
Citation: Smiliotopoulos, C.;

Barmpatsalou, K.; Kambourakis, G.

Revisiting the Detection of Lateral

Movement through Sysmon. Appl.

Sci. 2022, 12, 7746. https://doi.org/

10.3390/app12157746

Academic Editor: Konstantinos

Rantos, Konstantinos Demertzis and

George Drosatos

Received: 11 July 2022

Accepted: 28 July 2022

Published: 1 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Revisiting the Detection of Lateral Movement through Sysmon
Christos Smiliotopoulos 1 , Konstantia Barmpatsalou 1 and Georgios Kambourakis 2,*

1 Department of Information and Communication Systems Engineering, University of the Aegean,
83200 Karlovasi, Greece; csmiliotopoulos@aegean.gr (C.S.); konstantia@aegean.gr (K.B.)

2 European Commission, Joint Research Centre, 21027 Ispra, Italy
* Correspondence: georgios.kampourakis@ec.europa.eu or gkamb@aegean.gr

Abstract: This work attempts to answer in a clear way the following key questions regarding the
optimal initialization of the Sysmon tool for the identification of Lateral Movement in the MS
Windows ecosystem. First, from an expert’s standpoint and with reference to the relevant literature,
what are the criteria for determining the possibly optimal initialization features of the Sysmon event
monitoring tool, which are also applicable as custom rules within the config.xml configuration file?
Second, based on the identified features, how can a functional configuration file, able to identify as
many LM variants as possible, be generated? To answer these questions, we relied on the MITRE ATT
and CK knowledge base of adversary tactics and techniques and focused on the execution of the nine
commonest LM methods. The conducted experiments, performed on a properly configured testbed,
suggested a great number of interrelated networking features that were implemented as custom rules
in the Sysmon’s config.xml file. Moreover, by capitalizing on the rich corpus of the 870K Sysmon
logs collected, we created and evaluated, in terms of TP and FP rates, an extensible Python .evtx file
analyzer, dubbed PeX, which can be used towards automatizing the parsing and scrutiny of such
voluminous files. Both the .evtx logs dataset and the developed PeX tool are provided publicly for
further propelling future research in this interesting and rapidly evolving field.

Keywords: lateral movement; Sysmon; dataset; attacks; network security; hacking

1. Introduction

Lateral Movement (LM) refers to a wider set of techniques that adversaries use to gain
initial access through a network’s vulnerable endpoint for the lateral escalation of their
presence in search of sensitive data and other valuable assets to compromise or exfiltrate.
Simply put, after an attacker has acquired an initial foothold in a network and performed
an internal reconnaissance, they will most probably seek to expand and reinforce that
foothold while systematically gaining further access to important data or systems. For
effectively dealing with such incidents in a prompt and effective manner, e.g., avoiding
the overabundance of security alerts and false positives, a targeted and fresh approach
is a necessity. Once the threat is remediated, and the log evidence related to the attack is
collected, the impact calculation of the damage will be used as the basis for the constitution
of remedial measures toward an effective Endpoint Detect and Response (EDR) policy.

While the configuration of a network targeted by an adversary varies depending on
its structure, there are some common patterns regarding LM methods. At first, typically,
the attacker concentrates on the identification and enumeration of the targeted system, in
parallel with the exfiltration of crucial information with tools such as Mimikatz, ipconfig,
systeminfo, and others. The initial target is chosen with mediation, as this will be the first
step for the rest of the LM to be expanded. Credential dumping follows; this will permit
the perpetrator to acquire the necessary credential information, leveraging tools such as
Mimikatz, pwdump, LazagneProject, or even malware in an effort to infect the targeted host
and acquire administrative access. Common techniques presented in MITRE’s records [1]
reveal that in such conventional similar assault cases, the adversaries repeatedly leverage

Appl. Sci. 2022, 12, 7746. https://doi.org/10.3390/app12157746 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157746
https://doi.org/10.3390/app12157746
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7530-7152
https://orcid.org/0000-0002-1097-7742
https://orcid.org/0000-0001-6348-5031
https://doi.org/10.3390/app12157746
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157746?type=check_update&version=2

Appl. Sci. 2022, 12, 7746 2 of 30

a limited number of penetration tools. Therefore, the key points that this paper aims to
address are narrowed down to the fundamental and technical particles of each attack,
specifically related to the so-called “5Ws” analysis, namely Who-What-When-Where-Why.

Precisely, the work at hand relies on the execution of the most frequently encountered
LM techniques based on their impact, as presented on MITRE’s ATT and CK database of
adversaries, tactics and techniques [1]. Particularly, we exploit a properly designed testbed
via nine diverse LM techniques, namely “Exploitation of Remote Services (ERS)” (four
variants of ERS attack), “Pass the Hash (PtH)”, “Pass the Ticket (PtT)”, “Golden Ticket
(GT)”, “Silver Ticket (ST)” and “Post Exploitation on Stored Passwords with (LZP)”. Our
aim is to provide concrete answers to the following key questions: (a) Based on related
theory and domain expertise’s best practices, are there any solid criteria for determining the
most effective, upon LM identification, rule-based features of the system monitoring tool
(Sysmon)?, and (b) how could the proposed criteria combined with the extracted features
lead to the formation of a top-notch rule-based and event-driven methodology, which
generalizes the identification of any LM attack? Overall, the main contributions of this
work vis-a-vis the relevant literature are summarized as follows:

• From a defender’s viewpoint, we elaborate on the outcomes of the executed exper-
iments in an attempt to define solid criteria, which act as signatures per examined
attack.

• Based on the derived criteria, the most impactful features were extracted as related to
Sysmon’s identification of an adversary moving laterally.

• The proposed criteria, along with their related features, are evaluated based on their
effectiveness on a potential lateral incident’s identification through Sysmon.

• A rule-based methodology is proposed that is dedicated to the identification, verifica-
tion, and categorization of each lateral technique.

• The proposed methodology is implemented in a Python analyzing tool dubbed “PeX”.
The tool along with the large dataset of Sysmon logs collected during the experiments
are made publicly available to the community [2].

The remainder of this paper is structured as follows. Section 2 discusses the related
work, whereas Section 3 encloses a general description pertinent to this work’s fundamental
LM techniques. Section 4 presents the testbed, while Section 5 details the commonestLM
attack techniques based on their final impact. The proposed data-driven methodology is
provided in Section 6. Section 7 focuses on the presentation of the “PeX” tool. The last
section concludes and suggests directions for future work.

2. Related Work

The current section provides a brief review of the key pertinent literature on the subject.
The concentration is on the methodology of each relevant work regarding event-driven
identification of the most impactful LM techniques through Sysmon. Particularly, we focus
on the logs collection of the specified examined attacks, the utilized rule-based policy, and
the impact upon the successful incidence response. To facilitate the parsing of the relevant
literature, Table 1 recaps the relevant characteristics of every work included in this section.

JPCERT/CC, the first Computer Security Incident Response Team (CSIRT) established
in Japan, was also one of the first organizations to conduct a full-fledged survey regard-
ing the categories of logs produced during the execution of LM [3]. The commonest LM
techniques at that time were executed against both compromised servers and targeted
clients related to each attack method. Logging information was collected and categorized
via Sysmon [4] and the MS Windows audit policy. The work concluded with the propo-
sition of a log-oriented MS Windows regulatory policy, allowing the optimal collection
of useful information related to potential LM methods. The final report was published
in June 2017 and updated on v2 [5] in December of the same year. On the downside,
considering the exponential occurrence of LM events and the daily lessons learned from the
Russo-Ukrainian war, this survey is considered quite outdated to cope with MITRE’s [1]
database of malicious LM tactics and techniques on real-life observations. For instance,

Appl. Sci. 2022, 12, 7746 3 of 30

the aforementioned work can be extended to incorporate LM events in cloud and satellite
communication facilities, such as the incident of February 2022 against Viasat’s KA-SAT
network [6], resulting in a targeted interruption of the satellite broadband services across
the Ukraine territory and other European countries.

Mavroeidis et al. [7] introduced a data-driven threat classification methodology, which
relies on the continuous analysis and assessment of aggregated Sysmon logs. The first part
of this work was dedicated to the development of their proposed Cyber Threat Intelligence
Ontology (CTIO), which was based on the Cyber Threat Intelligence (CTI) model also
published by them in [8]. The second part of that paper proposed a threat assessment
system that incorporated CTIO for the classification of event-logs generated by Sysmon
in four distinct threat categories, namely high, medium, low, and unknown. Despite the
promising results, the proposed threat assessment methodology is prone to long delays
when it comes to voluminous logging data on real-life scenarios.

Berady et al. [9] presented a threat hunting model based on the common acceptance
of the conclusion that the attacker and defender should mutually understand each other.
The analysis was performed from both an offensive and defensive perspective. Offensive
experiments were conducted upon the APT29 dataset, which is included in the Mordor
Project of pre-recorded event-related logs of malicious activities. The two-staged attack
emulation scenario initially incorporated the exfiltration of sensitive data for the targeted
host and, then, the compromise of the target via an injected toolkit. The network activity of
the targeted host was monitored with Sysmon to produce a dataset comprising two days of
log recording. The finally proposed “Indicators of Compromise” enhanced the defender’s
common knowledge of the offender’s best practices, seemingly improving the preventive
identification of threats. Nevertheless, it seems that the proposed model is incapable of
dealing effectively with the vast existence of false-positives due to the lack of Sysmon’s
rule-based configuration policy.

The work in [10] proposed a Dynamic Link Library (DLL)-oriented method for mali-
cious file detection towards logs collected by Sysmon. Numerous DLL files were collected
and analyzed from four different tools, namely China Chopper, Mimikatz, PowerShell
Empire, and HUC Packet Transmitter, to reveal the existence of significant differences in the
specific files among various versions of the MS Windows Operating System (OS) and the
aforementioned tools. The work concludes with the extraction of a list with the commonly
loaded DLLs per tool, regardless of the Windows OS environment and the introduction of
a detection-specific logging method based on the open-source ELK Stack. The researchers
in [11,12] also attempted to introduce a DLL-oriented malware detection methodology
through the analysis of potentially malicious files on sandbox environments, such as Cuckoo.
However, only the authors in [10] proposed a list with the most commonly appeared DDL
files related to malicious intrusion tools. Additionally, the contributions in [11,12] relied
on classification techniques with Machine Learning (ML) algorithms, which at this point
fall out of the scope of the current research. It can be said that the enhancement of the DLL
detection policy, particularly focused on each LM method used for Sysmon event logs, will
expand the detection accuracy and diminish the false positive results.

The ELK Stack was also used by the authors in [13,14] for the analysis of massive
log records and the identification of malicious behavior. Specifically, the work in [13]
implemented a logstash massive data processing pipeline to collect a critical mass of logs,
whereas [14] generated Sysmon logging events. In both cases, the ELK stack was utilized
for log file iteration and the identification of malicious patterns. On the downside, both
works were tightly bonded to ELK stack practices, neglecting the need for a general purpose
rule-based EDR system.

The work in [15] focused on Advance Persistent Threat (APT) detection of the Mimikatz
password stealing tool utilized in the context of LM. To increase the true positive rates, the
authors implemented Mutex memory objects in parallel with the identification of Mimikatz-
related DLL files. It can be argued that even with the introduction of Mutex-oriented DLL file

Appl. Sci. 2022, 12, 7746 4 of 30

analysis, the Mimikatz tool can be deliberately obfuscated by the adversary, thus evading
identification by even advanced EDR and IDS systems.

Last but not least, the work in [16] considered the detection of malware Application
Programming Interface (API) call patterns for the identification of behavioral anomaly
signatures. Despite the high true positive rates, the proposed methodology affects the
performance of the examined system and omits it from incorporating Sysmon event logs.
On the other hand, the authors in [17] suggested an LM detection system, dubbed “Hopper”,
which is fed by real-life generated logs. The user’s login activity was tracked and outlined
through a graph of interrelated logins among the implicated hosts. This contributes
to anomaly detection among logins, referring to LM attacks. On the flip side, despite
“Hopper’s” effectiveness, the system ignores logs generated with Sysmon. In this respect,
the aforementioned two papers are considered out of the scope of this study.

Table 1. Summary of the most important aspects of the works included in Section 2. The works are
presented in chronological ascending order.

Related Work

Title Year Summary

A novel approach for detecting mal-
ware based on API call sequence
analysis [16]

2015 Detection of malware API call patterns towards the identification of behavioral
anomaly signatures

Detecting lateral movement through
tracking event logs (v1 & 2) [3,5] 2017

Execution of LM through well-known penetration testing tools. Collection of
logs with Sysmon and MS Windows Audit Policy. Categorization of logs per
attack and proposition of optimal MS Windows infiltration settings for effective
identification of LM activity.

Data-driven threat hunting using
Sysmon [7] 2018

Data-driven threat classification methodology based on aggregated logs created
by Sysmon. Proposed a threat analysis system, which is based on the developed
by the authors CTI ontology.

