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Abstract

Accurately estimating uncertainties in neural network

predictions is of great importance in building trusted DNNs-

based models, and there is an increasing interest in pro-

viding accurate uncertainty estimation on many tasks, such

as security cameras and autonomous driving vehicles. In

this paper, we focus on the two main use cases of uncer-

tainty estimation, i.e., selective prediction and confidence

calibration. We first reveal potential issues of commonly

used quality metrics for uncertainty estimation in both use

cases, and propose our new metrics to mitigate them. We

then apply these new metrics to explore the trade-off be-

tween model complexity and uncertainty estimation quality,

a critically missing work in the literature. Our empirical

experiment results validate the superiority of the proposed

metrics, and some interesting trends about the complexity-

uncertainty trade-off are observed.

1. Introduction

Deep neural networks (DNNs) have been widely used

in vision tasks and achieved remarkable performance im-

provement. A major challenge in adopting DNNs to real-

world mission-critical applications such as the medical im-

age segmentation, is the lack of self-awareness and the ten-

dency to fail silently [16]. In contrast, human’s awareness

of prediction uncertainty enables, for example, human ra-

diologists to conduct further investigations whenever they

are in doubt for a diagnosis based on computed tomography

(CT) images, and human drivers to slow down whenever

they cannot clearly recognize an object. In order for DNNs

to gain human’s trust in making critical decisions, espe-

cially in mission-critical scenarios, we need to equip DNNs

with self-awareness on a par with its task competency. Most

recently, much effort has been devoted to providing an ac-

curate quantified score representing the uncertainty of ev-

ery prediction, where wrongly predicted instances are ex-

pected to be assigned with low confidence scores and cor-

rectly predicted ones are expected to be assigned with high

confidence scores 1 [5, 13, 29, 37, 40].

The competency awareness of DNNs is commonly re-

alized in two use cases of uncertainty estimation: se-

lective prediction [9, 24, 30, 33] and confidence calibra-

tion [13, 15, 22, 32, 38, 39]. For the selective prediction, the

obtained confidence scores are thresholded and the model

can abstain from making predictions on samples with low

confidence scores to achieve higher accuracy on the remain-

ing part [14]. For instance, in automatic segmentation of

medical images, it is desired that the machine segments the

common and easy area of medical images and refers the

area with unusual appearance to the radiologists to ensure

an extremely high accuracy [38]. In this case, the confi-

dence score is expected to be used for separating correct

predictions and wrong predictions, and the popular qual-

ity metrics used to evaluate uncertainty estimation are Area

Under Receiver Operating Characteristic curve (AUROC)

and Area Under Precision-Recall curve (AUPR) [3, 14, 29].

For the confidence calibration, the aim is to provide a con-

fidence score that approximates the empirical probability of

a prediction being correct [13, 38]. For instance, in au-

tonomous driving, human intervention is often not avail-

able in a timely manner and the high-level planning module

will need such calibrated confidence score of pedestrian de-

tection for instant decision making. In this case, common

quality metrics are Expected Calibration Error (ECE) and

Maximum Calibration Error (MCE) [13, 22, 38].

Despite the recent advancements, we show that the qual-

ity metrics of neural network uncertainty estimation used by

most existing works could be problematic, potentially lead-

ing to unfair comparisons, confusing results, and/or unde-

sired learning behaviors. Specifically, for the selective pre-

diction, we show that even minimal changes in prediction

models can make the commonly used evaluation based on

1Confidence is the additive inverse of uncertainty with respect to 1, so

they are used interchangeably in the literature.



AUROC and AUPR meaningless or even misleading. To ad-

dress this issue, we propose to use a different metric, called

Area Under Risk-Coverage (AURC) curve as the primary

metric for selective prediction. We show that AURC is the

only reliable metric among AUROC, AUPR, and AURC,

when the underlying prediction model changes, and is con-

sistent with AUROC and AUPR when the underlying pre-

diction model stays the same. As for confidence calibra-

tion, we show that, because of the basic binning strategy

employed, the commonly used evaluation metrics ECE and

MCE cannot expose some large calibration error even in

the high confidence area. Moreover, they are vulnerable to

internal compensation and inaccurate accuracy estimation

in each confidence interval, which leads to poor robustness

and inferior accuracy. Therefore, we propose a new binning

strategy, called adaptive binning, for the evaluation by ECE

and MCE, and empirically show its superiority.

