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Abstract
Recently, medical research has been shifting its focus to nanomedicine and nanotherapeutics in the pursuit of drug development
research. Quantum dots (QDs) are a critical class of nanomaterials due to their unique properties, which include optical,
electronic, and engineered biocompatibility in physiological environments. These properties have made QDs an attractive
biomedical resource such that they have found application as both in vitro labeling and in vivo theranostic (therapy-
diagnostic) agents. Considerable research has been conducted exploring the suitability of QDs in theranostic applications, but
the cytotoxicity of QDs remains an obstacle. Several types of QDs have been investigated over the past decades, which may be
suitable for use in biomedical applications if the barrier of cytotoxicity can be resolved. This review attempts to report and
analyze the cytotoxicity of the major QDs along with relevant related aspects.
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Introduction

Quantum dots (QDs) or semiconductor nanocrystals are inor-
ganic nanomaterials having dimensions in size range of 1–
10 nm. They are composed of a semiconductor central core
stabilized by a shell composed of inorganic salts (e.g., CdS,
ZnS) (Mansur 2010). A semiconductor has an electron-filled
region, the “valence band,” and an electron-deficient region,
known as the “conduction band.” When photon energy (hν)
equal to the bandgap energy irradiates the semiconductor, an

electron is promoted from the valence to the conduction band.
As a result, there will be a “hole” in the valence band due to
the absence of the electron. This hole can be phenomenolog-
ically treated as a “particle” with a particular effective mass
and a positive charge (Simon et al. 2010). QDs have unique
optical properties, such as sharp and symmetric emission
spectra and high fluorescence and photostability. In the past
two decades, QD utilization has attracted significant attrac-
tion. There are several commercial areas for which QD utili-
zation has been explored, such as biomedical applications.
Most of these efforts so far have been devoted to tuning their
semiconductor properties to develop smaller and more com-
plex devices with better performance (Field et al. 2020).

The shell and core of QDs are both semiconductors. QD nano-
particles are generally found to be unstable and only slightly sol-
uble in aqueous environments such as the cell cytosol (Hardman
2005). Also, water solubility can be enhanced through charged
compounds covalently attached to the surface of QDs via the thiol
group (Idowu et al. 2008). Molecules attached to the shell can be
selected such that they are further able to conjugate to functional
ligands or biomolecules (Mahmoudi et al. 2012; Hardman 2006).

Nanomedicine is a kind of medical intervention that takes
place at the molecular scale. The main purposes of
nanomedicine are in the treatment of disease and restoration
and repair of function to damaged tissues such as the bone,
muscle, or nerve (Juliano 2013). In both of these tasks, it is
necessary to visualize both cell structures and the molecules
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involved in their metabolism. One solution for this challenge
is to label them with a proper marker to make them easily
observable. One of the most common labeling techniques in
cell biology is fluorescence labeling (Koren et al. 2020). There
are two main groups of existing fluorescent labels: organic
dyes and inorganic nanocrystals. Organic dyes are the most
exploi ted probes in cel l b iology. However, fas t
photobleaching and broad overlapping emission lines are
drawbacks of the organic dyes. Their application area can be
significantly affected due to these drawbacks, especially in
long-term imaging and multicolor detection.

The unique properties of QDs, particularly their optical
properties, have made them a promising choice to be used as
fluorescent labels in analytical chemistry, cell biology, and
medicine. There are some important differences between the
common organic dyes and quantum dots as inorganic semi-
conductor dyes; for instance, the QD emission wavelength can
be quickly and precisely tuned by adjusting the nanocrystal
size, narrow symmetric emission spectra of QDs (which
makes the simultaneous excitation of multiple semiconductor
QDs possible) by only a single light source, less
photobleaching in QD due to no excitation induced damage,
and less exposure of the fluorescence center to solvent.
Furthermore, the obtained images using semiconductor QDs
often exhibit better contrast due to their high resistance to
bleaching, which are among their most important advantages.

Conjugation between QD and biomolecules (such as pro-
teins and enzymes) makes them applicable for use in a wide
range of applications, such as nanomedicine (Mansur 2010),
tracking proteins in living cell (Parak et al. 2002; Pathak et al.
2001), fluorescence labeling (Dwarakanath et al. 2004;
Peppley et al. 1999), biosensors (Sapsford et al. 2006), deep-
tissue imaging (Klostranec and Chan 2006), ex vivo/in situ
live cell imaging, and in vivo targeting of cells, tissues, and
tumors with monitoring by PET and MRI (Bera et al. 2010)
and high-throughput screening.