Lateral movement detection using
ELK stack [14] 2018

A way to generate event logs with Sysmon related to the execution of various LM
attacks and the associated malicious tools on MS Windows-based environments.
Implementation of ELK stack towards the analysis of possible abnormalities in
the collected logs due to the existence of LM.

Real-time detection system against
malicious tools by monitoring DLL
on client computers [10]

2019
Proposed a DLL-oriented method for malicious file detection through logs col-
lected by Sysmon [4]. Common DLL list per malicious tool, independent of MS
Windows OS version.

Detecting Mimikatz in lateral move-
ments using Mutex [15] 2020

APT detection of Mimikatz while utilized in LM. Implementation of Mutex mem-
ory objects in conjunction with DLL files analysis. Mimikatz’s misidentification
while deliberately obfuscated.

From TTP to IoC: Advanced persis-
tent graphs for threat hunting [9] 2021

Threat hunting model which evaluates Sysmon’s logs from both an offender’s
and defender’s perspective. Based on indicators of compromise, proactive threat
detection is possibly enhanced. A high rate of false positives due to the absence
of rule-based Sysmon’s configuration.

Hopper: Modeling and detecting lat-
eral movement [17] 2021

System for LM attack detection based on real-life generated logs. Login activity is
tracked and outlined through a graph of interrelated logins among the implicated
hosts to conclude in the detection of anomalies among logins referring to LM.

Network forensics investigation in
virtual data centers using ELK [13] 2021

Generating log records with Logstash. Network forensic analysis via the imple-
mentation of Elastic Search and towards the identification of RDP LM-related
attacks, Ransomware, Data Exfiltration, etc., as part of a criminal investigation.

3. Preliminaries on Lateral Movement

This section comprises a descriptive presentation of the most prominent and funda-
mental techniques with which an adversary may move laterally and compromise comput-
ing systems and accounts in a Small Office Home Office (SOHO) or corporate networking
environments. For an attacker to compromise a targeted host, initial access is gained

Appl. Sci. 2022, 12, 7746 5 of 30

through the continuous and iterative enumeration of the systemic parts of the network to
identify accounts with potentially elevated user privileges. What typically follows is the
combined execution of a large repertoire of offensive tools, including Metasploit frame-
work, malware propagation and Mimikatz hashing compromising tool. In brief, during the
execution of LM, the aggressors occupy asset’s account credentials of the low or medium
access level of the targeted network, escalating their privileges up to their final target. This
is achieved through various techniques, which are detailed in Sections 5 and 6.

The boundary between the internal network’s perimeter and the outside world could
be depicted as a horizontal line, in which the upper half comprises the outside world,
whereas the environment under the line represents the closed, say, corporate network. For
a malevolent intruder to penetrate a network, the movement should be executed vertically
and towards the aforesaid horizontal boundary line. Mostly, this kind of movement is
called “North to South” [18], and from a defender’s viewpoint, it usually appears as an
abnormality in the network’s activity. When credentials are exposed, an anchor point is
created, and the intruder can maneuver with privileged access horizontally and around
the network components, gradually reaching and compromising the most valuable targets
(“East to West” movement). Naturally, while it seems normal for a network component
to communicate with certain terminals inside the same network domain, continuous
connection attempts to open ports or manipulation of credential acquisition services via
unregistered username or passwords are considered suspicious at least. Overall, there are
two fundamental methodologies for moving laterally within a targeted network:

• The first method refers to network mapping and identification of the special char-
acteristics of each distinct component along with potential vulnerabilities. During
the reconnaissance phase, many OS’s built-in tools can be used. For instance, the
ipconfig and ifconfig commands reveal IP configurations and localization information,
while Netstat summarizes the most current network connections along with their
users. Additionally, the local routing table tracks all the interconnected network paths,
while the Address Resolution Protocol (ARP) cache reveals the matching of network
IP addresses to their equivalent link layer (MAC) addresses. Vulnerability assessment
and mapping tools are also in the attackers’ quiver, namely Nmap or its commercial
equivalent Nessus [19]. Once the relevant information is gathered, the adversary is
able to intrude and move laterally.

• The second customary method refers to the use of phishing techniques for the ac-
quisition of account credentials by any means. To this end, the opponent can take
advantage of tools, say, Metasploit Pro, to craft numerous phishing emails that have
been perfectly cloned to appear as originating from a legitimate source. Additionally,
keylogger tools, including Revealer Keylogger Free, KidLogger, and BlackBox Express,
provide a powerful equivalent solution for activity monitoring and screen recording
at the victim’s side. Mimikatz, presented in Section 6.2, is another powerful credential
exploitation and hash dumping penetration testing tool.

4. Testbed

For the purposes of log file gathering (in .csv, .evtx, .xml form), as depicted in Figure 1,
we created a mixed testbed comprised of both virtual and physical stations that realistically
emulates a typical SOHO environment. In total, eight different physical and Virtual
Machines (VMs) were utilized. Three of them were used as client stations (1 Ubuntu
Desktop 20.0.4 LTS, 1 Kali Linux Desktop 2020.4 LTS, 1 MS Windows 10), one both as the
client station and host PC on which VMs have been installed, and two smartphones as
clients (1 Android smartphone Samsung A8 and 1 iOS iPhone XR). Moreover, one physical
laptop (MacBook Air) simulated the attacker’s interface. Finally, one MS Windows Server
2019 64-Bit was created as a VM station to dissemble the malicious LM’s final target. The
wireless Access Point (AP) was a SERCOM Speedport Plus router. The SOHO’s network
topology is presented in detail in Figure 1, while the role and the characteristics per machine
are included in Table 2.

Appl. Sci. 2022, 12, 7746 6 of 30

To simulate as realistically as possible the workload of a typical SOHO network, the
SYSMON_SET domain was created within an MS Windows 2019 Server VM. Six client
accounts were configured and initialized via the MS Windows Server Account Management
service and joined the SYSMON_SET domain. For the needs of the execution of the various
credential exploitation attacks detailed in Section 6.2 each of the server’s accounts was
granted domain administrative privileges in advance.

Figure 1. High-level view of the testbed network topology. The MS Windows Server 2019 uses a
wired connection with the AP, presented as a double green line. The network traffic flow for disparate
categories of VM and physical stations is shown in a different color, namely green for Wi-Fi traffic
and red for the attacker.

Appl. Sci. 2022, 12, 7746 7 of 30

Table 2. Summary of key technical characteristics related to the machines utilized during the execution of the LM experiments.

Technical Characteristics and Utilization of Each STA (Physical and VM)

Station Type Operating System Kernel_Version CPU/RAM IP_Address MAC_Address Username

AP Wireless_AP SERCOM_Firmware 09022001.00.031
OTE2 - 80.107.57.231,

192.168.1.1 7C:8F:DE:46:66:11 N/A

Client STA 1 VM Ubuntu 20.0.4 5.8.0-53-generic-x64 VM dual_core, 2 GB 192.168.1.6 08:00:27:4e:4e:e6 adminchr

Client STA 2 VM Kali 2021.1 5.10.0-kali7-amd64 VM dual_core, 2 GB 192.168.1.11 08:00:27:3e:b5:a7 nicksaitas

Client STA 3 VM Win10 Eval. x64 2004 VM dual_core, 2 GB 192.168.1.7 08:00:27:3d:c5:a9 chr.smilio

Client STA 4 Laptop Win10 Home x64 2004 i7-9750H CPU, 16 GB
DDR4 192.168.1.28 98:AF:65:32:E8:21 laptop-

ropr18ak_chrsm

Windows 2019 Server VM Win2019 Server x64 1809 VM dual_core, 2 GB
VM RAM 192.168.1.8 08:00:27:4f:d3:32 christossmiliotopoulos

Client STA 5 Smartphone iOS 15.0 14.4.2 Hexa-core, 64GB
RAM 192.168.1.3 06:16:EC:81:F9:68 iPhone-Christos

Client STA 6 Smartphone Android 9 Knoxx 3.3 Exynos 7 Octa 7885 192.168.1.13 3C:DC:BC:7F:73:B7 A8-Maraki

Appl. Sci. 2022, 12, 7746 8 of 30

5. Lateral Movement Categories on Windows Environments

As already mentioned, LM techniques are leveraged by cyber criminals to intrude
and remotely control network systems and hosts. Network reconnaissance and target
identification are followed by the penetration of the protected networking perimeter. That
is achieved with the installation of remote accessing tools on systems, the credentials of
which were successfully extracted, and then it escalates incrementally to other hosts. Based
on the revised MITRE ATT and CK open-access database [1], among the many available
techniques and practices, in the context of this paper, the nine commonest were chosen
based on their impact. These attacks were applied on the testbed’s nodes of Section 4 and
are described in the following subsections.

5.1. Exploitation of Remote Services

Cybercriminals may exploit MS Windows systems’ remote services to gain unautho-
rized access to the various nodes of a network. This kind of exploitation is successful
when the adversary takes advantage of a revealed vulnerability of the targeted system,
known or currently unknown. To determine whether the system is in a vulnerable state,
the assailant makes use of numerous information-gathering techniques to reveal unpatched
OS components or even the lack of updated IDS and antivirus software. Among the most
common, port scanning and vulnerability assessment tools are included, which are loaded
and installed remotely on the system under attack. Server nodes are considered the most
high-value targets during the execution of LM. Mostly, they comprise the final destination
of an attacker after gaining initial access to a network node and hopping from one system
to another.

There are many well-known vulnerabilities concerning the various MS Windows OS
versions. Server Message Block (SMB), Authenticated Remote Code Execution (RCE) and
Remote Desktop Protocol (RDP) are two of the most popular misconfigurations. Within the
context of this paper, exploitation of remote services was performed against the testbed
described in Section 4. Precisely, the EternalBlue vulnerability was used in three different
ways to exploit the SMB of an unpatched version of Windows Server 2019, which was left
vulnerable on purpose, while the RDP exploit was tested with BlueKeep (CVE-2019-0708)
RCE. Overall, four different instances of the Exploitation of Remote Services attack were
executed. First, SMB was exploited via the Metasploit’s ms17-010 module. Next, the SMB
EternalBlue vulnerability was used towards the final execution of the arbitrary remote
commands on the targeted system via Metasploit’s smb_login auxiliary service. To expand
the analysis of the remote exploitation on the targeted server, the testbed was infected with
the worm-like WannaCry malware. To allow the propagation of the malware, User Account
Control (UAC) of the server was disabled remotely with the use of the smbexec 2.0 tool.
Finally, Metasploit’s CVE-2019-0708 dedicated module was utilized to leverage the targeted
Server’s RDP misconfiguration.

5.2. Pass the Hash Credential Override

Hash transmission is a method that provides account identification and credentials
integrity check without the requirement for any username or password in plaintext form.
This method overrides traditional user authentication, which requires a personal access
password in plaintext form, and proceeds directly to the host’s approval with the use of
hash algorithm-encrypted character chains. Hash distribution instead of plaintext account
credentials was considered a tough-to-crack identification and authentication method.
Despite the robustness of the aforesaid authentication mechanism, penetration techniques
have been developed to allow the collection and extraction of all the hashes related to
valid accounts. These techniques fall under the general category of “Credential Access”.
MITRE ATT and CK [1] describe this attack vector as the keylogging and credential dumping
techniques, making LM more effective and harder to be identified in real-time.

PtH is a method for achieving successful authentication without the possession of the
original credentials (usernames and passwords) in cleartext form. It is considered a very

Appl. Sci. 2022, 12, 7746 9 of 30

successful and targeted attack for bypassing traditional authentication procedures via stolen
hashing credentials. Through PtH, access control services of Windows can be compromised,
considering an adversary’s LM as legit. PtH is a credential theft technique and LM attack at
the same time, with which the attacker can leverage the challenge-and-response nature of
the Windows New Technology LAN Manager (NTLM) authentication procedures utilized
from the network’s hosts in place of traditional plaintext credentials. With standard security
protocols, NTLM hashes change only when the plaintext passwords are changed. This is
the feature that makes PtH ideal for threat actors to move laterally across a network. For
easy reference, the Windows Kerberos hashing authentication procedure along with the
NTLM hash extraction vulnerability is illustrated in Figure 2.

Figure 2. High-level view of Kerberos Authentication procedure, along with the NTLM hash extrac-
tion vulnerability, that makes KDC prone to the Hashing Exploitation Attacks of Section 6.2, namely,
PtH, PtT, Golden/Silver Ticket.

5.3. Pass the Ticket Credential Override

By exploiting the Pass-the-Ticket (PtT) method, an adversary may move laterally
within a network by using stolen Windows Kerberos Tickets as legitimate credentials.
PtT is based on the Windows OS’s Local Security Authority Subsystem Service (LSASS)
process, which is a fundamental part of the Windows credential administration system
and is also related to PtH. The aforementioned process stores and handles Kerberos tickets
and is related to the extraction of the Kerberos Service Tickets and Ticket Granting Tickets
(TGT), depending on the level of access of the compromised host. Recall that a service
ticket permits access to a particular process, whereas a TGT is responsible for requesting
the aforesaid service tickets from Kerberos TGS to acquire access to any resource that the
targeted host has access to. Specifically, for this attack to be successful, the targeted host
needs to communicate with LSASS and retrieve the legitimate tickets in its possession.
If the attacked host is related to a non-administrative user, then only one ticket will be
retrieved, whereas if administrative accounts are compromised, all the tickets related to
the targeted server can be harvested. Within the context of this survey, Mimikatz was the
preferred tool for the execution of the PtT attack.