While the complexity-accuracy trade-off of DNN-based

models has been extensively studied in the literature, the

effect of model complexity on uncertainty estimation qual-

ity is almost unknown. However, with the prevalence of

DNNs in real-world applications, it is ever more impor-

tant for model designers to seek the best trade-off between

cost and different aspects of model performance under vari-

ous resources constraints. Therefore, a better understanding

of the uncertainty-related performance changes with model

complexity is required. We first give some theoretical anal-

ysis of the relation between the selective prediction and

the confidence calibration. Then we use our proposed new

metrics to explore the effect of model complexity on the

uncertainty-related model performance. Our study serves

two purposes. First, it validates the effectiveness and ro-

bustness of our proposed evaluation metrics. Second, it pro-

vides the first empirical study on how uncertainty-related

model performance changes with model complexity. From

our study, we observe that, interestingly, estimation quality

changes significantly with model complexity for selective

prediction, but is insensitive to model complexity for confi-

dence calibration.

In summary, the main contributions of this paper are as

follows:

• We identify the potential issues of commonly used

quality metrics for uncertainty estimation in both se-

lective prediction and confidence calibration, and pro-

pose new metrics that provide more reliable and infor-

mative evaluations.

• As an application and validation of the proposed met-

rics, we provide the first exploration of complexity-

uncertainty trade-off, and show some interesting ob-

servations.

2. Related Works

Uncertainty Estimation. Various methods exist in

the literature to estimate the uncertainty of neural network

predictions [6, 11, 15, 19, 27]. The most popular ap-

proaches include softmax probability [14, 13], Monte Carlo

dropout [8, 36], and learned confidence estimation [5, 28].

The uncertainty estimation can either explicitly affect the

model during the training process [7, 22, 26] or work as a

post-processing step that does not affect the underlying pre-

diction models [3, 13]. Note that in our definition and analy-

sis, we did not make any assumption on how the confidence

score is obtained or any correlation between the prediction

and the confidence score. They can be obtained by any pre-

diction model and any uncertainty estimation method.

Evaluation Methods. The commonly used eval-

uation metrics for selective prediction are AUROC and

AUPR [3, 14, 29]. Recently, E-AURC has been used to

evaluate the uncertainty estimation quality in a selective

prediction scenario [11]. However, the E-AURC has ex-

actly the same problem with AUROC and AUPR, because

the accuracy difference is not considered, which is detailed

in Section 4.1. It is meaningless when the underlying pre-

diction model varies, which happens in many cases, e.g.

comparing different models, evaluating algorithms that al-

ter the training process [30], and when either MC-dropout

or ensemble is used for uncertainty estimation [24, 33].

Currently, the confidence calibration quality of neural

network-based models are evaluated by ECE and MCE [13,

22, 32, 38, 39]. In order to minimize the ECE, a differen-

tiable proxy to ECE named MMCE is used for calibration-

aware network training [22]. Negative Log Likelihood

(NLL) and Brier Score are used as indirect and supplemen-

tary measurements in some works [13, 39]. We note that

Brier Score and NLL are not suitable as primary metrics for

confidence calibration, because they prefer better prediction

rather than better calibration by design. ECE and MCE have

been extended from the binary setting to the multi-class set-

ting in [34, 42]. In either way, the computation of ECE and

MCE heavily depends on the binning strategy which is the

focus of this work. Equal-size binning where every bin has

a same number of samples was proposed as a remedy for

the known issues of the common fixed equal-size binning

[34, 42]. However, we show that although equal-size bin-

ning helps, it is still not flexible enough to deal with highly

non-uniform confidence distribution. [32] uses a Bayesian

score to average a number of models with equal-size bin-

ning. Such modeling averaging is orthogonal to our bin-

ning method. In addition, it is used as a calibration method

to improve the performance measured by ECE that uses the

conventional equal-range binning.



3. Problem Setting

We put our discussion in a general classification setting.

See [21] for recent advance in the regression setting. Fol-

lowing [22], we denote Y = {1, 2, . . . ,K} as the set of

class labels, X as the input space, D as the data distribu-

tion, and Nθ(y|x) as the probability distribution of model

predictions with input x, and model parameters θ. For each

input sample xi and true label yi, the model gets a predicted

label ŷi = argmaxy∈YNθ(y|xi) and a confidence score ri.

If ŷi = yi, which means the prediction is correct, we have

the correctness score ci = 1. Otherwise, ci = 0. Then the

distribution over r and c on D can be denoted as Pθ,D(r, c).