Physiochemical properties of QDs

Achieving an understanding of the interfacial characteristics
of QDs helps develop an understanding of how they interact
with the different biological systems (Clift and Stone 2012).
QD cores consist of elements from II–VI or III–Vof the peri-
odic table. QD cores are covered by a shell of semiconductor
compounds. A semiconductor is a material that has an electri-
cal conductivity lower than that of an electrically conductive
material and higher than that of a non-conductive material.
Examples of groups III–IV QDs include indium phosphide
(InP), indium arsenide (InAs), gallium arsenate (GaAs), and
gallium nitride (GaN) (Male et al. 2008). Examples of groups
II–VI QDs include zinc sulfide (ZnS), zinc selenium (ZnSe),
cadmium selenium (CdSe), and cadmium tellurium (CdTe)

(Taniguchi et al. 2011). Some studies have also shown that
higher atomic mass elemental combinations such as CdTe/
CdSe or CdSe/ZnTe can also act as QDs.

The functionalization of the core-shell can give the desired
bioactivity to QDs for application in biological systems
(Hardman 2006). Many biomolecules, such as proteins, pep-
tides, and lipids, can attach to the surface of the QD shell. As
mentioned earlier, the thiol group capping through covalent
linage was reported to be useful for enhancing water solubility
to the QDs (Idowu et al. 2008). Also, polymer coatings (such
as polyvinyl alcohol (PVA), polymethyl methacrylate
(PMMA), and polylactide co glycolides (PLGA)) can be ap-
plied to the surface of QDs which makes the semiconductor
QDs able to be targeted to specific organs within the body to
diagnose, treat, or prevent disease (Wang et al. 2012). The
most common polymer shell used, especially for
nanomedicine purposes, is polyethylene glycol (PEG).
Different methods such as electrostatic interactions, physical
adsorption (physisorption), multivalent chelation, and cova-
lent bonding can be used to functionalize the QD outer shell.
Applying surface attachments can have a significant effect on
the size of QDs (Clift and Stone 2012).

Several physical properties experience significant changes
when the bulk material is in the form of nano-sized particles.
For semiconductor nanoparticles, changing the particle size
noticeably affects the bandgap. The average distance between
the electron, which is photogenerated, and the hole is called
the exciton Bohr radius (Zhang et al. 2014). As the particle
size of the semiconductor approaches its exciton Bohr radius,
the dependence of its optical and electrical properties on its
physical dimensions becomes higher (Amelia et al. 2012).
Because the QD particles are small, the generated electrons
are confined to a smaller space than the natural space they
would occupy in bulk semiconductors. This quantum confine-
ment is the reason that the size of QD has a strong effect on the
optical and electrical properties (Zhu et al. 2017). As the QD
particle size decreases, there is a higher confinement degree,
which results in higher bandgap energy.

As a consequence, the QD particle size tunes its bandgap
energy and the emission wavelength. By adjusting the particle
size, it is possible to prepare a QD for fluorescent emission from
the UV into the IR spectra. Multiplexing of QD signals adds the
possibility of imaging and tracking multiple molecular targets
simultaneously. Furthermore, it creates promising opportunities
in medical applications, since numerous genes and proteins are
involved in many diseases. QD signals can be multiplexed as a
result of broad and narrow absorption bands combination.
Emission behavior of QDs can be tuned by their structural mod-
ifications which gives the possibility of fabricating materials for
efficient light emitting diode applications (Ramalingam et al.
2019). Common organic dyes have wide emission bands, which
significantly increase the complexity of detecting multiple
signals.
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Additionally, there are some essential fluorophores in biolog-
ical tissues and fluids which produce a background signal. This
background signal significantly decreases the detection ability
and sensitivity of the probe. Biological fluorescence typically
shows high background intensity in the blue-to-green spectral
region. This is why most cell and tissue micrographs have a faint
greenish color. QDs can minimize such auto-fluorescence since
they can be tuned to emit in desired spectral regions.

In summary, a variety of different surface modifications
(surface-covered functional groups and biomolecules
covering the surface of QDs) can be applied to the surface of
QDs, which changes their physiochemical properties. Fig. 1
schematically represents the structure and different core re-
gions of the quantum dot along with the common surface
capping agents (Maysinger et al. 2007)

It is important to know that the physiochemical properties
of QDs can be adjusted and tuned at their synthesis stage.
Generally, it can be said that the physiochemical properties
of QDs are considered to be defined by their core-shell con-
jugate constitution (Hoshino et al. 2004).