5.4. Golden Ticket

Golden Ticket is another Active Directory attack related to Kerberos authentication
exploitation techniques. While access with administrative privileges is important for
the adversary, persistence during lateral movement within a targeted network is the
real challenge. This aspect is crucial for an opponent to reach its target within network
environments in which the domain’s admin password changes frequently.

Appl. Sci. 2022, 12, 7746 10 of 30

Golden Ticket migrates features from both PtH and PtT LM methods. Precisely, it
exploits the Kerberos authentication protocol’s lack of validation procedures during the
impersonation of a legitimate host. This is due to the design of the Kerberos protocol to
allow users that hold a TGT for a session to be considered trusted for any other network
resource related to ticket authentication.

In the context of this work, Mimikatz is used as a standalone tool for the realization
of GT. There is also the possibility of the Metasploit Framework’s automated meterpreter
extension as a faster solution for the execution of the attack.

5.5. Silver Ticket

Silver Ticket is another Active Directory attack related to Kerberos authentication
tickets’ exploitation. This technique capitalizes on a forged TGS ticket. The latter is used
to authenticate and impersonate an adversary with escalated privileges for the service
it represents. A malicious user may create an ST through the exploitation of a targeted
host’s credentials, including their account password. The ST attack has a limited scope
of application compared to the GT. That is, while the first relies on a forged TGS, i.e.,
specifically initialized for a single service on the targeted server, the latter relies on a forged
TGT that can be used as valid for the authentication of adversary hosts to any Kerberized
service. Since the required hash for the execution of the ST attack is easily obtained, and no
communication with the domain controller is required while in use, that makes its detection
harder than the GT. A high-level view of the execution of PtH and PtT in conjunction with
the exploited Kerberos authentication mechanism is depicted in a UML Activity Diagram
in Figure 3.

Figure 3. High-level view of Kerberos authentication procedure, along with the NTLM hash ex-
traction vulnerability, that makes KDC prone to hashing exploitation attacks, namely PtH, PtT, and
Golden/Silver Ticket.

5.6. Post Exploitation on Stored Passwords with LaZagne Project

The last implemented attack pertains to the post-exploitation of the already saved
credentials on the server’s random-access memory. This was achieved through the open-
source application named “LaZagne Project”. It was performed in conjunction with the
Exploitation of a Remote Services attack, presented in Section 5.1 and following the ex-
ploitation of the server’s SMB file sharing protocol via Metasploit’s smb_login auxiliary
service. This is a penetration testing tool that directly injects its Python code into the volatile

Appl. Sci. 2022, 12, 7746 11 of 30

memory of the targeted machine without leaving any trace. In this aspect, the method
comprises a straightforward process for the adversary to compromise the victim’s stored
credentials without raising any suspicion.

6. Methodology

For the needs of this work, we relied on log files produced by Sysmon, which is
both a Windows system service and a device driver. Once installed, it is resilient to all
the OS activities, including reboots and the event logger. Sysmon monitors and gathers
event-oriented information in detail, namely process creations, network connections and
modification actions, while organizing them simultaneously in folders and files of different
compatible formats, namely .evtx, .xml, .csv, and .txt, to be available for further analysis.

Sysmon currently supports 27 distinct types of case-sensitive events, which may be
generated during logging activity of networking traffic and OS processes. The second
column of Table 3 designates the Event IDs that were recognized in the context of the
present work either as normal or suspicious and implemented them in the proposed rule-
based policy detailed in Sections 6.1 and 6.2 and Appendices A.1 and A.2. The rightmost
column of the same table specifies the designated per attack vector and Event ID related
subsection. It is important to note that any Event ID that was not recognized during the
analysis of the conducted experiments is omitted from Table 3, as it is irrelevant to the
context of this paper. The basic features and capabilities of Sysmon, along with the full list
of the supported Event IDs, can be found on the tool’s official website in [4].

Table 3. Sysmon-generated events during the conducted experiments of Sections 6.1 and 6.2. The
star exhibitor denotes normal traffic exclusively.

No. Event ID Description Subsection

1 Event ID 1 Process creation Sections 6.1 and 6.2
2 Event ID 2 A process changed a file creation time Sections 6.1.3, 6.1.4 and 6.2
3 Event ID 3 Network connection Sections 6.1.4 and 6.2.1–6.2.3
4 Event ID 5 Process terminated Sections 6.1 and 6.2
5 Event ID 10 Process Access Sections 6.2.1–6.2.3 and 6.2.5
6 Event ID 11 FileCreate Sections 6.2.1–6.2.3
7 Event ID 13 RegistryEvent (Value Set) Sections 6.2.1–6.2.3
8 Event ID 22 DNSEvent (DNS query) Sections 6.2.1–6.2.3
9 Event ID 23 FileDelete (File Delete archived) Section 7.2 *
10 Event ID 255 Event ID 255: Error Section 7.2 *

Sysmon allows the adoption of a rule-based custom configuration approach for the
config.xml file. Each event is identified and filtered through a specified tag placed under the
EventFiltering section in the config.xml file. The detailed list of all the available tags, along
with the list of the conditional statements, which are necessary for the initialization of the
config.xml file, are available in the tool’s official documentation [4].

Precisely, within the context of this paper, Sysmon was used to filter and identify
events related to the executed LM attacks included in Section 5. Specifically for the attacks,
due to their nature, they were divided into two main categories, namely Exploitation of
Remote Services and Credential Exploitation Attacks, and discussed in Sections 6.1 and 6.2,
respectively. Listing 1 presents the necessary initialization statements for the config.xml file
to be loaded in Sysmon’s configuration. As seen in the first line of the listing, the declaration
of the schemaversion, under the tag <Sysmon schemaversion=“13.30”>, is fundamental for the
initialization of the config.xml file. Moreover, the declaration of the utilized hashalgorithms
as well as the <EventFiltering> tag, which states that the nature of the configuration file has
to do with the filtering of Sysmon Events, are both of equal importance. The final required
statement of xml code is the necessary specification for each concept RuleGroup.

Appl. Sci. 2022, 12, 7746 12 of 30

1 <Sysmon schemaversion="13.30">
2 <HashAlgorithms>md5,sha256,IMPHASH</HashAlgorithms>
3 <CheckRevocation/>
4 <EventFiltering>
5 <RuleGroup name="Sysmon_Event_1(ProcessCreate)" groupRelation="or">

Listing 1. Sysmon config.xml initial statements.

For the purposes of the configuration of the config.xml file, with the proposed rule-
based methodology, more than 150 rules have been created. The rationale behind the
creation of these rules is detailed in Sections 6.1 and 6.2. The current work relies on
the analysis of the particular characteristics associated with each attack separately and in
combination with the observations of network traffic during the execution of each attack
given in Section 5. The experiments continued with the collection and analysis of the
DLL files; these were loaded as legitimate from the malicious tools with which the LM
experiments were executed. The results of the analysis of the DLL files related to the
malicious tools with which the LM of Section 5 were executed are integrated into the
proposed rule-based calibration of the Sysmon tool. The final result is a novel EDR solution
based on Sysmon. Simply put, our proposed solution particularly focuses on the generic
identification of potential malicious LM by means of legitimate logging activity.

According to the related work in [10,20,21], the utilization of an EDR system that is
calibrated with custom rules to filter malicious processes based on their names, hashes,
and network characteristics is proposed as a necessity for the avoidance of modern and
sophisticated LM. However, this approach does not guarantee the effective identification of
the very special characteristics that many malicious tools enclose, which prevents the suc-
cessful recognition of these tools, either through being renamed or rebuilt by the opponent.
A solution to the problem of the identification and detection of malicious tools is proposed
by researchers in [10–12] through the incorporation of DLL analysis and the careful study
of their unique per-tool characteristics.

6.1. Exploitation of Remote Services

Four variations of this attack were executed and presented below, namely “Exploitations
of ms17-010-EternalBlue-Bluekeep vulnerabilities” and “WannaCry’s malware propagation”. In
all four variants, the final goal of the attacker was the execution of remote commands via a
PowerShell terminal. For the feature extraction needs, which will be related to the finally
proposed rule-based EDR policy, 30,000 Sysmon logs were collected, representing 1 hour of
the described attack. Precisely, each sub-category of the T1210 technique [1] was performed
consecutively for 10 min each, not exceeding one hour in total. The three distinct variations
of the remote services attack plus the extra fourth, along with the discussion per subject,
are presented in more detail as follows.

6.1.1. Exploitation of ms17-010

This was conducted successfully against a vulnerable MS Windows server with the aid
of Metasploit. It is worth mentioning that the targeted server responded with a successfully
activated Meterpreter session of the EternalBlue vulnerability after several repeated attempts
(at least ten). The attack is deemed successful when PowerShell admin rights are available
for the execution of core Windows commands and LM expansion to other hosts.

Discussion: With reference to malicious endpoint command abuse, the analysis re-
vealed the Process Creation vector, i.e., Event ID 1 with reference to Table 3, as the most
prone to exploitation from opponents. Specifically, more than 25% or 7500 logs were related
to the creation of processes on either the source or destination hosts. Command line admin-
istrative tools were among the most recognized on the logs related to the attacker’s machine,
namely sc.exe, schtasks.exe, winrs.exe, PowerShell, cmd.exe and many others. On the other
hand, among the most identified parent processes linked to the aforementioned potentially
malicious Windows Services features were services.exe (SCM), svchost.exe (Scheduled Tasks),

Appl. Sci. 2022, 12, 7746 13 of 30

wmiprsve.exe (WMI), mmc.exe (DCOM), wsmprovhost.exe (WinRM), and explorer.exe (RDP). In
addition, the existence of svchost.exe and mmc.exe process features in the Sysmon logging
activity may also be a distinctive indicator of remote execution of Impacket Python scripts.
That is, Impacket Python classes are used for Microsoft’s network protocol implementation
and are popular among threat actors regarding concealing their presence during an attack.

6.1.2. Exploitation of EternalBlue

This attack was performed via Metasploit’s smb_login auxiliary module and psexec,
revealing the targeted server of Figure 1 as prone to the smb_login credential leakage
and execution of remote command vulnerability. A Meterpreter session also needs to be
activated for the attack to be considered successful. Discussion: With respect to EternalBlue
vulnerability via smb_login and PsExec, the conducted experiments revealed leveraging
of Windows SMB as potentially malicious. Specifically, SMB access with administrative
privileges, namely admin$, ipc$ and c$, is considered suspicious behavior, which implies
the manipulation of the Windows system’s binaries. This behavior was identified within
the collected logs during the execution of the Metasploit’s smb_login module and PsExec
tool and prior to the execution of remote services through the Meterpreter session on the
targeted host. In the context of this work, we utilized the net.exe service to connect via
Metaspoilt to the SMB protocol’s sharing environment for privilege escalation. SMB share’s
enumeration followed, through the mapping of the server’s smb-admin c$, generating a
number of interesting Sysmon log entries on the targeted host. To begin with, since mapping
of the c$ admin shares within the borders of a SOHO or corporate network do not constitute
a legitimate user’s normal activity, any event generated on Sysmon with Event ID 1 related
to the net.exe should be identified as potentially malicious. Similar to the age of net.exe, a
ProcessCreate rule for the whoami.exe was also included. Despite being a Windows native
executable, it is uncommon for a legitimate user with basic credential access to run it
through PowerShell [22]. This pattern was observed within the collected logs and was
integrated as a proactive threat-hunting measure and not as a rule that could serve as
a standalone.

6.1.3. Deployment of WannaCry

In addition to the two aforementioned versions of the “Exploitation of Remote Services”
attack, the well-known WannaCry ransomware was propagated deliberately to the VMs of
the testbed. To assist the expansion of the malware, server’s UAC was disabled remotely
with the use of the smbexec 2.0 tool. The latter is a post-exploitation tool, which, among the
many disabling UAC, is particularly useful for malware establishment on a network host.
WannaCry was downloaded from GitHub and used to infect the Windows Server 2019
VM. After the exploitation of the EternalBlue vulnerability, WannaCry encrypted every
file in the targeted server, displaying a message demanding payment in Bitcoin. At the
same time, Wireshark has been used to capture the network activity. As expected, after the
VM’s infection, a mass packet exchange started, demonstrating unknown packets to the
proposed testBed IP addresses, such as 89.163.210.241 and 34.107.221.82.