Selective Prediction. In selective prediction, with a

confidence score ri for each input xi and a threshold t,

the input from dataset X and the prediction Ŷ are split

to Xh = {xi|ri >= t}, Xl = {xi|ri < t} and Ŷh =
{ŷi|ri >= t}, Ŷl = {ŷi|ri < t} respectively. The model

abstains from making prediction on Xl. Ideally, Ŷl con-

tains all wrong predictions and Ŷh contains all correct pre-

dictions so that the error is avoided with the minimal cost.

In this case, ri is used for separating correct predictions and

wrong predictions, which is a binary classification problem

and therefore the common quality metrics are AUROC and

AUPR [3, 14, 29, 30].

Confidence Calibration. Confidence calibration

aims to give a confidence score r ∈ [0, 1] that directly re-

flects the probability of the prediction being correct. The

difference between the probability of correct prediction

EPθ,D(c|r)[c] and the confidence score r is defined as the

calibration error. Consequently, the expected calibration er-

ror (ECE) and maximum calibration error (MCE) are de-

fined as:

ECE(Pθ,D) = EPθ,D(r)[|EPθ,D(c|r)[c]− r|] (1)

MCE(Pθ,D) = max
r∈[0,1]

|EPθ,D(c|r)[c]− r| (2)

Practically, given a finite number of samples in D ∼
Pθ,D, ECE and MCE are calculated by partitioning the [0, 1]
range to n bins according to a binning strategy. For every

bin, an average accuracy and an average confidence are cal-

culated using all samples inside. The difference between

the average accuracy and the average confidence is the cal-

ibration error, which is denoted as calibration gap in [13].

The standard practice is to use n equal-range bins where n

is chosen as 10 in the literature [13, 15, 22, 32, 38, 39].

Specifically, the partition is defined as Bj = [ j−1
n , j

n ],
j = {1, . . . , n}. It is possible to use different binning

strategy such that these bins are not uniformly distributed

and the definition of Bj will change accordingly. Given

Dj = {xi|ri ∈ Bj}, ECE and MCE are computed as ˆECE

and ˆMCE by:

ˆECE(Pθ,D) =
1

|D|

n
∑

j=1

|
∑

xi∈Dj

ci −
∑

xi∈Dj

ri| (3)

ˆMCE(Pθ,D) = max
1

|Dj |
|
∑

xi∈Dj

ci −
∑

xi∈Dj

ri| (4)

It is worth mentioning that both ECE and MCE are

proper scoring rules but not strictly proper scoring rules

[12]. However, even strictly proper scoring rules do not

guarantee a reliable evaluation and comparison [31]. Their

potential issues are discussed in Section 4.

In addition to the quantified metric, Reliability Diagram

[13, 22, 38, 39] is used as a standard qualitative analysis

tool in the literature. It plots the empirical accuracy in each

bin and the calibration error. Such a diagram not only visu-

alizes the calibration error at different confidence intervals

but also shows how the ECE and the MCE are calculated.

4. Evaluation Metrics: Issues & Solutions

In this section, we discuss some issues of the existing

quality metrics for uncertainty estimation that may lead to

unfair comparison or neglected problems, and then present

new metrics to mitigate them. In all figure captions and

tables, ↑ means the higher the better, and ↓ means the lower

the better.

4.1. Selective Prediction

We remark that comparing AUROC and AUPR is fair

only when the underlying prediction models are the same.

There was no proper treatment used in the literature when

comparing uncertainty estimation methods with different

prediction models as shown in recent works [11, 29, 30].

Below we use an example to show that even a small dif-

ference in the underlying prediction model could make the

comparison of AUROC and AUPR meaningless if not mis-

leading. Then we discuss the advantage of the proposed

AURC over AUROC and AUPR.

In order to know the relative performance of models as

a priori, we build an illustrative example based on a real-

world network. We train a 100-layer DenseNet on Ci-

far10 with standard settings and denote it as DenseNet. For

a given test dataset X , we further define Xc and Xp as

Xc = {xi|ci = 1} and Xp = {xi|ri > tm, xi ∈ Xc}
where tm is a threshold such that m = |Xp|. Consider there

is a network named DenseNet-m that makes the same pre-

dictions with DenseNet for all samples in X except for that

in Xp and DenseNet-m has ci = 0 for all xi ∈ Xp. In

other words, DenseNet-m is the same with DenseNet ex-

cept that DenseNet-m makes m more wrong predictions in

the most certain predictions out of the total 104 samples. By



varying the value of m, we get different DenseNet-m. Note

that DenseNet is equivalent to DenseNet-0. With this setup,

DenseNet-m with smaller m has equal or higher accuracy

than that with bigger m at any threshold t in selective pre-

diction. Therefore, it is convincing to conclude that bigger

m indicates worse selective prediction quality. A proper

evaluation metric is expected to correctly reflect the relative

performance of different variants of DenseNet-m.

