
Revisiting the Frenkel-Ladd method to compute the free energy of solids:
The Einstein molecule approach

Carlos Vegaa� and Eva G. Noya
Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid,
E-28040 Madrid, Spain

�Received 27 July 2007; accepted 5 September 2007; published online 18 October 2007�

In this paper a new method to evaluate the free energy of solids is proposed. The method can be
regarded as a variant of the method proposed by Frenkel and Ladd �J. Chem. Phys. 81, 3188
�1984��. The main equations of the method can be derived in a simple way. The method can be
easily implemented within a Monte Carlo program. We have applied the method to determine the
free energy of hard spheres in the solid phase for several system sizes. The obtained free energies
agree within the numerical uncertainty with those obtained by Polson et al. �J. Chem. Phys. 112,
5339 �2000��. The fluid-solid equilibria has been determined for several system sizes and compared
to the values published previously by Wilding and Bruce �Phys. Rev. Lett. 85, 5138 �2000�� using
the phase switch methodology. It is shown that both the free energies and the coexistence pressures
present a strong size dependence and that the results obtained from free energy calculations agree
with those obtained using the phase switch method, which constitutes a cross-check of both
methodologies. From the results of this work we estimate the coexistence pressure of the fluid-solid
transition of hard spheres in the thermodynamic limit to be p*=11.54�4�, which is slightly lower
than the classical value of Hoover and Ree �p*=11.70� �J. Chem. Phys. 49, 3609 �1968��. Taking
into account the strong size dependence of the free energy of the solid phase, we propose to
introduce finite size corrections, which allow us to estimate approximately the free energy of the
solid phase in the thermodynamic limit from the known value of the free energy of the solid phase
with N molecules. We have also determined the free energy of a Lennard-Jones solid by using both
the methodology of this work and the finite size correction. It is shown how a relatively good
estimate of the free energy of the system in the thermodynamic limit is obtained even from the free
energy of a relatively small system. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2790426�

I. INTRODUCTION

One of the first findings of computer simulation was the
discovery of a fluid-solid transition for a system of hard
spheres.1 It took some time to accept it, and it was defini-
tively proven after the work of Hoover and Ree,2 in which
the location of the transition was determined beyond any
doubt and, even more recently, when it was experimentally
found for colloidal systems.3 Certainly the study of phase
transitions has always been a hot topic within the area of
computer simulation. However, fluid-fluid phase transitions
�liquid immiscibility, vapor-liquid� have received by far
more attention than fluid-solid equilibria.4 The appearance of
the Gibbs ensemble5,6 in the late 1980s provoked an explo-
sion of papers dealing with vapor-liquid equilibria. The
method, however, cannot be applied, in principle, to the de-
termination of the fluid-solid equilibria. Special methods are
needed to determine the fluid-solid equilibria, some of which
have been proposed quite recently.7–9 Without pretending to
review all the literature on this problem, let us just mention
the main methods that have been used so far to study the
fluid-solid equilibria. The most commonly used approach
performs free energy calculations for the fluid and for the

solid phases and determines the fluid-solid equilibrium by
imposing the conditions of equal pressure, temperature, and
chemical potential. Usually the chemical potential of the liq-
uid is obtained via thermodynamic integration. Different
methods are used to determine the chemical potential of the
solid. In their pioneering work Hoover and Ree used the
so-called cell occupancy method.2 In this method each mol-
ecule is restricted to its Wigner-Seitz cell, and the solid is
expanded up to low densities.2 One of the problems of this
method is the appearance of a phase transition in the integra-
tion path �from the solid to the gas�. In the year 1984, Fren-
kel and Ladd proposed an alternative method, the Einstein
crystal method.10 In this method, that has become the stan-
dard method for determining free energies of solids, the
change in free energy from the real crystal to an ideal Ein-
stein crystal �in which there are no intermolecular interac-
tions and each molecule vibrates around its lattice point via
an harmonic potential� is computed. Since the free energy of
the reference ideal Einstein crystal is known analytically, it is
possible to compute the absolute free energy of the solid.
This method was soon extended to complex systems, and in
this way the phase diagram of many atomic and molecular
systems was computed.11–25 In the year 2000 Polson et al.
revisited the method proposed by Frenkel and Ladd.26 Theya�Electronic mail: cvega@quim.ucm.es
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showed that the formulas proposed in the original paper were
not fully correct and that the true energy of a crystal is lower
by �2/N�ln�N� than that of the original 1984 paper.10

A completely different approach to the problem of the
fluid-solid equilibrium has been adopted by Bruce et al. who,
in 1997, proposed the phase switch Monte Carlo
method.27–29 This method was first applied to the study of the
free energy difference between fcc and hcp structures of hard
spheres.27,28 Three years later, Wilding and Bruce30 and
Wilding31 showed that the method could be applied to obtain
fluid-solid equilibrium, and the fluid-solid equilibria of hard
spheres was determined for different system sizes. Quite re-
cently Errington32 and McNeil-Watson and Wilding33 inde-
pendently illustrated how the method can also be applied to
Lennard-Jones �LJ� particles. In our view, the phase switch
Monte Carlo is somehow the “Gibbs ensemble method” for
fluid-solid equilibria because, as in the Gibbs ensemble
method, phase equilibria are computed without free energy
calculations. When deriving the phase switch method, Wild-
ing and Bruce30 and Wilding31 pointed out that in a solid
phase the number of permutations of the molecules may have
not been accounted properly in previous free energy calcula-
tions.