Discussion: Regarding the WannaCry spread on the targeted server, “ProcessCreation”
and “ProcessChanged” events (Event IDs 1 and 2) were identified as the most relevant to the
target’s infection, representing more than 40% (or 12,000 logs) of the logging activity during
the execution of the experiments. Specifically, both events are generated when a Process
alters a file and do not constitute an indication of malicious activity when used in isolation.
However, when combined with a number of factors, namely CommandLine, CurrentDirectory,
Hashes, ParentImage, Parent and CommandLine rules, they form an effective data-driven
proactive detection mechanism towards the identification of WannaCry expansion. With
reference to the identified processes after the deliberate execution of WannaCry, Wcry.exe
and tasksche.exe were isolated as the most relevant logs to the attack, along with their path
and ProcessID 3024. On the other hand, the execution of the Wcry.exe process generated
a number of interrelated “r.wnry” executables. Precisely, those files are generated during

Appl. Sci. 2022, 12, 7746 14 of 30

the decryption of the infected files and after the ransom’s payment in bitcoin through the
“s.wnry” file. The “taskse.exe” process was identified as a ProcessCreation log that was also
created by Wcry.exe for reasons of Windows RDP sessions enumeration, whereas “taskdl.exe”
was also created for file encryption with the “.WNCRYT” extension. The creation of the
“t.wnry” and “u.wnry” files was also identified as generated by Wcry.exe for reasons of AES
encryption and decryption, respectively. Malware spreading behavior produced two more
log categories, namely “attrib.exe” and “icacls.exe”, which are related to the execution of
commands altering the attributes of the targeted files. The former is related to the malware’s
tendency to hide the infected files, whereas the latter grants administrative access to all
the directories and sub-directories. Regarding the above-mentioned behavior, there were
12,000 (or ≈40%) “ProcessCreation” and “ProcessChange” Sysmon’s event-logs, and 3258
(or ≈11%) were identified as exclusively related to the WannaCry infection.

6.1.4. Exploitation of BlueKeep

To extend the conducted research, and as a proof of concept of the generic nature of the
proposed data-driven methodology for the identification of Exploitation of Remote Services
attacks, the server (Figure 1 and Table 2) was exposed to the BlueKeep (CVE-2019-0708)
RCE vulnerability. BlueKeep is related to Windows RDP and RDS, revealing a similar
behavior to the above-mentioned WannaCry exploitation of the EternalBlue vulnerability.
The exploitation was conducted via Metasploit’s CVE-2019-0708 dedicated module.

Discussion: With respect to the proposed rule-based Sysmon policy, 689 (or ≈4%)
“ProcessCreation” and “ProcessChanged” related logs (Event IDs 1 and 2) were identified as
strongly correlated to suspicious LM behavior on RDP. The examined rules were exported
during the first stage of the experiments presented in Section 6.1. Despite promising results,
the in-depth reexamination of the collected logs revealed the absence of “NetworkConnection”
logging activity with “Event ID 3”, specialized enough to describe the core functions of
the RDP and RDS Windows protocol and services, respectively. Sysmon was updated
with rules, generic enough to alert in the case of RDP BlueKeep exploitation. Simply
put, Windows services that utilize the same port as the RDP protocol, namely Destination
Port 3389, were identified and imported as rules. Their complete description is presented
as follows:

• mstsc.exe: It is related to Microsoft Terminal Services Client (MSTSC) Windows shared
library (DLL) and allows access to RDP clients to perform a remote desktop connection
through command line or PowerShell. If leveraged by an adversary, the relevant
DLL may allow the execution of arbitrary controversial code remotely without the
mediation of GUI or a SOCKS proxy connection [23].

• RTSApp.exe: It is related to the Royal TS remote management software from code4ward.
Royal TS supports both Windows RDP and RDS, protocol and services. If not found in
C:\\ProgramFiles\\code4ward\\royal_ts, then it should be checked for potential
malware activity, which refers to an LM attack [24,25].

• ws_TunnelService.exe: This process belongs to VMware and there are no references to
Virustotal for potential malicious behavior. However, when identified in a system
that neglects VMware from its utilities, then the collected digital signature’s hash
algorithm of the file should be checked as potentially malicious [26].

• RemoteDesktopManagerFree.exe, RemoteDesktopManager.exe, RemoteDesktopManager64.exe,
mRemote.exe: The mentioned processes are strongly related to Windows handling of
remote desktop connections. They comprise nonstandard tools of Windows that uti-
lize destination port 3389 and should be considered potentially dangerous for LM
orchestration [25,27,28].

• Terminals.exe, spiceworks-finder.exe, thor.exe, thor64.exe: These executable files are not
Windows native and, when in existence, should be evaluated as potentially malicious
and related to malware-based LM behavior [24].

• reg.exe, chrome.exe: The second process is one of the most common among Windows
users, as it is the executable of the Chrome browser. Despite the reliability of the

Appl. Sci. 2022, 12, 7746 15 of 30

process, adversaries can take advantage of the frequency with which it appears on
the target system by leveraging Chrome’s launcher. This is accomplished through the
remote manipulation of the target’s registry permissions to eventually grant RCE and
RDP exploitation. The simultaneous presence of the two processes or the occurrence of
the second in a subfolder of the user’s profile folder, in conjunction with the utilization
of TCP port 3389, should be examined as malicious [29,30].

Regarding the aforesaid Sysmon’s networking logging activity, 456 “Network Con-
nection” Event ID 3 logs were identified, with more than half of them (or ≈242 Sysmon
logs) related to the executed LM attacks. For easy reference, Table A1 in Appendix A.1
summarizes the most important rule-based features of this Section 6.1 as they emerged
from the four executed experimental variants of the Exploitation of Remote Services attack.

6.2. Credential Exploitation Attacks

With reference to credential exploitation techniques, five distinct attacks were executed,
namely PtH, PtT, GT, ST and Post Exploitation on Stored Passwords with LZP. For the
needs of the rule-based analysis presented in this work, 60,000 Sysmon logs were collected,
representing 60 min of continuous execution of each credential exploitation, respectively.
Precisely, to demonstrate as clearly as possible the distinct characteristics of the current
experiments, each sub-category of Mitre’s T1550 Technique [1] was performed consecutively
for 60 min each and not exceeding 240 min in total.

As already noted, for executing the experiments, we relied on the Mimikatz tool. This
choice was driven by factors such as the tool’s popularity among adversaries, the multi-
ple versions available (GitHub legacy edition, PowerShell Invoke-mimikatz, ransomware such as
BadRabbit or NotPetya), and the possibility of executing the tool with the Metasploit framework.

6.2.1. Pass the Hash

As already mentioned in Section 5.2, PtH is a credential theft technique and LM
attack at the same time. PtH was executed against client 3 of Table 2. The targeted Win-
dows 10 system stored the passwords in NTLM hashing form. Mimikatz was chosen
for the execution not only of PtH attack but also for the PtT and GT/ST ones. For the
related accounts with username chr.smilio, hashing passwords were extracted from the
server’s memory and the Windows LSASS.exe service through Mimikatz’s administra-
tive command line remote execution. To acquire admin rights the “Privilege “20” OK”
message needs to be revealed in the command line for the PtH command to be success-
fully executed (“./mimikatz.exe “sekurlsa::pth /user:chr.smilio /domain:SYSMON_SET /ntlm:
eed224b4784bb040aab50b8856fe9f02””). Finally, a new compromised command line was
opened denoting the success of the whole process. Mimikatz extracted the NTLM hash-
ing strings in a few minutes and cracked the targeted system’s encrypted passwords in
plaintext with brute-force techniques.

6.2.2. Pass the Ticket

As mentioned in Section 5.3, PtT is similar to PtH regarding Mimikatz’s execution.
The major difference between the two attacks is the duration of the access that is granted
to the compromised host. PtT has a limited exploitation timeline, with Kerberos TGTs
expiring after 10 hours of usage. On the other hand, PtH has an unlimited timeline as it
is related to hashes that do not change on a frequent basis. PtT was executed with the
same Mimikatz methodology that is presented for PtH in Section 5.2 up to the point of the
successful acquisition of administrative privileges. All the Kerberos tickets were extracted
with the “.kirbi” extension in order to be used for the final exploitation of the Kerberos
ticket client–server authentication procedure. Finally, the extracted ticket was “passed” with
Mimikatz (“./mimikatz.exe "kerberos::ptt ticket.kirbi”) for the acquisition of remote access to
the targeted server’s “/192.168.1.7/admin$” folder.

Appl. Sci. 2022, 12, 7746 16 of 30

6.2.3. Golden/Silver Ticket

As it concerns the GT attack, Mimikatz supports its execution toward the success-
ful creation of a “golden” Kerberos ticket. For the needs of this work, and with refer-
ence to Figure 1 and Table 2, the SYSMON_SET domain’s ”chr.smilio” account of Client
STA 3 was leveraged and exploited. As mentioned in Sections 5.4 and 5.5, this set of
attacks is a combination of the already presented PtH and PtT attacks. For the cre-
ation of a GT to be successful, the exploitation of an extracted NTLM “Krbtgt” hash
is a requirement, along with the domain’s Name, the SID, and the Username of the tar-
geted host. These four elements are combined with Mimikatz to successfully create the
“golden ticket” (“kerberos::golden /user:krbtgt /domain:SYSMON_SET /sid:S-1-5-21-902028059-
194221605-2102066478 /krbtgt:d125e4f69c851529045ec95ca80fa37e /ticket: krbtgt.tck /ptt”) and
allow the adversary to move laterally. All the submitted tickets after the execution of
this attack were retrieved with the “kerberos::list” command. After the generation of
the NTLM Hash for the “Krbtgt” account, Kerberos will perceive this TGT as trusted,
enhancing its owner with administrative privileges and unlimited access to network
facilities related to Kerberos authentication. It should be noted that the same proce-
dure was followed during the creation of a forged TGS ticket and the exploitation
of the related service. The only difference is in the use of the PtT parameters im-
plemented during the ticket’s production process to indicate the use of the PtT tech-
nique to produce the Silver ticket (“kerberos::golden /domain:SYSMON_SET /sid:S-1-5-21-
902028059-194221605-2102066478 /target:WIN-J23NIGGP1Q6.sysmon_set.lobal /service:cifs
/rc4:1d86942baf284a38c97b63025fc8ccb8 /user: Administrator /ptt”).

6.2.4. Discussion on Mimikatz-Related Attacks

From an attacker’s perspective, during PtH execution, a recognizable number of
more than 1500 (or 2.5% of the total log file) ProcessAccess event logs (Event ID 10) were
identified as the most pertinent to Mimikatz-related attacks of Section 6.2. Specifically, the
aforesaid activity is related to the unauthorized access in the Windows LSASS process by
the adversary with Mimikatz (as in this paper) or any other dumping tool of password
and hashes. As shown in the fourth column of Table A2, the log activity analysis revealed
a significant number of Sysmon’s “EventFields” related to Event ID 10 events. Specifically,
lsass.exe (“EventField: TargetImage”) executable was the most prominent, with 600 out of
1500 identified logs due to the repeated execution of the attack and exploitation of the
LSASS process through NTLM hash dumping.

It is important to note that the identified activity of LSASS accessing was executed in
parallel with an equal number of elevated privileges on access granting events, with 0x1010
and 0x1410 identifiers (“EventField: GrantedAccess”). The limited presence of three more

“GrantedAccess” identifiers was also perceived, namely 0x1438(a), 0x1FFFFF and 0x143a, all
scattered throughout 50 Event ID 10 events out of the 600 logs. Above that, a number of≈600
mimikatz.exe executable processes (“EventField: SourceImage”) with “TargetProcessId” equal
to 492 were identified in combination with ≈200 powershell.exe and cmd.exe instances.
Note that the aforesaid features in isolation do not guarantee the identification of PtH;
however, in combination, they could be considered the springboard of the overall process
of unveiling the “sekurlsa” module of the Mimikatz-related credential theft techniques
presented in this section.

Overall, we consider that the application of the hitherto recognized PtH-related rule-
based features is fully compatible to be extended in PtT, GT, and ST attacks. This conclusion
emerges from the study of each attack’s functionality presented in this section. Specifi-
cally, PtH is based on the successful extraction of NTLM hashes, which are used via the
“sekurlsa::pth” module of Mimikatz to pass the hash and acquire a legit and stealth access
to the targeted system. On the other hand, PtT is strongly related to the extraction of TGT
tickets in .kirbi files, and their utilization of authenticating as a legitimate user. As in PtH,
PtT also leverages Mimikatz’s “sekurlsa” module to pass the ticket to the target. Moreover,
the GT and ST techniques comprise both NTLM hash dumping techniques and TGT ticket

Appl. Sci. 2022, 12, 7746 17 of 30

forging for the creation of the migrated Golden and Silver passed tickets. Summing up,
in terms of the common behavior and operation of the three aforementioned attacks, the
rule-based policy proposed for the PtH attack finds scope in them as well.