Mechanisms of QD cytotoxicity

Although QDs have received much attention and have entered
into preclinical use, one key unresolved issue is their potential
toxicity. It has been suggested that QD toxicity can be rational-
ized based on their physicochemical properties, such as core-
shell materials, size, surface charge, ligands nature, and interac-
tion with other present molecules in biological media (Oh et al.
2016). In other words, their toxicity may be due to either some
inherent chemical feature or their nanoscale properties. Aspects
related to inherent toxicity are mostly due to the elements

contained with the QD core, such as cadmium and selenium,
which exhibit significant toxicity to both cell cultures and live
animals. Such studies have demonstrated toxicity at the supra-
micromolar concentrations. Elemental toxicity is considerably
dependent upon the accessibility of the core QD atoms to the
surrounding solvent (Kirchner et al. 2005).

Regarding this point, cadmium atom toxicity is related to
its relative permeability to oxygen and protons of conjugated
groups. Oxygen can diffuse to the surface of the QD shell and
trigger oxidation of the core atoms. Hydrogen ions can also
cause protonation of the ligands and cause them to become
detached from the QD surface (Derfus et al. 2004; Aldana
et al. 2001). The biochemical mechanisms resulting in QD
cytotoxicity are still controversial. Studies were reported
which analyzed the effect of QDs on the liver and found that
there is a direct correlation between Cd2+ release and cytotox-
icity based on a mechanism involving inactivation of essential
mitochondrial proteins through Cd-sulfhydryl group interac-
tions (Derfus et al. 2004). It was demonstrated that the
adsorption/accumulation of QDs on the cell surface could also
impair cell function. Based on these observations, it was pro-
posed that QD toxicity was a function of cell ingestion/uptake
and not due to possible leaching of ions from the QDs into
solution external to the cells (Parak et al. 2005). Another pos-
sible mechanism of QD toxicity is the generation of reactive
oxygen species, such as free radicals and the creation of sin-
glet oxygen (Zhou et al. 2017). Generation of such reactive
oxygen species can cause irreversible damage to nucleic acids,
enzymes, and cellular components such as mitochondria and
both the plasma and nuclear membranes (Samia et al. 2003).
Another study observed that CdSe and CdSe/ZnS QDs were
able to generate free radicals (Choi et al. 2007). Another study
postulated that surface oxidation of QDs leads to the

Fig. 1 Structure of quantum dot with surface coating agents. Reprint with permission (Maysinger et al. 2007)
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generation and release of free cadmium ions, causing apopto-
sis (Derfus et al. 2004). It is also reported that cytotoxicity of
QDs can be due to the type of molecules adsorbed to the
surface of QDs in addition to the monocrystalline particle
itself (Kirchner et al. 2005).

Decreasing the toxicity of QDs in biomedical
applications

A major goal of QD research is its use in the development of
biomedical applications. Among the various applications of
QD in the biomedical field are the following: bioimaging,
targeted drug delivery, and photodynamic therapy. The fol-
lowing factors determine the criteria of QDs suitable for
employing in biomedical applications: (i) biocompatibility,
(ii) cytotoxicity, and (iii) fluorescence behavior. Concern over
QD cytotoxicity has been an important research topic over the
last few decades, and various methods have been reported to
reduce the toxicity of QD during their preparation. Silicon
QDs are a family of well-studied QDs owing to their excellent
biocompatibility and tunable physical and chemical proper-
ties, making them good candidates for theranostic applications
(Sivasankarapillai et al. 2019). However, when we search
through the literature focusing on the cytotoxic properties of
all types of QDs, the diverse nature of the individual QD
systems makes comparison difficult. This feature creates an
attempt to generalize the toxicity of QDs, a nearly impossible
task. In this section, we briefly discuss the cytotoxicity aspects
of the most explored class of QDs available in the literature.

A significant observation was reported that CdTe QDs are
highly cytotoxic due to the release of cadmium ions. The
authors demonstrated that the presence of a ZnS outer-layer
significantly improves the biocompatibility of QDs, with no
observed cytotoxicity even at very high concentrations and
long-time exposure in cells. However, it should be noted that
the cytotoxicity of CdTe QDs cannot be solely attributed to the
toxic effect of free Cd2+ ions through a systematic investiga-
tion on HEK293 cells (Su et al. 2010). This study demands
further investigation of the specific properties of QDs respon-
sible for the observed cytotoxicity of CdTe QDs. Another
study investigated the cytotoxicity of a series of aqueous syn-
thesized QDs such as CdTe, CdTe/CdS core-shell structured,
and CdTe/CdS/ZnS core-shell-shell structured QDs. The au-
thors suggested that released cadmium ions were responsible
for the observed cytotoxicity of cadmium-based QDs (Chen
et al. 2012). This study also provides additional features of
QDs responsible for cytotoxicity using genome-wide gene
expression profiling and subcellular localization of synthe-
sized QDs with synchrotron-based scanning transmission X-
ray microscopy (STXM).