In this paper a new method will be proposed to deter-
mine the free energy of a solid. The method can be regarded
as a small modification of the Frenkel-Ladd method,10 and,
in fact, we shall denote it as the Einstein molecule �instead of
the Einstein crystal�. The derivation is quite simple and ben-
efits from some of the ideas first introduced by Wilding and
Bruce.30 The methodology can be easily implemented within
a Monte Carlo program. It will be shown how the free ener-
gies obtained from this new method are fully consistent with
those obtained by Polson et al.,26 not only for the thermody-
namic limit �i.e., N infinitely large� but also for finite sizes.
In the new derivation it is obvious that the counting of con-
figurations is performed properly. Also it will be shown how
the fluid-solid equilibria obtained for N=32,108,256 using
the phase switch Monte Carlo method, the Einstein crystal
method of Polson et al.,26 and the Einstein crystal molecule
methodology proposed here are fully consistent, giving the
same results within statistical uncertainty. The equilibrium
pressure of hard spheres for the fluid-solid equilibrium pre-
sents a strong size dependence. It will be shown that it is
possible to correct, although in an approximate way, the sys-
tem size dependence of the free energies of the solid, intro-
ducing some finite size corrections.

II. METHOD

Let us consider first a simple system consisting on three
hard disks �hard rods� confined to move within a segment of
length L. The partition function of this system �after integrat-
ing over the momenta� is given by

Q =
1

3!�3�
0

L �
0

L �
0

L

e−�U��x1,x2,x3�dx1dx2dx3, �1�

where � is the thermal de Broglie wavelength. The confine-
ment is equivalent to have two hard walls located at a dis-
tance � /2 to the left of the point x=0 and to the right of x

=L �see Fig. 1�a��. The potential energy of the system U� is
given a sum over pair of molecules of the pair potential u�,

U��x1,x2,x3� = u��x1,x2� + u��x1,x3� + u��x2,x3� . �2�

This equation can be written in a more convenient way by
defining new variables,

x1 → x1,

x2 → x2� = x2 − x1, �3�

x3 → x3� = x3 − x1.

Using these new variables the partition function can be ex-
pressed,

Q =
1

3!�3�
0

L

dx1�
−x1

L−x1 �
−x1

L−x1

e−��u��x2��+u��x3��+u��x3�−x2���dx2�dx3�

=
1

3!�3�
0

L

dx1� . �4�

In the last step we named � the integral over x2� and x3�. It can
be seen that this integral � depends explicitly on the variable
x1 through the limits of the integral. The system is nonhomo-
geneous due to the presence of the walls in the boundaries
and, therefore, the value of the integral will depend on the
position of particle 1.

Let us consider now the same three hard disks system,
but where the hard walls that constrain the particles to move
within �0,L� are replaced by periodic boundary conditions
�pbcs� �see Fig. 1�b��. The partition function of this system is
similar to the partition function of the system with hard walls
in the boundaries,

Q =
1

3!�3�
0

L �
0

L �
0

L

e−�U�x1,x2,x3�dx1dx2dx3. �5�

However, the use of pbc implies the adoption of the
minimum image convention, i.e., the distance between two
particles will be the distance between the closest images.
This means that the pair potential between particles is now u,

FIG. 1. �a� Three particles confined to move in the region �0,L�. For sim-
plicity we consider the one-dimensional case �hard disks or, more properly,
hard rods�. �b� Three particles confined to move in the region �0,L� with
periodic boundary conditions. �c� Possible permutations keeping the position
of particle 1 fixed.
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and not u� �the potential in a system without periodical
boundary conditions�. According to this u is given by the
following expression:

u�x2�� = u��x2,min� � ,

�6�

x2,min� = x2� − L � anint� x2�

L
� ,

where the anint function provides the nearest integer. There-
fore the configurational integral of the system with pbc can
be written as