We plot ROC curves and PR curves of DenseNet-m with

different values of m in Figure 1. Remember that both ROC

curves and PR curves are the higher the better. Both curves

suggest a questionable result that DenseNet-m with a big-

ger m is better. The reason is that both AUROC and AUPR

only measure a model’s ability to distinguish correct and

wrong predictions while assuming the numbers of correct

and wrong predictions are the same. An accuracy change of

0.2% (comparing DenseNet-0 and DenseNet-20) could give

a significant improvement on AUPR while the actual per-

formance is getting worse. Therefore, when the underlying

prediction models are different, AUROC and AUPR fail to

correctly reflect the model’s actual performance change.

(a) ROC curve↑ (b) PR curve↑ (c) RC curve ↓

Figure 1: Evaluation curves of DenseNet-m. We term the mis-

classified/classified samples as positive/negative samples follow-

ing the literature.

The observation is also confirmed in quantitative results.

In Table 1, the quantitative results of both AUROC and

AUPR suggest that DenseNet-m with bigger m performs

better which contradicts the prior knowledge.

Table 1: Quantitative comparison of AUROC, AUPR and AURC.

Similar to the results in the literature, AUROC’s change is rela-

tively small because of the class imbalance.

Model Acc.↑ AUROC↑ AUPR↑ AURC↓

DenseNet-0 95.30 93.71 43.36 0.438

DenseNet-20 95.10 94.17 52.36 0.439

DenseNet-100 94.30 95.80 72.80 0.456

DenseNet-300 92.30 98.08 91.64 0.605

In summary, evaluating models with AUPR and AUROC

not only fails to provide a fair comparison, but also implic-

itly encourages the bad practice of reducing model accuracy

in designing uncertainty estimation methods.

To mitigate this issue, we propose to do the evaluation

with the Risk-Coverage (RC) curve instead. The coverage

denotes the percentage of the input processed by the model

without human intervention and the risk denotes the level of

risk of these model prediction. Formally,

coverage =
|Xh|

|X|
(5)

risk = L(Ŷh) (6)

where L is a loss function measuring the prediction quality.

For classification, the 0/1 loss is commonly used [9] as it

measures the classification accuracy.

The risk-coverage curve reflects the nature of the se-

lective prediction very well by definition as the motivation

of the selective prediction is to reduce the coverage of the

model in order to achieve higher accuracy.

The RC curves of DenseNet-m are shown in Figure 1c.

Quantitative comparison of AUROC, AUPR, and AURC are

shown in Table 1. Note that although the RC curve has

been used in the literature to demonstrate selective classi-

fication [9], using AURC as the evaluation metric of uncer-

tainty estimation for selective prediction is first proposed in

this work. In both qualitative and quantitative results, only

AURC gives the correct performance ranking which is in

line with the prior knowledge. The reason is that AURC by

definition naturally evaluates the combined results of pre-

diction and uncertainty estimation without the assumption

that the prediction models are the same. Without AURC,

even if the accuracy, AUROC, and AUPR are reported to-

gether, it is still unknown that which model in Table 1 per-

forms the best in selective prediction. Therefore, AURC

provides the only reliable evaluation when the underlying

prediction models are different.

We further show that AURC is still a good metric when

the accuracy of underlying prediction models are the same,

because it correctly recognizes the better model just like

AUROC and AUPR. The well-known connection and con-

sistency between ROC curve and PR curve are established

in [4] by proving that the curve of one model dominates the

curve of another model in ROC space, if and only if it also

dominates the other in the PR space. In this paper, we show

that the RC curve shares the same inherent connection with

ROC curve and PR curve by giving Theorem 1. The proof

is given in the supplementary.

Theorem 1. For any two models A and B of the same accu-

racy and their uncertainties measured by arbitrary methods

(which can be different for A and B), the curve of A domi-

nates that of B in the ROC space, if and only if the curve of

A dominates that of B in the Risk-Coverage space.

Another issue with the evaluation practice we identified

is the poor generality out of classification tasks. For ex-

ample, the image segmentation quality cannot be properly



evaluated by pixel-wise accuracy. Consequently, even if

the underlying prediction models are the same, AUROC

and AUPR still fail to accurately reflect the performance

of selective prediction. In contrast, the AURC can be eas-

ily extended to this case by using a suitable L for domain-

specific performance measure. For example, when measur-

ing the image segmentation quality, the risk can be defined

as 1−Dice where Dice is a commonly used quality metric

for image segmentation.