Interesting work was reported in which L-cysteine (Cys)
capped CdTe QDs were prepared in an aqueous medium. This

study suggested that the capping agent reduced cytotoxicity
upon the basis of experiments involving HeLa cancer cell
lines (Kim et al. 2015). For cytotoxicity of CdSe/CdS QDs,
it was paradoxically found that comparing toxicity based on
particle concentrations was extremely difficult (Soenen et al.
2015). QDs possessing significant cytotoxicity have also been
found to rapidly degrade under endosomal pH, resulting in
leached Cd (II). Cytotoxicity of CdSe, CdTe, and InP based
on four QD formulations involving (i) mercaptopropionic
acid-modified CdSe/CdS/ZnS QDs (CdSe-MPA), (ii)
PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs
(CdSe-Phos), (iii) PEGylated phospholipid encapsulated InP/
ZnS QDs (InP-Phos), and (iv) pluronic F127 encapsulated
CdTe/ZnS QDs (CdTe-F127) was investigated. Interestingly,
two cancer cells (gastric adenocarcinoma (BGC-823) and neu-
roblastoma (SH-SY5Y) showed different toxicity responses
(Liu et al. 2015). This study gives valuable insight to the fact
that the toxicity of QDs does not solely depend on a single
factor but rather depends on a combination of elements from
the particle formulations and extent of cellular uptake.

Meta-analysis is a valuable tool to apply data from the
literature when dealing with a vast amount of scientific docu-
mentation. Literature is available, which shows meta-analysis
investigation on the toxicity of Cd-based QDs using random
forest regression models to analyze the data. The authors re-
ported that the toxicity of QD is closely correlatedwith surface
properties, including shell composition, ligand and surface
modifications, QD diameter along with assay type, and expo-
sure time to the biological environment (Oh et al. 2016). Also,
aspects of the mechanism of cytotoxicity of Cd containing
QDs were reviewed. Using CdTe/CdS 655 (QD 655), the
authors showed that this QD elicited toxicity in vitro and
in vivo by activating cell autophagy (Fan et al. 2016).

The effect of negatively charged CdTe QDs (− 21.63 ±
0.91 mV) on human umbilical vein endothelial cells
(HUVECs) was reported. The authors said that both
caveolae/raft- and clathrin-mediated endocytosis were in-
volved in the endothelial uptake of CdTe QDs, and the QDs
were transported to the endoplasmic reticulum (ER). The re-
sults indicated that the toxicity mechanism is initiated through
stress response by upregulation of the ER stress markers
GRP78/GRP94 and activation of protein kinase RNA-like
ER kinase-eIF2α which activates the transcription factor 4
pathway. This study reported that all three ER stress-
mediated apoptosis pathways were activated and that the ER
was involved in the direct participation of CdTe QDs-caused
apoptotic cell death in HUVECs (Yan et al. 2016). The cellular
uptake of four CdSe/ZnS QDs (COOH CdSe/ZnS 525,
COOH CdSe/ZnS 625, NH2 CdSe/ZnS 525, and NH2 CdSe/
ZnS 625) and their ability to induce physiological responses in
Phanerochaete chrysosporium (P. chrysosporium) was stud-
ied and reported (Hu et al., 2017). The authors showed that the
four CdSe/ZnS QDs accumulated mostly in the hyphae and
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caused oxidative stress to P. chrysosporium in the tested con-
centration range (10–80 nM). Furthermore, this work provid-
ed evidence for the fact that cytotoxicity of these QDs was
related to the physicochemical properties of the QDs, such as
particle size and surface charges. Another exciting study re-
ported nontoxic concentrations of CdSe/ZnS core/shell QDs
vary between 4.13 and 12.7 nm/ml and identified the limit of
CdSe/ZnS QD concentration at which they manifest them-
selves as reasonably safe and nontoxic agents for biological
applications (Bozrova et al. 2018).

Graphene has generated much interest due to its unique
electronic properties. Significant theoretical investigations on
graphene quantum dots (GQDs) using molecular dynamics
simulations were reported (Liang et al., 2016). At high GQD
concentrations, the GQDs aggregated in water but disaggre-
gated upon entering into the membrane interior. Moreover,
high concentrations of GQDs could induce changes in the
structural properties and fluidity of the lipid bilayer. On this
basis, the authors speculated that QDs might affect cell signal
transduction. On the other hand, the authors found that GQDs
of relatively small size was not large enough to mechanically
damage the lipid membrane and thus concluded that cytotox-
icity of GQDs was size-specific and that small-sized QDs may
be more appropriate for biomedical application.