Despite the vast existence of ProcessAccess events (Event ID 10) related to the abuse
of the lsass.exe process, another 3200 events with Event ID 1 (ProcessCreation), ID 5 (Pro-
cessTermination) and ID 11 (FileCreate) stood out in the collected Sysmon’s logs. Precisely,
the events with IDs 1 and 5 were exclusively related to Mimikatz’s execution in the tar-
geted system, either via psexec or Metasploit. On the other hand, events described with
the “FileCreate” rule flag were captured by Sysmon during the extraction with Mimikatz
of all the Kerberos tickets into a specified folder to be used for the final exploitation of
Kerberos tickets in PtT, GT, and ST attacks. The identification of the .kirbi extension in the
filenames (EventField: TargetFilename) of the extracted files is the most obvious indication of
the existence of tickets related to the Kerberos protocol. Among the aforesaid 3200 logs,
the majority (or ≈2400) was flagged by the “TargetFilename” rule. In addition, through
Sysmon’s log traffic observation, and due to the nature of the three executed Kerberos ticket
attacks, the identified number of ≈360 Event ID 11 (FileCreate) can be considered a strong
indicator of the Kerberos TGT ticket exploitation of .kirbi extension files.

Moreover, the presented research was extended to identify extra features for each
specified attack vector in isolation. Remotely executable tools were identified as applicable
to the process of compromising the targeted server and the successful acquisition of admin-
istrative rights, namely klist.exe, mimikatz.exe, lazagne.exe, psexec.exe, smb.exe, as shown in
Listing 2. These tools are strongly related to the extraction of NTLM hashes and TGT tickets,
which follow the privilege escalation phase. Moreover, with reference to Listing 2, klist.exe
ProcessCreate was included as one of the most obvious proofs of the execution of Kerberos
tickets related to LM, namely PtH, PtT, GT, and ST. Specifically, “klist.exe” is an executable
Windows command line that prints a list with the most recently cached Kerberos tickets. It
should be noted that for “klist”, as for most aforesaid executables, administrative privileges
come as a prerequisite.

1 <ProcessCreate onmatch="include">
2 <CommandLine condition="contains">C:\Windows\system32\lsass.exe</CommandLine> <!--

Possible indication for the execution of the Lateral Movement Skeleton Key
Attack -->

3 <CommandLine condition="contains">C:\Windows\system32\smb.exe</CommandLine>
4 <ParentCommandLine condition="is">lazagne.exe windows</ParentCommandLine>
5 <CommandLine condition="is">C:\Users\Administrator\mimikatz_trunk\x64\mimikatz.exe</

CommandLine>
6 <Image name="lsass ProcessCreate" condition="is">C:\Windows\system32\lsass.exe</

Image>
7 <Image name="svchost ProcessCreate" condition="is">C:\Windows\System32\svchost.exe</

Image>
8 <Image name="ProcessCreate" condition="end with">smb.exe</Image>
9 <Image name="Mimikatz Execution" condition="is">C:\Users\Administrator\

mimikatz_trunk\x64\mimikatz.exe</Image>
10 <Image name="lazagne" condition="is">C:\Users\Administrator\Downloads\lazagne.exe</

Image> <!-- The LaZagne project is an open source application used to retrieve
lots of passwords stored on a local computer. -->

11 <Image name="klist" condition="is">C:\Windows\System32\klist.exe</Image>
12 </ProcessCreate>

Listing 2. The lsass.exe “include” rule related to the executed tickets attacks.

As concerns privilege escalation techniques, Event ID 1 ProcessCreate rules were
the most extensively identified during the execution of LM. Precisely, the Command-
Line EventFiels presented in Listing 3, comprise the identification of keylogging or key-
board capturing (“Get-Keystrokes”), the capturing of screenshots from the targeted machine
(“Get-TimedScreenshot”), and the extraction of cleartext credential Windows objects (“Get-
VaultCredential”, “Invoke-CredentialInjection”). Further, the aforesaid executables refer to

Appl. Sci. 2022, 12, 7746 18 of 30

PowerShell Windows modules, which can be executed during the target’s enumeration and
privilege escalation phases, within the context of a penetration test or a real-life LM.

In addition, the possibility of the execution of credential extraction and manipulation
attacks via PsExec as an escalation of one of the aforementioned exploitations of remote
services operations revealed the importance of Event ID 3 NetworkConnection and Event
ID 22 DNSEvent (DNS query) events. Regarding the former, 150 logs were collected as
related to successful remote connections via the RDP protocol (“C:/Windows/PSEXESVC.exe"
(EventField: Image)”) and also associated with the source and destination IP addresses of
the attacker’s machine and the targeted server host, respectively (SourceIp: 192.168.1.11,
DestinationIp: 192.168.1.8, as presented in Table 2). Regarding DNSEvents, 80 logs were
collected by Sysmon with “EventField: Image:.../PSEXEC.exe” and “QueryName: sysmon_set”
as the domain’s name, all revealing potential domain exfiltration for stored hashes and
passwords with Mimikatz.

1 <ProcessCreate onmatch="include">
2 <CommandLine name="Privilege Escalation" condition="contains">Get-Keystrokes</

CommandLine> <!-- keylogging or keyboard capturing, is the action of logging
keys pressed, time and the active window. -->

3 <CommandLine name="Privilege Escalation" condition="contains">Get-TimedScreenshot</
CommandLine> <!-- Takes screenshots and saves them to a folder, with a
timestamp to reveal the time and date of the screenshot. -->

4 <CommandLine name="Privilege Escalation" condition="contains">Get-VaultCredential</
CommandLine> <!-- Displays Windows vault credential objects including cleartext
web credentials. -->

5 <CommandLine name="Privilege Escalation" condition="contains">Invoke-
CredentialInjection</CommandLine> <!-- Displays Windows vault credential
objects including cleartext web credentials. -->

6 <CommandLine name="Privilege Escalation" condition="contains">mimikatz</CommandLine>
<!-- Mimikatz is an open-source application that allows users to view and save
Kerberos tickets and hashes. -->

7 </ProcessCreate>

Listing 3. Privilege escalation ProcessCreate rules.

To make the collected features as generic as possible, two more interventions were
implemented in the targeted server. The former is related to the activation of the “WDigest”
authentication and the latter with enabling “Manages Microsoft Base Smart Card Crypto”
capability. As it concerns WDigest, if enabled, it forces lsass.exe to store on the system’s
memory user-related passwords in plaintext form. On the other hand, when Smart Card
Crypto capability is enabled, it makes LSASS store the NT hash dedicated to each user
along with the unique key of the card itself. Both events were captured by Sysmon as
Event ID 13 (RegistryEvent (Value Set)), with “Image: C://WINDOWS//regedit.exe” and “Targe-
tObject: HKLM/SYSTEM/CurrentControlSet/Control/SecurityProviders/WDigest”, “TargetOb-
ject: HKLM/SOFTWARE/Microsoft/Cryptography/Defaults/Provider/Microsoft Base Smart Card
Crypto Provider”, respectively.

Many rules have also been excluded, meaning that they were filtered continuously until
their rule was matched. Most of the time, these are common Windows OS processes that
should be excluded to avoid causing unwanted noise to the Sysmon event filtering.

Mimikatz’s DLL Analysis: In addition to the rule-based EDR policy proposed, log analysis
was taken further to the identification of the DDL information that was transferred during
the Mimikatz execution. The captured DLLs were included within the collected 60,000 Sys-
mon logs that were taken during the extraction of the NTLM hashes, the exploitation of
PtH, PtT, GT, and ST attacks. According to the authors in [10], even though adversaries
tend to rename or even rebuild malicious applications such as Mimikatz, the existence of
legitimate DLLs, which are loaded together with the aforesaid tool, may give great insight
regarding the uniqueness of the DLL relationship between distinct editions of Mimikatz
and Windows OS, leading eventually to a robust and effective proactive identification
of LM.

Appl. Sci. 2022, 12, 7746 19 of 30

Specifically, 3500 DLL files (≈ 6% of the total log record corpus) were identified over
the 60,000 logs; however, only 460 of them (≈13%) were related to Mimikatz. More precisely,
14 different DLL information files were identified, whereas only 9 (64%) are referenced by
the related work so far r [10], as follows:

• DLLs identified in both this paper and [10]: cryptbase.dll, imm32.dll, kernel32.dll, msctf.dll,
ntdll.dll, sechost.dll, shell32.dll , user32.dll, wininet.dll

• DLLs identified only in this paper: cryptdll.dll, hid.dll, samlib.dll, vaultcli.dll, Win-
SCard.dll

We argue that future work on the subject of EDR will evolve the presented rule-based
policy and list of the Mimikatz-related DLL files into a signature-driven deep-learning-
driven IDS solution. Tables A1 and A2 summarize the most important rule-based features
of Sections 6.1 and 6.2 as they emerged from the conducted experiments and the extended
DLL analysis.

6.2.5. Post Exploitation on Stored Passwords with LaZagne Project

The execution of this attack started at the end of the previously presented exploitation
of the smb_login vulnerability of the Windows Server with Metasploit and the success-
ful acquisition of the meterpreter session of the targeted host, presented in Section 6.1.
The lazange.exe tool was remotely uploaded and executed on the targeted host’s “/Down-
loads” folder through the command line utility with administrative rights. After several
attempts, a great variety of usernames and passwords were collected, namely mail, Git
repository credentials, Windows domain passwords, sysadmin, browser-stored credentials
and passwords loaded on the random access memory of the targeted host.

6.2.6. Discussion upon Password Exploitation with LaZagne Project

With reference to the LaZagne Project password stealing attack, ParentImage=“C:/Users/
/Administrator/.../lazagne.exe” was included to outline the execution of the password spoofing
LM attack with the use of the popular penetration framework LaZagne Project. The rule was
enhanced with various extra “ParentCommandLine” features in an attempt to capture all
the possible password stealing attempts from the targeted server’s client windows accounts,
sysadmin, mail, databases etc., as presented in Listing 4.

1 <ProcessCreate onmatch="include">
2 <ParentImage condition="is">C:\Users\Administrator\Downloads\lazagne.exe</

ParentImage>
3 <ParentCommandLine condition="is">lazagne.exe windows</ParentCommandLine>
4 <ParentCommandLine condition="is"> lazagne.exe mails</ParentCommandLine>
5 <ParentCommandLine condition="is"> lazagne.exe project all</ParentCommandLine>
6 </ProcessCreate>

Listing 4. The lazagne.exe password spoofing.

7. Python_Evtx_Analyzer

The analysis of large log files is always a demanding procedure for incident response
teams struggling with shortages of computational power to manipulate the millions of
logs produced on a daily basis. Despite the variety in propriety and open-source Secu-
rity Information and Event Management (SIEM) solutions for centralized logging and
analyzing activities, most of them require multi-step procedures regarding log parsing,
event analyzing, exception handling, and monitoring parameter initialization. That is, the
literature lacks a lightweight and easily configurable tool that can be used to automate
the parsing and threat analysis of extended .evtx log sets. To cover this need, this section
presents and evaluates an analytical Python scripting tool dubbed “Python_Evtx_Analyzer”
(PeX), which caters to the analysis of voluminous Sysmon logs and, therefore, contributes
to the identification of LM events in a timely manner.

From a bird’s eye view, PeX was developed to serve as a proof of concept for the
proposed rule-based policy’s efficiency discussed in Section 6. Towards this goal, the

Appl. Sci. 2022, 12, 7746 20 of 30

optimization of Sysmon’s logging activity is concentrated on filtering the least unwanted
noise possible and being as targeted as possible to LM. Simply put, the essence of PeX’s
operation is to provide a portable and OS-independent command line (or IDE executable)
tool that helps EDR teams analyze massive .evtx logs and successfully identify LM. It
should be noted that PeX’s events identification is based on LM-oriented features that were
extracted from Sysmon’s pre-configured rules in the enclosed config.xml file, as presented
in Appendices A.1 and A.2. What makes PeX special is its ability to be fully customizable
by incident response researching teams to analyze and identify any kind of logging activity
captured by Sysmon, either normal or malicious. As a result, PeX can be used in the context
of other researchers in this timely field as it is made publicly available as open source in [2].

In brief, the analyzer has dependencies on six Python libraries, namely mmap, argparse,
minidom, evtx.Evtx, evtx.Views and ElementTree), which should either be imported during
the building of the IDE project or installed to the OS prior to the code execution with the
terminal. It allows the following functions:

• Memory mapping of massive Sysmon log files as inputs in .evtx form.
• Provision of basic arguments supporting a user-friendly command-line execution of

the Python script’s source code.
• Parsing and transformation of the logs included in the .evtx file into an easily manipu-

lated and analyzed .xml format.
• Custom header filtering of the .xml created file. This is based on pre-selected Sysmon’s

Event ID tags, presented in tree-based form on the command line’s screen or stored
externally to a .txt file.

• Manipulation of the tree-based .xml structure and filtering based on pre-configured
features as enclosed in Sysmon’s config.xml.

• Enumeration of the identified LM events, alert message generation per attack denoting
the number of identified malicious events and making an assumption of the type of
potentially executed attack.