Q =
1

3!�3�
0

L

dx1�
0

L �
0

L

e−��u�x2��+u�x3��+u�x3�−x2���dx2�dx3�

=
1

3!�3�
0

L

dx1��. �7�

Notice that the use of pbc means that the variables x2� , . . . ,xN�
are still between 0 and L �in fact, molecules 2 and 3 can
always be found at a distance between 0 and L from mol-
ecule 1�. In this case �� does not depend on the variable x1.
As as consequence of imposing pbc, the dependence on the
location of particle 1 has been removed. Therefore, the par-
tition function will adopt the form

Q =
1

3!�3L��. �8�

Once the position of particle 1 has been fixed, there are two
possible permutations of particles 2 and 3 �see Fig. 1�c��,
and, therefore, the integral �� can be split in two terms,

�� = �
0

L �
0

L

x2��x3�
e−��u�x2��+u�x3��+u�x3�−x2���dx2�dx3�

+ �
0

L �
0

L

x2��x3�
e−��u�x2��+u�x3��+u�x3�−x2���dx2�dx3� = 2��.

�9�

Hence, the partition function will be

Q =
1

3!�3L2��. �10�

This expression can be easily extended to the general
case of a system with N particles. The configurational space
�x2� , . . . ,xN� � can be divided in �N−1�! fragments as, for ex-
ample, x2��x3�� ¯ �xN� .

Q =
1

N!�NL�N − 1�!��. �11�

The extension to the three-dimensional space is also straight-
forward,

Q =
1

N!�3NV�N − 1�!��, �12�

where now �� is an integral over the �N−1� position vectors
of particles �2, . . . ,N�. In Eq. �12� one should consider the
�N−1�! possible permutations between molecules 2 ,3 , . . . ,N

once that the molecule 1 is fixed at the origin. The remaining
N permutations �those due to molecule 1� are already taken
into account by the factor V �i.e., when the molecule 1 that
acts as origin moves in a system under periodical boundary
conditions, the N remaining permutations are generated�.30,31

It would be incorrect to use simultaneously in Eq. �12� the
terms V and N! in the numerator since then the permutations
of molecule 1 would be counted twice.

Note that the integral �� is for a given fixed position of
particle 1 and for a given permutation of the remaining par-
ticles.

Q =
V

N�3N�� =
V

N�3

��

�3�N−1� . �13�

Equations �12� and �13� are valid for any pair potential.
It is clear that the problem of evaluating the free energy of a
solid is just that of computing ��.

Let us now describe the Einstein molecule method which
is the method proposed in this work. For that purpose we
shall present first a new concept, namely, the ideal Einstein
molecule. The ideal Einstein molecule consists of a reference
atom 1, which is called the carrier, since this atom transports
the lattice and the rest of the atoms of the system 2,3 , . . . ,N
vibrate via a harmonic potential around their lattice positions
�for a schematic representation, see Fig. 2�. The location of
the lattice positions is determined uniquely by the position of
atom 1, the carrier. There is no pair potential between the
atoms of the system �and hence the term ideal�. The ideal
Einstein molecule is just an ideal Einstein crystal where one
of the atoms of the system, namely, atom 1, does not vibrate.
Notice, however, that atom 1 is able to move and occupy any
position in the simulation box. Let us now compute the free
energy of the ideal Einstein molecule. All what is needed is
to evaluate Eq. �12� for this particular case. In particular,
since Eq. �12� is general, the only term that should be evalu-
ated is ��. Let us assume that the thermal de Broglie wave-
length is given by a certain characteristic length denoted as
�. For this particular system, the ideal Einstein molecule ��
is computed as

FIG. 2. Schematic representation of the Einstein molecule, in which particle
1 is fixed and acts as the carrier of the lattice. The movement of all the
remaining particles is given relative to the position of particle 1.
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�� =� e−�max
* �i=2

N �ri�
* − r0,i�*�2

dr2�
* . . . drN�

* = � 	

�max
* �3�N−1�/2

,

�14�

where �max
* =�max/ �kT /�2�, ri�

*=ri� /� are the instantaneous
positions of the particles, and r0,i�* =r0,i� /� are the lattice po-
sitions of the crystal. Therefore, the Helmholtz free energy
Aid-Eins-mol of the ideal Einstein molecule is given as

�Aid−Eins−mol

N
= −

1

N
ln�Q�

=
1

N
ln�N�3

V
� +

3

2
�1 −

1

N
�ln��max

*

	
� . �15�

Note that this expression is identical to the expression
obtained in Ref. 34 following a completely different route.