Gradient-alloyed quantum dots (GA-QDs) are a novel class of
QDs for biomedical imaging applications due to their improved
fluorescent and luminescent properties over conventional QDs.
Toxicity aspects of these compounds are of great importance to
fully utilize their superior luminescent properties for clinical ap-
plications. Peynshaert and coworkers report on the relation be-
tween the surface coating of GA-QDs and their cytotoxicity. The
authors carefully examined the toxicity of two identical gradient-
alloyed QDs, differing only in their surface coatings, namely 3-
mercaptopropionic (MPA) acid and polyethylene glycol (PEG)
on HeLa cells. Both types have a gradient CdSexS1-x core
surrounded by a ZnS shell. The authors observed that
PEGylated QDs were significantly more toxic due to increased
ROS production and lysosomal impairment, which further
caused autophagy dysfunction (Peynshaert et al. 2017).
Toxicity of halloysite nanotube stabilized CdS QDs on cell lines
derived from human skin fibroblasts and prostate cancer cells
was reported. The authors suggest that the immobilization of
QD onto the surface of halloysite nanotubes may lower the cy-
totoxicity induced by released Cd (II) ions (Stavitskaya et al.
2018). Towards this point, the azine-mixed system, HNTs-
azine-Cd0.7Zn0.3S, showed the lowest cytotoxicity due to the
lowest release of Cd (II). Another study compared the cytotox-
icity of CdTeQDs against the rate and extent of their degradation
within the cell. The authors used a validated high-content screen-
ing approach, and QD degradation was monitored through the
loss of fluorescence intensity (Manshian et al., 2017). This work
established the strong dependence of the cytotoxicity of CdTe
QDwith its degradation. As mentioned, targeted drug delivery is

a significant area of QD research since QDs can be used as both
drug carrier vehicles and also for the bioimaging process for
diagnostic purposes. Several works report on the cytotoxicity
evaluation of drugs conjugated with QDs, especially anti-
cancer drugs. Methotrexate (MTX) is a potent anticancer drug
which is limited in use due to the development of drug resistance
by malignant cells. An exciting work synthesized MTX-
conjugated l-cysteine capped CdSe QDs (MTX-QD nano-con-
jugates) and evaluated their uptake and cytotoxicity in KB cells
with/without resistance to MTX (Johari-Ahar et al. 2016). The
authors observed thatMTX-QD nanoconjugates efficiently inter-
nalized into the cancer cells, and induced markedly high cyto-
toxicity (IC50, 62μg/mL) in theMTX-resistant KB cells as com-
pared to the free MTX molecules (IC50,105.0μg/mL), whereas
these values were respectively about 3.1 and 3.6 ng/mL in the
MTX-sensitive KB cells.

Graphene QDs (GQDs) are essential candidates for bio-
logical applications, and these aspects are recently reviewed
and available in the literature (Li et al., 2019). An interesting
genotoxicity analysis of N-doped GQDs was reported
(Şenel et al., 2019). DNA binding analysis showed that N-
doped GQDs interact with CT-DNA via both intercalation
and electrostatic binding. The study of the DNA cleavage
patterns showed that the N-doped GQDs cleaved DNA
without any external agents and thus established significant
genotoxicity. Also, siRNA loaded GQDs showed an excel-
lent possibility to act as potential antitumor agents through
the induction of DNA and mRNA breakage. Surface func-
tional groups play an essential role in determining the tox-
icity of QDs as they act as the first point of contact between
the compound and biological environment. Thus it is essen-
tial to analyze the influence of functional groups regarding
their role in the toxicity of QDs. Also, the influence of func-
tional groups on the toxicity of graphene QDs was investi-
gated and reported. The authors selectively deposited either
ketone carbonyl, carboxylic, or hydroxyl groups on GQDs
and then compared the ROS generating ability of the
different GQD derivatives (Zhou et al. 2017). This
study reports that the ROS production ability of GQDs
is closely related to the reduced state of the surface
oxygen functional group. Removal of the oxygen func-
tional groups on GQDs can increase the photostability
and lower the photo-induced cytotoxicity.

A number of investigations have examined the change in
toxicity of GQDs when in association with other metal ions like
silver nanoparticles (Ag NPs). Literature suggests that the use of
PEGylated silver nanoparticles decorated with graphene quan-
tum dots (Ag-GQDs) for targeted delivery of doxorubicine
(DOX) against HeLa and DU145 cancer cells was reported
in vitro (Habiba et al. 2015). The authors used a photosensitizer
to investigate the synergistic effect of chemo and photodynamic
therapy in this system. The treatment of Ag-GQDs conjugated
with doxorubicin under irradiation with a 425-nm lamp
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significantly increased the death in DU145 and HeLa cells.
Interestingly, the toxicity of graphene oxide (GO) QDs is found
to be rectified on the coating with other biomolecules like folic
acid. Another study demonstrated the lack of cytotoxicity of folic
acid-modified graphene oxide (GO) quantum dots using HaCaT
cells (Goreham et al. 2018). The modified GO QDs were found
to be non-toxic to macrophage cells even after prolonged expo-
sure and high concentrations. This finding needs to be further
investigated as it raises the possibility of implementingGQDs for
biomedical applications by resolving their toxicity through the
surface coating.