From an OS version’s perspective, the analyzer can run on all mainstream platforms,
including Windows 10, MacOS Big Sur v11.6.5 and Ubuntu v22.04.

7.1. PeX Operation

With all the prerequisite libraries imported, the main function’s statements (Function
(def python_Evtx_Analyzer (-f , -i, -o) :)) are executed, revealing their potential, as presented
in Algorithm 1. The latter describes the procedures of the input folder identification, .evtx
files insertion, the output folder creation, and the buffering of the .evtx log headers in an
algorithmic pseudocode format. Note that Algorithm 1 is implemented in conjunction with
Algorithms 2 and 3 and run as a single Python script.

At first, the necessary arguments of input folder (-f), the ID of the evtx file (-i) and the
optional output folder (-o) are imported and parsed via Argparse into the (“evtxAnalyzer”)
variable. Next, the existence of the outputfolder variable is checked if it is set to true, and
outputfolder is opened with the append (a+) permission. If set to false, the analyzer
proceeds with terminal standard output, as presented in ll.6-7 of Algorithm 1.

The input folder contents are mapped via the Memory Mapped file support (mmap)
library and stored in the evtxBuffer to be set as input in the evtx.Evtx FileHeader() function.
The buffered logs are enumerated based on their tag headers to be finally stored in the
fileheader variable. Recall that the mmap is a Python library, which allows the manipulation
through mapping of various input and output (I/O) file objects. The fileheader variable is
manipulated as a collection of xml objects through the evtx.Views library to eventually store
the parsed headers to the xmlToStr variable. The collected xml entries of the xmlToStr object
are parsed via the Minidom Python library, called Minimal DOM, based on <Event ID> tags
and stored in the xmlToDoc variable, as presented in Algorithm 2 (ll. 3).

Appl. Sci. 2022, 12, 7746 21 of 30

Algorithm 1 PeX’s arguments and folders initialization algorithm

Require: python setup.py install
Require: pip install mmap, argparse, minidom− ext, python− evtx libraries
Require: import mmap, argparse, minidom (f rom xml.dom), evtx.Evtx.FileHeader, evtx.Views,

xml.etree.ElementTree
Require: data, Sysmon files in .evtx format
Require: Function def python_Evtx_Analyzer(− f ,−i,−o) :

evtxAnalyzer ← data[str][−− iFolder,−− evtxId,−− outputFolder]
arguments← data[str][evtxAnalyzer.parse_args()]

3: outputFolder ← data[Boolean][False]
if arguments.outputFolder 6= None then

outputFolder ← append(” + a”)permissions
6: else if arguments.outputFolder == None then

return0
end if

9: for arguments.i f older ← read(”r”)permissions do
evtxBu f f er ← read(”r”)permissions
evtxBu f f er ← data[Sysmon.evtx f iles][mmap.mmap(i f older)]

12: f ileheader ← data[evtxBu f f er][evtx.Evtx.FileHeader(evtxBu f f er)]
xmlHeaderOutput← data[f ileheader] . The header of every xml file is stored to the

xmlHeaderOutput variable.
if outputFolder == True then

15: outputFolder ← data[xmlHeaderOutput]
else if outputFolder == False then

print(xmlHeaderOutput)
18: end if

end for

Algorithm 2 PeX’s evtx-to-xml transformation algorithm

for xmlToStr ← in[evtx.Views][f ileheader] do
xmlToDoc← [minidom.parseString][xmlToStr]

3: eventsByID ← [getElementsByTagName][xmlToDoc]
end for
if arguments.id == ”all” then

6: if outputFolder then
outputFolder ← data[xmlToDoc]

else if arguments.outputFolder == None then
9: cmd(Terminal)← data[xmlToDoc]

end if
else if eventsByID == arguments.id then

12: if outputFolder then
outputFolder ← data[xmlToDoc]

else if arguments.outputFolder == None then
15: cmd(Terminal)← data[xmlToDoc]

end if
end if

The ElementTree module is combined with the “for tag in doc.findall(“Name”):” loop
and the desired pre-selected filtering features per attack, as presented in Algorithm 3 (ll. 3).
The selected per-attack case filters are iterated over a loop against the provided .evtx input
file. The existence of each filter is counted and stored as a “countVar” variable. With the
completion of the enumeration and filtering of the suspicious log file, the analyzer prints
two different messages to the user depending on the existence or not of suspicious network
log traffic. In the case of the attack’s existence, the printed message is combined with the
“countVar” variable to demonstrate the total number of identified packets. The results are
summarized in a final report that is printed at the end of the analyzer’s execution.

Appl. Sci. 2022, 12, 7746 22 of 30

Algorithm 3 PeX’s xml parsing and LM identification algorithm
counter == 0
doc← [ElementTree][xmlToStr]

3: for tag← [doc][f indall(”Name”)] do
if tag ← [attrib][SysmonEventIDField] == ”PreselectedValue_01” or tag ←

[attrib][SysmonEventIDField] == ”PreselectedValue_02” then
doc← [remove][tag]

6: end if
print← [ElementTree][doc]

end for
9: for countVar ← [xmlToStr][count(”PreselectedValue”)] do

if countVar >= 1 then
counter ++

12: print← [counter][Windows_terminal_Alert_Message.]
end if
print← [ElementTree][doc]

15: end for
print← [Analyzer_Final_Report][doc]
evtxBu f f er ← [close()]

18: return

7.2. Dataset

PeX was evaluated over a 10-day dataset regarding the analyzer’s detection and alert
rates. Those are processed as attack-related fractions based on the detected rule-based logs,
along with the False Positive (FP) and False Negative (FN) alert messages it generates. The
collected data contain normal and malicious logs generated from the continuous interaction
with the constituent systems of the SOHO network in Figure 1. Specifically, the nine LM
attacks of Section 6 were re-executed multiple times over the 10-day period and mixed with
legitimate user activity upon the targeted SOHO network. The legitimate traffic includes
the captured logs of the first day, consisting basically of user logins and system logouts,
web browser usage and Internet surfing, file sharing among the various stations of the
network, email traffic and various social media account logins and user interactions with
each of the six client stations included in Table 2. For reasons of reproducibility, but also for
advancing research efforts in this area, the resulting dataset is publicly offered at [2].

Regarding the malicious traffic generated, the three variants of the Exploitation of
Remote Services LM methodology were executed continuously for the first three days in a
row, simultaneously with the normal utilization network traffic. The next four days were
devoted to the execution of the Credential Exploitation Hashing Attacks. Finally, the last two
days of the 10-day testing period were concentrated on a mixed repetition of the aforesaid
attacks, leading to the creation of an ≈870,000 log dataset of Sysmon .evtx files. It should be
noted that each day represents 3 to 6 h of continuous capturing of network logs activity
and not a whole 24 h.

7.3. Evaluation

As a proof of concept, Pex was implemented with Python 3 on a VM Linux machine
with 16 GB of RAM and a quad-core processor. As presented in Table 4, four different
subsets of the pre-collected logs were extracted, namely, Normal (or ≈80,000 Event IDs),
NormalVsMalicious01 (or ≈290,000 Event IDs), NormalVsMalicious02 (or ≈415,000 Event
IDs) and FullSet (or ≈870,000 Event IDs). Table 5 summarizes the total number of tests that
were conducted with PeX per attack and subset, including the number of logs and TP/FP
rates. All the experiments were performed using the extended rule-based filtering mode
presented in Appendices A.1 and A.2.

Indicatively, Pex took an average analyzing time of ≈15 min and 14 s of CPU time
regarding the first three subsets of Table 4. As it concerns the FullSet, the analyzer took
an average of 16 min and 22 s. This is translated to an increase of ≈7.13% vis-à-vis the
average processing and analysis time that was perceived for the first three subsets of Table 4.

Appl. Sci. 2022, 12, 7746 23 of 30

Regarding the conducted experiments, PeX successfully achieved an average detection rate
above 90%, as it concerns the summed percentage of TP and FN identified incidents per
subset. On the other hand, during each .evtx subset analysis, PeX generated a mean rate of
≈10% FP and ≈1.5% FN misidentification incidents, respectively.

Table 4. Subsets examined with PeX, including the total number of .evtx logs per subset.

Tested Subsets Sysmon Event IDs (Logs)

Normal ≈80,000
NormalVsMalicious01 ≈290,000
NormalVsMalicious02 ≈415,000

FullSet ≈870,000

PeX evaluation started with the Normal subset and was examined under the pro-
posed rule-based policy of Appendices A.1 and A.2. First, the logs were tested against
the proposed rule-based filtering features without the implementation of the identified
Mimikatz’s “.dll” rules given in Section 6.2.4. As depicted in Table 5, PeX successfully
identified 70,641 Event ID logs (or else 88% TP rate) related to normal network traffic, plus
another ≈2000 logs revealing 2.5% of TN results. Overall, it achieved a score of 90.5%
regarding the identification of Normal network traffic, as the sum of TP and TN rates. On
the other hand, the analyzer misidentified 7224 logs as malicious, revealing a tendency of
9% on FP events regarding the “Normal” subset. The majority of FP events are related to
the fictitious presence of Mimikatz’s ProcessCreate Event IDs, specifically the logs with Targe-
tImages: “C:/Windows/System32/lsass.exe, services.exe, reg.exe, svchost.exe” and GrandedAccess:

“0x1010, 0x1410”.

Table 5. Total number of tests performed with PeX per attack and subset, including FP and TP
percentages.

Attack Vector Subset No. of Logs TP (%) TN (%) FP (%) FN (%)

Normal Network Traffic Normal 80,274 88.0% 2.5% 9.0% 1.5%
Remote Services Exploitation + Normal Net Traffic NormalVsMalicious01 293,520 85.4% 5.3% 8.0% 1.3%
Hashing Pass Exploitation + Normal Net Traffic NormalVsMalicious02 416,029 83.5% 3.3% 11.5% 1.7%
Total Attacking Vector + Normal Net Traffic FullSet 870,119 84.6% 2.4% 11.6% 1.4%

On the positive side, despite the initial concerns that a FP rate of ≈10% may arise,
this figure falls under 1.5% (1.35% precisely) when combined with the “.dll” related rules
of Section 6.2.4. The aforesaid percentage, if examined in conjunction with the 1.5% of
the fourth column’s FN events, it is statistically acceptable for the operational nature of a
parsing and analysis tool. The reader should keep in mind that the FN events presented in
Table 5 are related to Sysmon’s rules that were generated and implemented in config.xml
file for ignoring any unwanted noise within the event filtering procedure.

Regarding the NormalVsMalicious01 subset, which comprises logs related to the ex-
periments of Section 6.1, PeX successfully identified 250,666 (or 85.4%) TP logs as poten-
tially malicious or normal, together with 15,556 (or 5.3%) more TN Event IDs. The same
promising rates regarding TP and FP logs were also identified during the evaluation of
the NormalVsMalicious02 subset of password hashing Exploitation attacks of Section 6.2.
Precisely, 83.5% (or 347,384 logs) of the collected logs was successfully identified, while
another 3.3% (or 13,728 logs) was also flagged correctly as TN.

With reference to the penultimate column of Table 5, FP presented an average of 9.75%
on both the NormaVsMalicious subsets. In more detail, PeX recognized 23,481 (or 8%) and
47,843 (or 11.5%) logs incorrectly per NormaVsMalicious subset, respectively. It is noteworthy
that most of the misclassified logs of both subsets were related to Mimikatz extracted log
files. For this reason, these records were re-evaluated under the implementation of the .dll
ParentImage signatures of Section 6.2.4, reducing erroneous FP rates by 1.9% and 2.3% for

Appl. Sci. 2022, 12, 7746 24 of 30

each subset, as presented in Table 6, respectively. Regarding the identified FNs per subset,
the records of Table 6 do not exceed 1.6%, a fact that, within the context of this work, is
deemed acceptable.

Table 6. Total number of tests performed with PeX per attack and subset, including FP and TP
percentages. The evaluation of the depicted logs was executed under the extended rule-based policy,
including the “.dll” analysis of Section 6.2.4.

Subset No. of Logs TP (%) TN (%) FP (%) FN (%)

Normal 80,274 89.63% 7.60% 1.35% 1.42%
NormalVsMalicious01 293,520 88.65% 8.20% 1.90% 1.25%
NormalVsMalicious02 416,029 88.25% 7.85% 2.30% 1.60%

FullSet 870,119 88.55% 7.90% 2.20% 1.35%

No less important, PeX was tested against the extended FullSet dataset, which com-
prises the three pre-selected log records of Table 5 plus the events of the last two days of the
10-day period testing. The final evaluation of the analyzer was conducted under the eventu-
ally configured rule-based policy, including the “.dll” filtering parameters. Table 5 presents
PeX scoring without the inclusion of the .dll Event ID’s fields, while Table 6 contains the
re-evaluated log values under the enhanced rule-based policy.

Last but not least, the confusion matrices presented in Figures 4 and 5 demonstrate, in
a log-oriented form, the evaluation percentages of Tables 5 and 6, namely TP, TN, FP, FN
rates, for PeX’s execution per technique and subset.