In selective prediction, each low confidence prediction

leads to a special process such as processing by a bigger

model, examining by human experts, or making conserva-

tive decisions by the controller. Such operation is usually

“expensive” and thus the coverage directly determines the

overall operation cost that is an important metric in a se-

lective prediction application. However, this metric is not

available from the conventional ROC curve or PR curve. In

contrast, RC curve merges two accuracy axes to one and

adds the cost axis to show the cost-performance trade-off

which arguably makes it easier for human administrators to

choose an operating point.

In summary, using AURC as a primary evaluation met-

ric has the following advantage. (i) when the underlying

prediction models are the same, AURC is an effective qual-

ity metric to indicate the performance of selective predic-

tion; (ii) when the prediction models are different which

happens a lot in the literature due to the emerging trend of

uncertainty-aware training [30, 11, 29, 22], using AURC

instead of AUPR and AUROC prevents unfair and poten-

tial misleading comparison. (iii) AURC can be generalized

to distinct tasks with task-specific evaluation metrics while

AUPR and AUROC cannot. (iv) AURC is an alternative op-

timization objective to directly maximize the performance

of selective prediction and helps to avoid weighing multiple

objective terms in related work [30, 29, 22]. (v) AURC di-

rectly shows the cost-performance trade-off in selective pre-

diction which is not visible in the conventional ROC curve

or PR curve.

4.2. Confidence Calibration

The accuracy and reliability of Reliability Diagrams,

ECE, and MCE highly depend on the underlying binning

strategy, whose limitations are explained as below.

Undetectable Error. We use the same original

DenseNet used above as a real-world example to show the

problem of the commonly used ECE, MCE, and Reliability

Diagrams. The maximum softmax probability [14] is used

as the confidence score. As shown in Figure 2a, the cali-

bration error on [0.9, 1] is as small as 0.0215 which means

the average error between the confidence and accuracy is

2.15%. One would expect that for confidence in this inter-

val, the accuracy is very close to the confidence. However,

as shown in Figure 2b, for input samples with confidence

in [0.9, 0.91], the accuracy is only 50%. For input samples

with confidence in [0.9, 0.96], the accuracy is lower than

73%. This problem can mainly be attributed to the large bin

range and the highly non-uniform distribution of confidence

as shown in Figure 2a.

Most samples have a confidence score in [0.98, 1.0] and

the calibration error on that range is small. Then an average

view makes the high calibration error on [0.9, 0.96] unde-

tectable by normal Reliability Diagrams, ECE, and MCE.

Note that the big calibration error on [0.9, 0.96] by no means

should be tolerated, because it has a higher sample density

than all nine bins on its left and ignoring it may jeopardize

mission-critical systems.

(a) Normal setting with 10 bins (b) Diagrams on [0.9, 1]

Figure 2: Undetectable error in Reliability Diagrams. In all Re-

liability Diagrams, positive error means confidence is larger than

accuracy.

Internal Compensation. Even if the confidence dis-

tribution is relatively uniform, we remark that “internal

compensation” can happen inside a bin and the ECE ob-

tained is overly optimistic. As can be seen from Figure 2a,

the error is not always positive or negative. In fact, the dif-

ferent sign of the error also exists inside a bin. This makes

the computed ECE lower than a more accurate one com-

puted based on a higher resolution. We conclude this effect

in Proposition 1 and the complete proof is provided in the

supplementary.

Proposition 1. For any bin selection, ˆECE(Pθ,D) =
ECE(Pθ,D) if and only if for any bin Bj , EPθ,D(c|rk)[c] ≥
rk for all rk ∈ Bj or EPθ,D(c|rk)[c] ≤ rk for all rk ∈ Bj .

Otherwise, ˆECE(Pθ,D) < ECE(Pθ,D).

With the assumption that EPθ,D(c|rk)[c] is available, the

range of bins should be as small as possible to recover the

actual ECE. However, EPθ,D(c|rk)[c] is only available with

enough samples which leads to the problem of inaccurate

accuracy estimation.