The toxicity of CuInS2 quantum dots (CIS QDs) was ana-
lyzed using Caenorhabditis elegans (C. elegans) as a model
organism (Chen et al. 2015). The authors synthesized CIS
QDs through the hydrothermal method and observed that
QDs have no significant cytotoxicity in the organism and have
excellent chemical stability. A similar work evaluated the cy-
totoxicity of CuInS2/ZnS QDs coated with polymeric shells
and found them to have good hemo-compatibility and negli-
gible cytotoxicity even after their penetration into cells
(Speranskaya et al. 2016). This study reveals that cellular up-
take is not necessarily the reason for cytotoxicity. The toxicity
of ZnO QDs was found to be enhanced in the presence of Cu
(II) ions along with the concomitant production of ROS spe-
cies in Escherichia coli cells (Moussa et al. 2016).

Similarly, the cytotoxicity of InP/ZnS QDs having three
different surface functional groups, NH2, COOH, OH, were
evaluated and reported. The uptake efficiency of QDs, the cell
apoptosis, and ROS generation was assessed on two different
cell lines (human lung cancer cell HCC-15 and alveolar type II
epithelial cell RLE-6TN). The authors observed that all the
InP/ZnS QDs were able to enter the cells, with high uptake
efficiency for InP/ZnS-COOH and InP/ZnS-NH2 exhibited at
low concentrations of QD (23 nm/ml) (Chen et al. 2018). High
doses of InP/ZnS QDs caused the cell viability to decrease,
and InP/ZnS-COOH QDs and InP/ZnS-NH2 QDs appeared to
be more toxic than InP/ZnS-OH QDs. Besides, all these InP/
ZnS QDs promoted cell apoptosis and intracellular ROS gen-
eration after being co-cultured with cells.

To summarize this section, we emphasize the following
points: Despite the many advantages shown by QDs, there
are concerns regarding their cytotoxicity. It is difficult to pro-
vide a blanket evaluation of the toxicity of QDs because there
are so many different categories according to their method of
production, size, composition, charge, concentration, outer
coating (capping material, functional groups), oxidative prop-
erties, photolytic conversion rate, and mechanical stability. All
of these factors are determining factors in QD toxicity. Several
studies have shown that QDs can cause damage to cells and
produce significant DNA damage due to acute toxic effects.
Evidence showed that if QDs were retained in cells or accu-
mulated in the body for an extended period, their coatings
might be degraded, yielding “naked”QDs can induce damage

to the plasmamembrane, mitochondrion, and nucleus, leading
to cell death (Lovrić et al. 2005). Significant work was report-
ed. The study of Clift et al. [13] that assessed the effects of a
series of different surface-coated QDs on J774.A1 macro-
phage by cytotoxic examination (MTT assay and LDH re-
lease) showed that hydrophobic QDs caused a significant re-
duction in the cell metabolic activity (MTT assay) with sub-
sequent release of LDH from J774.A1 macrophages (Clift and
Stone 2012). It was also reported that QDs might induce cy-
totoxic effects in L929 fibroblasts at high exposure concentra-
tions (Zhang et al. 2015a, b). The QDs were also found to
cause oxidative stress, which led to DNA damage and subse-
quent apoptosis in liver cells. From a broader perspective, an
assessment of QD blood compatibility showed that concentra-
tion of 29 ng/mL might serve as a threshold level for the types
of QDs used in this study (also perhaps particular to their use
in L929 fibroblast studies). Commercially available CdSe
core/ZnS shell QDs of two different sizes (QD 565 and QD
655) and three different surface coatings (PEG, PEG-amines,
and carboxylic acids) were used to test the hypothesis that
QDs would be differentially taken up by the human epidermis
(Ryman-Rasmussen et al. 2007). The authors concluded that
grouping or classification of QDs about their potential toxicity
based on size or other physicochemical properties alone
would prove troublesome. They suggested that each QD type
needs to be characterized individually to assess their potential
toxicity. The findings in that work indicate that under certain
conditions, QDs may affect environmental and human health,
which needs to be individually determined for utilizing QDs
for various applications.