(a) (b)

(c) (d)

Figure 4. Confusion matrices for the evaluation percentages presented in Table 5, namely TP, TN, FP,
FN rates, for PeX’s execution per technique and subset. (a) Normal Subset; (b) NormalVsMalicious01
Subset; (c) NormalVsMalicious02 Subset; (d) FullSet Subset.

(a) (b)

Figure 5. Cont.

Appl. Sci. 2022, 12, 7746 25 of 30

(c) (d)

Figure 5. Confusion matrices for the evaluation percentages presented in Table 6, namely TP, TN, FP,
FN rates, for PeX’s execution per technique and subset; (a) Normal Subset; (b) NormalVsMalicious01
Subset; (c) NormalVsMalicious02 Subset; (d) FullSet Subset.

8. Conclusions

In recent years, many organizations have suffered damages as a result of targeted
LM. As it becomes apparent, the tasks of incidence response teams to further address
such damages acquire significant weight. Many penetration testing tools leave no concrete
evidence regarding their execution when filtered with Sysmon’s default settings, leaving
several data exfiltration incidents unsolved. In this context, the current study aspires to set
the stage for a fresh EDR rule-based policy regarding Sysmon identification and alerting of
LM events. In addition, a publicly available Python tool, namely PeX is implemented, giving
greater insight in terms of understanding the mechanisms that fall under LM methods.

As an extension of the work conducted on this topic so far, the ultimate goal of the
current work is the collection and investigation of evidential logs related to LM attacks.
In short, the effort is concentrated on the creation of custom filtering Sysmon rules, along
with the initialization of Sysmon’s config.xml file specifically oriented towards the alerting
of LM. The conducted analysis suggests two different sets of Sysmon rules, as presented in
Appendices A.1 and A.2, one for each of the Exploitation of Remote Services and Credential
Exploitation attack experiments, respectively. The adoption of the aforementioned rules
comes as a direct result of the thorough network traffic and pattern study, as derived from
the execution of each attack.

With reference to the conducted experiments, the proposed rule-based approach was
incorporated with Sysmon in the form of the config.xml file, presenting an identification
TP rate above ≈95%. Finally, yet importantly, the proposed EDR policy, including the .dll
analysis of Section 6.2.4, was imported and evaluated through PeX against four subsets, re-
vealing a tendency above ≈96% in terms of the TP and TN metrics. The combination of the
proposed EDR policy with machine learning techniques may reveal its importance as the ba-
sis for the creation of an LM-oriented IDS solution. Nevertheless, a thorough investigation
of this potential is well beyond the scope of this paper and is left for future work.

Author Contributions: Conceptualization, C.S., K.B. and G.K.; methodology, C.S., K.B. and G.K.;
validation, C.S., K.B. and G.K.; formal analysis, C.S. and G.K.; investigation, C.S., K.B. and G.K.; writ-
ing—original draft preparation, C.S.; writing—review and editing, C.S., K.B. and G.K.; supervision,
G.K. and K.B.; project administration, C.S. G.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The “Python_Evtx_Analyzer (PeX)” tool along with the large dataset
of Sysmon logs collected during the experiments are made publicly available to the community for
download at https://github.com/ChristosSmiliotopoulos/Python_Evtx_Analyzer.git.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/ChristosSmiliotopoulos/Python_Evtx_Analyzer.git

Appl. Sci. 2022, 12, 7746 26 of 30

Abbreviations
The following abbreviations are used in this manuscript:

5Ws Who-When-Where-What-Why
Argparse Argument Parser Python Library
API Application Programming Interface
ARP Address Resolution Protocol
CMD Command Line
CME CrackMapExec
CSIRT Computer Security Incident Response Team
CSV Comma-Separated Values
DLL Dynamic Link Library
DOM Document Object Model Interface
Domain SID Domain Security Identifier
EDR System Endpoint Detection and Response System
Event ID Event Identification
evtx Windows XML EventLog
FN False Negative
FP False Positive
GUID Global Unique Identifier
I/O Input/Output
IDE Integrated Development Environment
IDS Intrusion Detection System
IP Internet Protocol
KDC Kerberos Key Distribution Center
klist Kerberos List
LSASS Local Security Authority Subsystem Service
LTS Long Time Support
MAC Address Media Access Control Address
MMAP Memory Mapped File Support Python Library
MSTSC Microsoft Terminal Services Client
NMAP Network Mapper
NTLM Network Lan Manager
PeX Python_Evtx_Analyzer
PtH Pass the Hash
PtT Pass the Ticket
RAM Random Access Memory
RDP Remote Desktop Protocol
SIEM Security Information and Event Management
SMB Service Message Block
SOHO Small Office Home Office
STA Station
Sysmon System Monitoring
TN True Negative
TP True Positive
UAC User Account Control
USB Universal Serial Bus
VM Virtual Machine
WIDS Wireless Intrusion Detection Systems
Wi-Fi Wireless Fidelity
xml Extensible Markup Language

Appl. Sci. 2022, 12, 7746 27 of 30

Appendix A

Appendix A.1

Table A1. Summary of the most important rule-based features included in Section 6.1. The imported
superscripts are described as follows: Number 1 of the first column denotes Microsoft’s vulnerability
with code MS-17-010 “EternalChampion SMB Remote Command Execution”, Number 2 indicates
Impacket Python scripts exploitation, Number 3 is related to “Escalation to SYSTEM privilege
with Metasploit smb_login exploitation”, Number 4 presents UAC bypass–privilege escalation with
smbexec.py, Number 5 is the exploitation of the EternalBlue vulnerability on SMB file-sharing services,
and Number 6 demonstrates BlueKeep RDP misconfiguration most related features.

Tool Tool Attack Utilization COM Port Sysmon-Event Log

1,2 PsExec
Remote command execution on
clients and servers within a
domain.

135/tcp, 445/tcp, or a
random high port

Event IDs 1,5 (ProcessCreate,
ProcessTerminate), path:
“%SystemRoot%/PSEXESVC.exe”, Images:
“C:/Windows/PSEXESVC.exe”,
“C:/Windows/services.exe”,
“C:/Windows/wmiprsv.exe” User: “SYSTEM”,
Additional Info: date, UtcTime the “Image:
“C:/Windows/PSEXESVC.exe” was executed”.

1,2 WinRM

Target
enumeration-investigation on
the remote host via command
execution.

5985/tcp (HTTP) or
5986/tcp (HTTPS)

Event IDs 1,5 (ProcessCreate,
ProcessTerminate), Images:
“C:/Windows/System32/cscript.exe”,
“C:/Windows/System32/svchost.exe”,
“C:/Windows/System32/wsmprovhost.exe”
“C:/Windows/System32/mmc.exe”
Additional Info: ProcessID, UtcTime,
CommandLine, User.

2,4 smbexec

Execution of applications that
are normally controlled by the
bypassed User Account Control
(UAC) as a user with
administrator privileges.

-

Event IDs 1,5 (ProcessCreate,
ProcessTerminate), Images:
“C:/Windows/System32/smbexec.py”,
“C:/Windows/System32/sdbinst.py” User:
“SYSTEM”, Additional Info: “Process
Start/End Time and Date (UTC), Process
CommandLine, ProcessID, SDB File Used”.

1,2 smb_login
(Metasploit)

Privilege Escalation within host
or domain. 445/tcp

Event IDs 1,5 (ProcessCreate,
ProcessTerminate), path:
“%SystemRoot%/PSEXESVC.exe”, Images:
“C:/Windows/PSEXESVC.exe”,
“C:/Windows/System32/cmd.exe”,
“C:/Windows/System32/powershell.exe”,
“C:/Windows/System32/net.exe”,
“C:/Windows/System32/whoami.exe”
, Additional Info: Administrative privileges
“//*/IPC$”, “//*/admin$”, “//*/c$”
Images - CommandLine-CurrentDirectory-
Hashes-ParentImage-ParentCommandLine
related to net.exe and whoami.exe.

5 Wannacry
malware

Malware infection to leverage
MS17-010 EternalBlue
vulnerability on SMB
file-sharing services.

139/tcp, 445/tcp,
137–138/udp

Event IDs 1,2,5 (ProcessCreate,
ProcessChange, ProcessTerminate), path:
“%SystemRoot%/Wcry.exe”,
“%SystemRoot%/taskce.exe” Images:
“C:/Windows/Users/Desktop/Wcry.exe”,
“C:/Windows/Users/Desktop/tasksche.exe”,
“C:/Windows/Users/Desktop/r.wnry.exe”,
“C:/Windows/Users/Desktop/s.wnry.exe”,
“C:/Windows/Users/Desktop/t.wnry.exe”,
“C:/Windows/Users/Desktop/u.wnry.exe”,
“C:/Windows/Users/Desktop/taskse.exe”,
“C:/Windows/Users/Desktop/taskdl.exe”,
“C:/.../attrib.exe”, “C:/.../icacls.exe”
Additional Info: ProcessID: 3024, Files with
extension “.WNCRYT” or
“C://Users//...//Desktop//Eula.txt.WNCRYT”
objects which denote ransomware’s expansion,
CommandLine: “attrib +h”, “icacls . /grant
Everyone:F /T /C /Q”.

Appl. Sci. 2022, 12, 7746 28 of 30

Table A1. Cont.

Tool Tool Attack Utilization COM Port Sysmon-Event Log

6 BlueKeep
(CVE-2019-0708)

Worm-like (Wannacry similiral)
cybersecurity vulnerability of
Windows Remote Desktop
Protocol (RDP) and Services (RDS)
which allows the remote
execution of arbitrary malicious
code.

3389/tcp

Event IDs 1,2,5 (ProcessCreate,
ProcessChange, ProcessTerminate) as in 1–5,
Event ID 3 (NetworkConnection), path:
“%SystemRoot%/”, Images:
“C:/Windows/System32/rdpv.exe”,
“C:/Windows/System32/mstsc.exe”,
“C:/Windows/System32/RTSApp.exe”,
“C:/Windows/System32/ws_TunnelService.exe.exe”,
“C:/Windows/System32/RemoteDesktopManagerFree.exe”,
“C:/Windows/System32/RemoteDesktopManager.exe”,
“C:/Windows/System32/RemoteDesktopManager64.exe”,
“C:/Windows/System32/mRemote.exe”,
“C:/Windows/System32/Terminals.exe”,
“C:/Windows/System32/spiceworks-
finder.exe”,
“C:/Windows/System32/thor.exe”,
“C:/Windows/System32/thor64.exe”,
“C:/Windows/System32/reg.exe”,
“C:/Windows/System32/chrome.exe”
Sysmon’s Additional Info: Administrative
privileges “//*/IPC$”, “//*/admin$”,
“//*/c$”,
Images-CommandLine-CurrentDirectory -
Hashes-ParentImage-ParentCommandLine-
ProcessID-UtcTime, User related to the
identified Images.

Appendix A.2

Table A2. Summary of the most important rule-based features included in Section 6.2. The imported
superscripts are described as follows: Number 1 presents the most significant features of the PtH
attack, Number 2 , Number 3–5 are dedicated to the description of the Pass-the-Ticket (PtT), Golden
and Silver Tickets attacks, Number 5 presents LaZagne Project-related features regarding Windows
password compromise, and Number 6 is related to the Privilege Escalation and enumeration procedure.

Tool Tool Attack Utilization COM Port Sysmon-Event Log

1 PtH
(PowerShell
Invoke-
Mimikatz)

Credential theft and Lateral
Movement technique in which the
adversary leverages Windows
NTLM hash without cracking it to
authenticate as legit.

445/tcp

Event IDs 1,2,5 (ProcessCreate, ProcessChange,
ProcessTerminate) as in 1–6 of Table A1, Event
ID 3 (NetworkConnection), Event ID 10
(ProcessAccess), Event ID 11 (FileCreate),
Event ID 22 (DNSEvent (DNS query)), Event
ID 13 (RegistryEvent (Value Set)), path:
“%SystemRoot%/”,
“%SystemRoot%/PSEXESVC.exe”,
ParentImage:
“C:/Users/Administrator/Desktop/mimikatz_trunk
/x64/mimikatz.exe”,
“C:/Windows/system32/sppsvc.exe”
TargetImage:
“C:/Windows/System32/lsass.exe”,
“C:/Windows/System32/lsass.exe”,
“C:/Windows/System32/reg.exe”,
“C:/Windows/System32/svchost.exe”,
“C:/Windows/PSEXESVC.exe”,
“C:/Windows/services.exe”,
“C:/Windows/wmiprsv.exe” GrantedAccess:
“0 × 1010”, “0 × 1410”, “×1438”, “×1438a”, “0
× 1FFFFF”, “0 × 143a”, CommandLine:
“sekurlsa”, “mimikatz”, “reg SAVE”, “dumpcr”,
Sysmon’s Additional Info: Administrative
privileges “//*/IPC$”, “//*/admin$”,
“//*/c$”, Images-CommandLine-
CurrentDirectory-Hashes-ParentImage-
ParentCommandLine-ProcessID-UtcTime, User
related to the identified Images, TargetFilename:
“C:/Users/Administrator/Desktop/.../filename.kirbi”,
DNS QueryName: “sysmon_set (or the desired
name of the targeted domain)”

Appl. Sci. 2022, 12, 7746 29 of 30

Table A2. Cont.