Inaccurate Accuracy Estimation. A relatively

straightforward solution to the aforementioned problems is

to increase the number of bins to get higher resolution on

the confidence scores. However, using more bins does not

always get better results. Even though 1
|Dj |

∑

xi∈Dj
ci is

an unbiased and consistent estimator of EPθ,D(c|r)[c] for



xi ∈ Dj , with more bins |Dj | becomes smaller and the

inaccurate approximation of EPθ,D(c|r)[c] leads to inaccu-

rate ECE. In fact, another loophole of the Reliability Dia-

grams and MCE is that, 1
|Dj |

∑

xi∈Dj
ci may not provide

accurate estimation for EPθ,D(c|r)[c] when |Dj | is small. A

real-world example is shown in Figure 3a. In order to make

the low accuracy around 0.95 visible, the number of bins

has to be increased from 10 to 50. The significant fluctua-

tion is a result of the inaccurate accuracy when the number

of samples in the bin is small.

We remark that although the inaccurate accuracy estima-

tion can be solved if there are excessive samples, it cannot

fix the undetectable error and internal compensation, be-

cause the underlying reason is the highly nonuniform confi-

dence distribution instead of limited samples. A seemingly

feasible remedy is to use equal-size binning [34, 42], where

each bin has the same number of samples, instead of equal-

range binning. However, when the bin lies in a confidence

region where samples are sparse, the resulting confidence

range may be too large and less informative. On the other

hand, when it lies in a region where samples are dense, the

range of bins becomes too small and accuracy estimation

is suboptimal. This can be seen from Figure 3b and Fig-

ure 3c, when 50 and 100 bins are used respectively. In both

Figure 3b and Figure 3c, it can be seen that a very wide

bin exists in the low confidence region while an excessive

number of bins reside in high confidence region.

To tackle this challenge, we resort to an adaptive bin-

ning strategy, where the number of samples in a bin is adap-

tive to the distribution of the samples in the confidence

range. We achieve a dynamic balance between the reso-

lution and the accuracy estimation by associating the num-

ber of samples in each bin with the range of the bin. In

this way, more samples can be included for better accu-

racy estimation when the samples are dense and fewer sam-

ples will be used to avoid too large range when the sam-

ples are sparse. Specifically, we use n = 0.25
(

Zα/2

ǫ

)2

to estimate the number of samples needed to estimate the

accuracy for each bin where ǫ is the error margin, Zα/2 is

the Z-score of a standard normal distribution and 1 − α

is the confidence interval. Even though there are still two

hyper-parameters, we find that the result is not sensitive to

these parameters in a wide range due to its high robust-

ness. We use an 80% confidence interval and let ǫ equal

to the width of the confidence range of the bin in all ex-

periments. We denote the resulting new adaptive metrics

as AECE and AMCE in the rest of this paper. To make

it easy for other researchers to use this adaptive binning,

we provide the details and our implementation as an open-

source tool at https://github.com/yding5/AdaptiveBinning.

The computation overhead is minimal and the complexity

is still O(|D|), so there is no scalability issue. The result

on the same network is shown in Figure 3d, which achieves

the best results in terms of capturing the calibration error

and alleviating all the aforementioned problems. More ex-

amples of adaptive binning are shown in the supplementary.

We hope researchers can consider to use this new quality

metric in confidence calibration in the future.

(a) 50 equal-range bins (b) 50 equal-size bins

(c) 100 equal-size bins (d) Adaptive binning

Figure 3: Reliability Diagrams of various binning methods.

Theoretically, the issues discussed above can also hap-

pen in other probabilistic forecast problems, e.g. weather

forecast [23] where similar evaluation metrics such as ECE

and Brier Score are used [18, 44]. Furthermore, consistency

bar is used to partially solve the inaccurate accuracy esti-

mation issue by indicating the fluctuations of the observed

frequencies (accuracy in our context) caused by the limited

samples in each bin with the consistency resampling tech-

nique [1]. However, consistency bar can only indicate a rea-

sonable fluctuation range of the frequencies that a reliable

calibration would likely fall into. It does not change the bin-

ning and cannot help with the poor estimation quality when

the number of samples is small or the range is not appro-

priate. The reason that these solutions cannot fully solve

the problem has two parts. First, the neural network un-

certainty can be more non-uniformly distributed compared

with the weather forecast, especially when the weather fore-

cast confidence scores are clustered to 11 uniformly dis-

tributed options in [0, 1] [2]. Second, uncertainty for neu-

ral networks are more critical, especially in high confidence

area e.g. the difference between the accuracy of 0.95 and

0.99 can be much more significant in pedestrian detection

in an autonomous vehicle than that in the weather forecast.



5. Effect of Model Complexity on Uncertainty

Estimation

In this section, we apply the proposed evaluation metrics

in a series of experiments to validate the effectiveness and

robustness of our proposed evaluation metrics and provide

the first empirical study on how uncertainty-related model

performance is affected by model complexity.