Effect of QDs on environment and ecosystem

Particle size and surface area are important material character-
istics from a toxicological perspective. As the size of a particle
decreases, its surface area to volume ratio increases allowing a
more significant proportion of its atoms or molecules to be
displayed on the surface rather than the interior of the material.
The change in the physicochemical and structural properties
of engineered nanomaterial with a decrease in size could be
responsible for a number of material interactions that could
lead to toxicological effects. The very properties of nanoscale
particles being exploited in certain applications (such as high
surface reactivity and the ability to cross cell membranes)
might also be responsible for their adverse health and environ-
mental impacts. As a result, nanomaterials may present new
health and environmental risks that have not been encountered
before.

An increase in nanomaterial research will undoubtedly lead
to the effective dumping of a lot of QDs into the environment,
which may ultimately result in environmental toxicity (Zhang
et al. 2012; Rocha et al. 2017). To date, there are no detailed
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studies on the mechanism of transport and biodegradation or
association of QDs with biological materials that may elimi-
nate nanomaterials. The presence of nanomaterials in the en-
vironment also affects the ecosystem. In a recent study, the
toxicity of fullerene-C60 in two aquatic species, Daphnia and
Pimephales, showed elevated lipid peroxidation (LPO) in the
brain, significantly increased LPO in gill, and resulted in a
significant increase in expression of genes related to the in-
flammatory response and metabolism. Processes that control
transport and removal of NPs in water and wastewater have
not yet been investigated to understand the fate of QDs.
Studies on the effect of QDs on plants and microbes are also
largely absent. The fate of nanomaterials in an aqueous envi-
ronment is controlled bymany biotic/abiotic processes such as
solubility/dispersibil ity, interactions between the
nanomaterials, and natural/anthropogenic chemicals in the
ecosystem. Ecological risk assessment is essential to under-
stand the environmental implications of nanomaterials. Before
unknowingly dumping a large number of dangerous
nanomaterials into the environment, we need to investigate
the solubility and degradability of engineered NPs in soils
and waters, to establish baseline information on their safety,
toxicity, and the adaptation of soil and aquatic life.

Until now, there are different opinions about the toxicity of
QDs. Thus, we list here the limited number of toxicity studies
conducted at four levels of organism complexity (i) in amoeba
(as a primary eukaryote), (ii) in plants, (iii) in animals, and (iv)
in aquatic life (Valizadeh et al. 2012).

(i). In amoeba: It has been determined that QD labeling had
no detectable effect on cell growth and had no deleteri-
ous effects on cellular signaling and motility during the
development of the Dictyostelium discoideum cells
(Jaiswal et al. 2003).

(ii). In-plant: The ratio of reduced glutathione levels (GSH)
relative to the oxidized glutathione (GSSG) in plants
suggests that QDs caused oxidative stress on the plant
at this condition (Navarro et al. 2012).

(iii). In animal:Yan et al. investigated the potential vascular
endothelial toxicity of mercaptosuccinic acid (2-
sulfanylbutanedioic acid)-capped QDs in vitro. Their
results suggested that QDs could not only impair the
mitochondria but also exert endothelial toxicity through
activation of the mitochondrial death pathway and in-
duction of endothelial apoptosis (Yan et al. 2011).

More recently, Chen et al. have studied the cytotoxicity of
CdTe/CdS (core-shell) structured and also CdTe/CdS/ZnS
(core-shell-shell) structured aqueous synthesized QDs, and
their results suggest that the cytotoxicity of CdTe QDs not
only comes from the release of Cd2+ ions but also intracellular
distribution of QDs in cells and the associated nanoscale ef-
fects as discussed earlier (Chen et al. 2012).T
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(iv). In aquatic ecosystems: zebrafish embryos provide an
economical medium for screening the toxicity of QDs
(Fako and Furgeson 2009). Assessment of nanotoxicity
can be semi-quantified as sublethal toxicities (viz. sur-
vival of the embryo and the severity of phenotypic and
gross morphological differences). This screening
toolkit allows several parameters to be varied, including
concentration, nanomaterial size, chemical composi-
tion, density, route of exposure, time of exposure, and
the point of embryonic development at which the
nanomaterial is administered. To semi-quantify these
physicochemical metrics and associated-toxicity in the
zebrafish model, a modified scoring spectrum was used
based on the phenotypic changes of the zebrafish em-
bryos, ranging from (normal phenotype) 1 (minor phe-
notypic changes), 2 (moderate alterations), 3 (severe
embryo deformation), and 4 (embryo death) (Deng
et al. 2018). Unlike traditional biochemical assays that
explore specific molecular targets, the zebrafish model
relies on the analysis of phenotypic changes. This meth-
od allows researchers to bypass several roadblocks
commonly associated with current drug discovery ef-
forts, which are based on in vitro biochemical screens
followed by in vivo mammalian studies. The zebrafish
model, therefore, potentially serves as a rapid and cost-
effective method to conservatively assess the toxicity of
novel pharmaceuticals, flagging those samples
displaying toxicity for closer scrutiny and possible re-
moval from continued drug development.

