method we obtained for getting rate distributions of relaxation rates 
via formation of Laplace integral. When this method is extended for finding dis-
tribution of time constants though mathematically correct yet gave contrary 
physical interpretation. Thus we carried out the entire discussion with rate dis-
tribution functions i.e. ( )Hλ λ  and not the time constant distribution function 
i.e. ( )Hτ τ . We also showed that Curie-von Schweidler law gives constituent of 
current and voltage of capacitor via use of fractional derivative, i.e. 
( ) ( )0 ;0 1n

ti t D v t n< <  
, unlike classical capacitor relation i.e.  

( ) ( ) ( )1
ti t D v t   . We verified by using obtained by Zipf’s distribution as power 

law for Curie-von Schwidler current relaxation law, assuming the scale depen-
dence equivalent relaxation rate in the classical charging equation of capacitor 
with scale of relaxation varying from zero to infinity, i.e. 1 n

eqλ λ . We also re-
lated the Curie-von Schweidler relaxation law which gives a time varying rate i.e. 
( )t n tλ = , indicating that the relaxation starts with very-very high rate, and 

becomes slower and slower with elapse of time. The paper gives a possible foun-
dation for further studies in obtaining the rate relaxation distribution functions 
for other non-Debye type relaxation functions, and new type of explanation re-
garding reasons of Zipfian distributions. 
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