5.1. Relation Between the Two Use Cases

Before delving into the effect of model complexity on

selective prediction and confidence calibration, it is inter-

esting to analyze whether the effect would be similar for

the two cases, which may help to justify the different trends

observed from the experiments in Section 5.2.

When the prediction model is given, the performance

of selective prediction is solely determined by the relative

ranking of ri and rj for ci = 1 and cj = 0. The specific

values of r do not matter due to the thresholding mecha-

nism. Even though a good threshold may be unknown, ex-

isting statistical methods are available for finding a desir-

able threshold [9]. In contrast, for confidence calibration,

the specific value of r does matter. The quality of the given

confidence score is evaluated based on the difference be-

tween the confidence score and the expected accuracy of

the samples with this score. As such, we expect that perfor-

mance of selective prediction and confidence calibration

are not necessarily correlated. One can construct illustra-

tive examples to show that the confidence score r can be

perfect for one case but bad for the other. When ri = 0.5

for all xi ∈ D and

∑
xi∈D

ci

|D| = 1
2 , we have ECE(Pθ,D) = 0

but selective prediction is not feasible. When r ∈ {0.9, 1},

ci = 1 for all ri = 1 and cj = 0 for all rj = 0.9, selective

prediction achieves the best possible result but ECE(Pθ,D)
is as high as 0.9.

Proposition 2 further shows that a confidence estimation

is perfect in both cases, if and only if it perfectly knows the

correctness for each prediction which is almost impossible

in practice. The proof is given in the supplementary.

Proposition 2. The uncertainty estimation r is perfect for

both selective prediction and confidence calibration, if and

only if for all samples r ∈ {0, 1}, EPθ,D(c|r=0)[c] = 0, and

EPθ,D(c|r=1)[c] = 1.

The results imply that given limited learning capability,

there exists a trade-off between two aspects of uncertainty

estimation and the model should be optimized for the spe-

cific use case.

5.2. Experiment Results

We evaluate the uncertainty estimation quality of a se-

ries of models for selective prediction and confidence cali-

bration in image classification and medical image segmen-

tation. There are different uncertainty estimation methods

available. In this work, we use maximum softmax probabil-

ity [14] and temperature scaling [13] for selective prediction

and confidence calibration as they are popular and shown to

be competitive with more complex approaches [41, 3, 10].

We first evaluate two popular networks DenseNet [17]

and WideResNet [43] on Cifar10 and Cifar100 [20] to cover

different levels of difficulty and accuracy. For DenseNet,

we keep the growth rate at 12 and reduce its depth from 100

to 10. For WideResNet, we change the widen factor of a

16-layer network and a 28-layer network for a comparable

number of parameters with DenseNet.

The performance of selective prediction increases

with model size. For selective prediction, we first show

how the conventional AUPR metric changes with the model

size, and the results are shown in Figure 4a and Figure 4b.

It is shown that AUPR decreases with the model size,

indicating networks’ decreasing capability to differentiate

wrongly predicted samples and correctly prediction sam-

ples. The reason is that wrong predictions with high con-

fidence scores, an issue known as over-confidence in high

capacity neural networks [25], are usually caused by inher-

ent learning limitation or data similarity instead of network

capacity. As a result, although higher capacity models have

fewer wrong predictions, they are increasingly concentrated

in the high confidence area, which in turn makes accurate

uncertainty estimation harder. However, this is against the

intuition that larger networks learn probability distribution

better and thus behave better in uncertainty estimation. The

reason is that the impact of the original full-coverage ac-

curacy in selective prediction is not taken into considera-

tion. If we use the proposed AURC instead as shown in

Figure 4c and Figure 4d, the estimation quality becomes

consistent with common expectation, showing the increased

performance of selective prediction with increasing model

size.

The performance of confidence calibration is insensi-

tive to the model size. For confidence calibration, the un-

certainty estimation quality measured by AECE and AMCE

is shown in Figure 5. We also plot the results measured by

ECE and MCE in the same figures to validate the discus-

sion. We find that the estimation quality remains almost flat

and does not show a strong trend with the model complexity

in terms of AECE and AMCE. This is a mixed result of a

number of factors including model accuracy, the effective-

ness of temperature scaling, and the confidence distribution.