Tool Tool Attack Utilization COM Port Sysmon-Event Log

2 PtT, 3 Golden
Ticket, 4 Silver
Ticket

Capturing the Domain
Administrator Privilege and Account
Credentials. Leverages an
unauthorized Kerberos ticket that is
valid for an arbitrary period and
grants access without additional
authentication.

445/tcp

Event IDs 1,2,5 (ProcessCreate,
ProcessChange, ProcessTerminate), Event ID
3 (NetworkConnection), Event ID 10
(ProcessAccess), Event ID 11 (FileCreate),
Event ID 22 (DNSEvent (DNS query)), Event
ID 13 (RegistryEvent (Value Set)), path:
“%System-
Root%/”,“%SystemRoot%/PSEXESVC.exe”,
as in 1–7 of Table A1, ParentImage: as in 1–7,
plus, C:/Windows/System32/klist.exe,
C:/Windows/mimikatz.exe,
“C:/Windows/PSEXESVC.exe”,
CommandLine: “sekurlsa”, “mimikatz”, “reg
SAVE”, “dumpcr”, “Get-Keystrokes”,
“Get-TimedScreenshot”,
“Get-VaultCredential”,
“Invoke-CredentialInjection”,
“Invoke-CredentialInjection”

5 LaZagne
Open source application used for
passwords exploitation which are
stored on a local targeted host.

3389/tcp

Event IDs 1,2,5 (ProcessCreate,
ProcessChange, ProcessTerminate), Event ID
10 (ProcessAccess), path: “%System-
Root%/”,“%SystemRoot%/PSEXESVC.exe”,
ParentImage:
“C:/Windows/System32/lazagne.exe”,
CommandLine: “lazagne.exe windows”, “...
sysadmin, mail, project mail, project
databases, project windows, project all”

6 Privilege
Escalation

The basis of each Lateral Movement
attack. Target acquisition, weak
points enumeration, access gained
within the security perimeter of a
domain, gradual escalation of
privileges and extension of the
Lateral Movement of the adversary.

80, 53, 25, 110, 143, 139, 445,
3389, 6000/TCP

Event IDs 1,2,5 (ProcessCreate,
ProcessChange, ProcessTerminate),
CommandLine: “Get-Keystrokes”,
“Get-TimedScreenshot”,
“Get-VaultCredential”,
“Invoke-CredentialInjection”, “mimikatz”

References
1. MITRE. Lateral Movement-The Adversary Is Trying to Move through Your Environment. Mitre, 12 July 2019.
2. Smiliotopoulos, C.; Barmpatsalou, K.; Kambourakis, G. Python_Evtx_Analyzer (PeX-v1). Available online: https://github.com/

ChristosSmiliotopoulos/Python_Evtx_Analyzer.git (accessed on 25 June 2022).
3. Coordination, J. Detecting Lateral Movement through Tracking Event Logs; JPCERT Coordination Center: Tokyo, Japan, June 2017.
4. Russinovich, M.; Garnier, T. Sysmon v13. 22. Available online: https://www.ultimatewindowssecurity.com/securitylog/

encyclopedia/event.aspx?eventid=90022 (accessed on 25 June 2022).
5. Coordination, J. Detecting Lateral Movement through Tracking Event Logs (Ver. 2); JPCERT Coordination Center: Tokyo, Japan,

December 2017.
6. Viasat. KaSat-Network Cyber Attack Overview. Available online: https://www.viasat.com/about/newsroom/blog/ka-sat-

network-cyber-attack-overview/ (accessed on 4 April 2022).
7. Mavroeidis, V.; Jøsang, A. Data-driven threat hunting using sysmon. In Proceedings of the 2nd International Conference on

Cryptography, Security and Privacy, Guiyang, China, 16–19 March 2018; pp. 82–88.
8. Mavroeidis, V.; Bromander, S. Cyber Threat Intelligence Model: An Evaluation of Taxonomies, Sharing Standards, and Ontologies

within Cyber Threat Intelligence. In Proceedings of the 2017 European Intelligence and Security Informatics Conference (EISIC),
Athens, Greece, 11–13 September, 2017; pp. 91–98. [CrossRef]

9. Berady, A.; Jaume, M.; Tong, V.V.T.; Guette, G. From TTP to IoC: Advanced Persistent Graphs for Threat Hunting. IEEE Trans.
Netw. Serv. Manag. 2021, 18, 1321–1333. [CrossRef]

10. Matsuda, W.; Fujimoto, M.; Mitsunaga, T. Real-Time Detection System Against Malicious Tools by Monitoring DLL on Client
Computers. In Proceedings of the 2019 IEEE Conference on Application, Information and Network Security (AINS), Penang,
Malaysia, 19–21 March 2019; pp. 36–41. [CrossRef]

11. Juwono, J.T.; Lim, C.; Erwin, A. A comparative study of behavior analysis sandboxes in malware detection. In Proceedings of the
International Conference on New Media (CONMEDIA), Jakarta, Indonesia, 27 November 2015; pp. 73–78.

12. Narouei, M.; Ahmadi, M.; Giacinto, G.; Takabi, H.; Sami, A. DLLMiner: Structural mining for malware detection. Secur. Commun.
Netw. 2015, 8, 3311–3322. [CrossRef]

13. Rajesh, P.; Ismail. Ismail. B, M.; Alam, M.; Tahernezhadi, M. Network Forensics Investigation in Virtual Data Centers Using
ELK. In Proceedings of the 2021 International Symposium on Electrical, Electronics and Information Engineering, Online, 19–21
February 2021; pp. 175–179.

14. Jain, U. Lateral Movement Detection Using ELK Stack. Ph.D. Thesis, University of Houston, Houston, MA, USA, 2018.

https://github.com/ChristosSmiliotopoulos/Python_Evtx_Analyzer.git
https://github.com/ChristosSmiliotopoulos/Python_Evtx_Analyzer.git
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90022
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90022
https://www.viasat.com/about/newsroom/blog/ka-sat-network-cyber-attack-overview/
https://www.viasat.com/about/newsroom/blog/ka-sat-network-cyber-attack-overview/
http://doi.org/10.1109/EISIC.2017.20
http://dx.doi.org/10.1109/TNSM.2021.3056999
http://dx.doi.org/10.1109/AINS47559.2019.8968697
http://dx.doi.org/10.1002/sec.1255

Appl. Sci. 2022, 12, 7746 30 of 30

15. El-Hadidi, M.G.; Azer, M.A. Detecting Mimikatz in Lateral Movements Using Mutex. In Proceedings of the 2020 15th International
Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 15–16 December 2020; pp. 1–6. [CrossRef]

16. Ki, Y.; Kim, E.; Kim, H.K. A Novel Approach to Detect Malware Based on API Call Sequence Analysis. Int. J. Distrib. Sens. Netw.
2015, 11, 659101. [CrossRef]

17. Ho, G.; Dhiman, M.; Akhawe, D.; Paxson, V.; Savage, S.; Voelker, G.M.; Wagner, D. Hopper: Modeling and Detecting Lateral
Movement. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21); USENIX Association: Berkeley, CA, USA,
2021; pp. 3093–3110.

18. Bhasin, H.P.S.; Ramsdell, E.; Alva, A.; Sreedhar, R.; Bhadkamkar, M. Data center application security: Lateral movement detection
of malware using behavioral models. SMU Data Sci. Rev. 2018, 1, 10.

19. Coffey, K.; Smith, R.; Maglaras, L.; Janicke, H. Vulnerability analysis of network scanning on SCADA systems. Secur. Commun.
Netw. 2018, 2018, 3794603. [CrossRef]

20. Mulder, J.; Stingley, M. Mimikatz Overview, Defenses and Detection. SANS Institute, February 2016; p. 1–18. Available online:
https://www.sans.org/white-papers/36780/ (accessed on 15 April 2022).

21. Ussath, M.; Jaeger, D.; Cheng, F.; Meinel, C. Advanced persistent threats: Behind the scenes. In Proceedings of the IEEE 2016
Annual Conference on Information Science and Systems (CISS), Princeton, NJ, USA, 15–18 March 2016, pp. 181–186.

22. Kazanciyan, R.; Hastings, M. Investigating Powershell Attacks; Black Hat: San Francisco, CA, USA, 2014; pp. 1–25.
23. Steven F. Revisiting Remote Desktop Lateral Movement. Medium. 2022. Available online: https://posts.specterops.io/ (accessed

on 12 April 2022).
24. logPoint. MITRE ATT&CK Analytics—Alert Rules Latest Documentation. 2022. Available online: https://docs.logpoint.com/

docs/alert-rules/en/latest/MITRE.html (accessed on 15 April 2022).
25. Goet, M. Protect Yourself against #BlueKeep Using Azure Sentinel and Defender ATP. Medium. 2022. Available online: https://

medium.com/@maarten.goet/protect-yourself-against-bluekeep-using-azure-sentinel-and-defender-atp-d308f566d5cf (accessed
on 12 April 2022).

26. SandBoxCloud, J. Windows Analysis Report. SandBoxCloud. 2022. Available online: https://www.joesandbox.com/analysis
(accessed on 24 May 2022).

27. Sandbox, F. Free Automated Malware Analysis Service, “RemoteDesktopManagerFree.exe”. Sandbox. 2022. Available
online: https://www.hybrid-analysis.com/sample/b26ede46a0be62f361b4a28d2e67fa2e2f35c9bbc995ae84a2c0c7f4141f65b0
?environmentId=100 (accessed on 17 April 2022).

28. Sorensen, S. Remote Desktop Manager Free. LO4D.com. 2022. Available online: https://remote-desktop-manager-free.en.lo4d.
com/windows (accessed on 18 May 2022).

29. Bezverkhyi, A. Proactive Detection Content: CVE-2019-0708 vs ATT&CK, Sigma, Elastic and ArcSight-SOC Prime. SOC Prime.
2022. Available online: https://socprime.com/blog/proactive-detection-content-cve-2019-0708-vs-attck-sigma-elastic-and-
arcsight (accessed on 15 May 2022).

30. s0i37—HackMag. Lateral Movement Guide: Remote Code Execution in Windows. Available online: https://hackmag.com/
security/lateral-guide/ (accessed on 26 May 2022).

http://dx.doi.org/10.1109/ICCES51560.2020.9334643
http://dx.doi.org/10.1155/2015/659101
http://dx.doi.org/10.1155/2018/3794603
https://www.sans.org/white-papers/36780/
https://posts.specterops.io/
https://docs.logpoint.com/docs/alert-rules/en/latest/MITRE.html
https://docs.logpoint.com/docs/alert-rules/en/latest/MITRE.html
https://medium.com/@maarten.goet/protect-yourself-against-bluekeep-using-azure-sentinel-and-defender-atp-d308f566d5cf
https://medium.com/@maarten.goet/protect-yourself-against-bluekeep-using-azure-sentinel-and-defender-atp-d308f566d5cf
https://www.joesandbox.com/analysis
https://www.hybrid-analysis.com/sample/b26ede46a0be62f361b4a28d2e67fa2e2f35c9bbc995ae84a2c0c7f4141f65b0?environmentId=100
https://www.hybrid-analysis.com/sample/b26ede46a0be62f361b4a28d2e67fa2e2f35c9bbc995ae84a2c0c7f4141f65b0?environmentId=100
https://remote-desktop-manager-free.en.lo4d.com/windows
https://remote-desktop-manager-free.en.lo4d.com/windows
https://socprime.com/blog/proactive-detection-content-cve-2019-0708-vs-attck-sigma-elastic-and-arcsight
https://socprime.com/blog/proactive-detection-content-cve-2019-0708-vs-attck-sigma-elastic-and-arcsight
https://hackmag.com/security/lateral-guide/
https://hackmag.com/security/lateral-guide/

	Introduction
	Related Work
	Preliminaries on Lateral Movement
	Testbed
	Lateral Movement Categories on Windows Environments
	Exploitation of Remote Services
	Pass the Hash Credential Override
	Pass the Ticket Credential Override
	Golden Ticket
	Silver Ticket
	Post Exploitation on Stored Passwords with LaZagne Project

	Methodology
	Exploitation of Remote Services
	Exploitation of ms17-010
	Exploitation of EternalBlue
	Deployment of WannaCry
	Exploitation of BlueKeep

	Credential Exploitation Attacks
	Pass the Hash
	Pass the Ticket
	Golden/Silver Ticket
	Discussion on Mimikatz-Related Attacks
	Post Exploitation on Stored Passwords with LaZagne Project
	Discussion upon Password Exploitation with LaZagne Project

	Python_Evtx_Analyzer
	PeX Operation
	Dataset
	Evaluation

	Conclusions
	
	
	

	References