Most of the current literature on the toxicity of NPs comes
from studies on mammalian cells, but it is essential to know their
potentially harmful effects on the environment. Frequent detec-
tion of NPs in the aquatic environment reflects a rapidly growing
number of engineered nanoparticles being used and their incom-
plete removal during passage through sewage treatment plants
and relatively high persistence in water matrices (Farkas et al.
2011; Mühling et al. 2009). Particularly, hotspots of NPs could
be present in hospital wastewater due to their ever more frequent
use in medical applications for drug delivery.

Recent studies have confirmed that NPs are released into
the environment and, in particular, the aquatic environment.
For example, significant concentrations of nano-Ag can be
released from AgNP-containing textiles during washing
(Geranio et al. 2009). At the same time, contamination of
sewage sludge with Ag and AgNPs has been detected (Kim
et al. 2010), and 0.1 μg L−1 AgNPs have been identified in
wastewater effluents (Mitrano et al. 2012). Zinc oxide nano-
particles (ZnO NPs) are also one of the most used NPs, and
consequently, they are also significantly dispersed in the en-
vironment (Kahru and Dubourguier 2010).

To summarize this section: Environmental risk assessment is
required to ensure the safety of nanomaterials and to protect the Ta
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environment from unintentional adverse effects. In a regulatory
context, this requires reliable and relevant environmental hazard
data upon which predicted no-effect concentration (PNEC)
values could be estimated. For nanomaterials, it is well-known
that ecotoxicity testing is not straightforward and that the appli-
cability of commonly used test guidelines and guidance can be
questioned. Nanomaterials are known to behave very differently
in ecotoxicity test systems compared to soluble chemicals, for
which most guidelines were intended. This current lack of ap-
propriate guidance implies that previous and current guideline-
based hazard testingmay not be suitable for testing of engineered
nanomaterials (ENMs). It further entails that the data, upon
which currently available PNEC values have been established,
may not correctly reflect the actual ecotoxicity of these ENMs.
This means that existing data from non-standard tests—or tests
following modified test guidelines—in some cases may provide
information on equal or higher reliability compared to strictly
guideline-based tests. This would be the case if these modifica-
tions were applied to cater for nanomaterial properties and be-
havior in the test system. Such data should therefore not per se be
considered less reliable as a basis for PNEC estimation.

One key area of research is the improvement of stability,
safety, and efficacy of NPs through binding to peptides or
peptidomimetics. Modifications of the surface of NPs with
peptides will allow a reduction of their toxicity and enhance-
ment of stability, while perhaps also determining an improve-
ment of the properties of the peptides. NPs can serve as inno-
vative drug delivery systems for antimicrobial peptides
(AMPs) offering the possibility to target the delivery of
AMPs to a specific site with controlled-release over time, thus
minimizing side effects and increasing efficacy also due to
NPs potential multi-valency (Vale et al. 2016; Galdiero et al.
2015). Inorganic nanomaterials have attracted significant at-
tention since they display their antimicrobial activity, which
may provide additive or synergistic effects when combined
with AMPs (Tal et al. 2002).

Tables 1, 2, 3, and 4 summarize more results for toxicity
associated with various QDs available in the literature.

Conclusion

The world of nanomaterials is extremely different from the
world of bulk materials. Size-dependent properties make it
nearly difficult to generalize when comparing the properties
and behavior of different QD. There has been tremendous
advancement in material science research after the discovery
of QDs. Multiple factors make QDs useful for a wide range of
purposes, and more applications are still in exploration. QD
research has allowed the fabrication of new classes of QDs
having tunable properties using easy preparation processes.
Even though these new classes of QDs possess ever-better
physical properties, aspects related to their cytotoxicity haveTa
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held QD research back. Thus in order to address the chal-
lenges of QD research, it is essential to look deeply into what
features make QDs toxic. In this review, we have made a
detailed survey of recent works reported regarding the toxicity
of QDs and summarized the cytotoxicity of QDs at the cellu-
lar, organism, and environmental levels. It is evident and
worth mentioning that the toxicity of QDs depends on various
factors and varies in a complex manner, which makes it diffi-
cult to generalize the aspects of toxicity. These factors include
the nature of the biological environment, physiological param-
eters, nature of agent used for surface capping or surface
functionalization, the extent of cellular uptake, and also on
the nature of the QD employed. Thus there is urgency for
novel analytical and predictive tools to provide a clearer un-
derstanding of the factors influencing QD toxicity.
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