In terms of the effect of adaptive binning, it is observed

that AECE is generally bigger than ECE by a small mar-

gin. The reason is that different binning methods lead

to different levels of internal compensation as discussed

above. The adaptive binning used by AECE creates 12.6

bins and 21.2 bins on average for Cifar10 and Cifar100

respectively, which are more than the 10 equal-range bins
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Figure 4: Effect of model complexity on selective prediction.

used in ECE [13, 22, 38]. Note that Cifar100 gets more

bins than Cifar10 because Cifar100 is more difficult and the

confidence distribution is significantly flatter, which natu-

rally enables more bins with accurate accuracy estimation.

This further validates the superiority of the adaptive bin-

ning. Note that AECE is very close to ECE even when the

underline bins are very different, because most of the sam-

ples are in the bin with the highest confidence (the case is

more severe when the model has high accuracy) and these

samples dominate the value of ECE and AECE. The ad-

vantage of using adaptive binning is much more significant

in reliability diagrams and AMCE compared with the “ex-

pected” calibration error.

Meanwhile, as shown in Figure 5c, MCE is close

to AMCE for WideResNet but significantly bigger than

AMCE in some cases for DenseNet. The reason is that

DenseNet tends to have confidence distributions that are

more concentrated in the high confidence area. As a re-

sult, the inaccurate accuracy estimation in the bins with

a small number of samples is exposed, and this leads to

some undesired big calibration error. This is further val-

idated in the results on Cifar10 where both WideResNet

and DenseNet have more non-uniform confidence distribu-

tions because of the easier task. As shown in Figure 5d, the

MCE for both WideResNet and DenseNet are unstable and

significantly higher than AMCE indicating an even worse

situation caused by the inaccurate accuracy estimation. In

summary, the comparison between the baseline and adap-

tive binning validates our discussion and design intuition

for adaptive binning.

We further validate the evaluation metric on medical im-
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age segmentation where uncertainty estimation is crucial.

We trained a group of U-Nets [35] with standard practice

and different widths on the Multi-Modality Whole Heart

Segmentation dataset [45] . The observations are similar to

the classification experiments except for a few differences.

Firstly, because the network is optimized for better Dice in-

stead of pixel-wise accuracy, the AUPR is not meaningful in

this case. Secondly, the difference between ECE and AECE

is almost zero. The small size of the dataset make the model

trend to overfitting. There are also a lot of background vox-

els that are easy to predict. These two factors lead to the

fact that most predictions have a confidence score close to

1. Then the calibration error at the high confidence area

dominate the ECE, despite different binning strategy. How-

ever, MCE is still very unstable. This also validates that

an excessive number of samples along cannot solve the is-

sues of binning strategy. Detailed results are shown in the

supplementary.

6. Conclusions

Understanding the quality of uncertainty estimation is

critical when applying DNNs to real-world vision problems.

We focus on two main use cases of uncertainty estimation,

i.e., selective prediction and confidence calibration. We

identified the issues with the existing metrics for uncertainty

estimation that may lead to unreliable or misleading results,

and proposed new justified metrics to mitigate these issues.

Finally, we validated the new metrics by exploring the effect

of model complexity on uncertainty estimation while show-

ing that selective prediction and confidence calibration have

different complexity-uncertainty trade-offs.
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Išgum. Towards increased trustworthiness of deep learning

segmentation methods on cardiac mri. In Medical Imaging

2019: Image Processing, volume 10949, page 1094919. In-

ternational Society for Optics and Photonics, 2019. 1, 2, 3,

8

[39] Seonguk Seo, Paul Hongsuck Seo, and Bohyung Han. Confi-

dence calibration in deep neural networks through stochastic

inferences. arXiv preprint arXiv:1809.10877, 2018. 1, 2, 3

[40] Avanti Shrikumar and Anshul Kundaje. Calibration with

bias-corrected temperature scaling improves domain adap-

tation under label shift in modern neural networks. arXiv

preprint arXiv:1901.06852, 2019. 1

[41] Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshmi-

narayanan, Sebastian Nowozin, D Sculley, Joshua Dillon, Jie

Ren, and Zachary Nado. Can you trust your model’s un-

certainty? evaluating predictive uncertainty under dataset

shift. In Advances in Neural Information Processing Sys-

tems, pages 13969–13980, 2019. 7

[42] Juozas Vaicenavicius, David Widmann, Carl Andersson,

Fredrik Lindsten, Jacob Roll, and Thomas B Schön. Eval-

uating model calibration in classification. arXiv preprint

arXiv:1902.06977, 2019. 2, 6

[43] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. arXiv preprint arXiv:1605.07146, 2016. 7
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Urschler, Mattias P Heinrich, Julien Oster, Chunliang Wang,
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