Let us now introduce a new concept. The ideal Einstein
molecule with fixed molecule 1 is simply an ideal Einstein
molecule where molecule 1 is fixed, and it is not allowed to
move within the simulation box of volume V. The free en-
ergy of the ideal Einstein molecule with one fixed particle is
just the free energy of the ideal Einstein molecule plus
kT ln�V /�3� �the term V comes from the constraint on the
position, whereas the term �3 comes from the constraint on
the momentum�. The method proposed in this work to com-
pute the free energy of a solid is just a thermodynamic path
from the ideal Einstein molecule, for which the free energy is
known �Eq. �15��, to the solid of interest �for instance, a hard
sphere solid, which will be denoted as HSsolid�. The three
steps of the transformation are represented in the following
scheme:

As it can be seen, the terms +kT ln�V /�3� and
−kT ln�V /�3� that appear in the first and third steps cancel
out. Therefore, the free energy of the hard sphere solid is
computed by adding to the free energy of the ideal Einstein
molecule, the free energy change between an ideal Einstein
molecule with one particle fixed, and the HS solid with one
particle fixed. This is done in two stages. In the first step, the
harmonic springs are turned on gradually from the hard
sphere solid and, hence, the energy of the system will be

U��,r2�, . . . ,rn�;r1�/�kT� = U0�r2�, . . . ,rn�;r1�/�kT�

+ �*�
i=2

N

�ri�
* − r0,i�*�2, �16�

where U0 is the original potential �in this case, the hard
sphere potential�, �*=� / �kT /�2� is the coupling parameter,
ri�

* are the instantaneous positions of the molecules, and r0,i�*

are the lattice positions of the crystal �in � units, i.e., ri�
*

=ri� /��. Notice that U or U0 depend explicitly on
r2� ,r3� , . . . ,rN� and parametrically on the position of the fixed
particle 1. The free energy change in this first stage is com-
puted as


A2

NkT
=

1

N
�

�*=�max
*

�*=0 	�
i=2

N

�ri�
* − r0,i�*�2
d�*. �17�

Notice that by construction 
A2 is always negative �i.e.,
the integrand is positive but the integration limits are from
�max

* to zero�. In the second stage the free energy change
between the system interacting via U�� ,r2� , . . . ,rn� ;r1� �with
fixed molecule 1� and an ideal Einstein molecule with fixed
molecule 1 is computed �i.e., 
A1 / �NkT��, which is simply
given as


A1

NkBT
= −

1

N
ln	exp�− �

i=1

N−1

�
j=i+1

N
u0�rij�
kBT �
 , �18�

where u0�rij� is, in this case, the hard sphere potential.
The reader may wonder if there is any singular behavior

in Eq. �17� when � approaches zero. The answer is that the
integrand remains well behaved even when �=0 �see Fig. 3�.
The reason is that once atom 1 is fixed the translation of the
system as a whole is suppressed. In the method of Frenkel
and Ladd the translation of the system as a whole is avoided
by fixing the center of mass of the system.10 Here the trans-
lation is suppressed by fixing one of the particles of the sys-
tem. Obviously both choices are possible and correct, and the
free energy obtained by both routes must be the same. The
derivation presented here for the case that one of the atoms
of the system is fixed is particularly simple. The implemen-

FIG. 3. Variation of the integrand of Eq. �17� �i.e., mean square displace-
ment �msd�� as a function of �* for a hard-sphere solid with N=256 particles
at �*=1.040 86. Both the msd and �* are given in reduced units. Note that
the integrand is well behaved even when �* tends to zero.
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tation of the methodology is also quite straightforward. With-
out loss of generality let us just describe the procedure for
the hard sphere solid. In that case, a fcc HS solid is gener-
ated. Then the harmonic springs are turned on. Atom 1 re-
mains always fixed and static on its initial lattice position.
The rest of the atoms of the system move and the energy of
the system is computed via Eq. �16�. The integrand of Eq.
�17� is computed. Notice that the lattice remains fixed along
the simulation. When one of the particles of the system �say
particle 2� moves, there is no need of moving the lattice as in
the Frenkel-Ladd method where the center of mass is fixed.
For this reason the implementation is particularly simple.
The lattice remains static, all atoms of the system but atom 1
move, and atom 1 remains fixed at the initial lattice position.
In the second stage 
A1 is computed in a similar way. In this
case a Markov chain is generated for an ideal Einstein mol-
ecule with fixed atom 1, and the average of the Boltzmann
factor of the solid of interest is computed from time to time.

In summary, the free energy of a solid is computed in
this work as

AHS/�NkT� = Aid-Eins-mol/�NkT� + 
A/�NkT� , �19�

where 
A is given by


A�N,�max
* �/�NkT� = 
A1/�NkT� + 
A2/�NkT� . �20�

III. RESULTS

A. Free energies from the Einstein molecule approach

Let us start by analyzing the effect on the configurational
properties of fixing one of the molecules of the system. We
considered a fcc solid of hard spheres with N=108 and �*

= �N /V��3=1.040 86. NVT Monte Carlo simulations were
performed in the traditional way �all particles move� and in
the new way �all particles but molecule 1 move�. The radial
distribution function was identical in both cases which
clearly shows that fixing one of the molecules of the solid
�say particle 1� does not affect the configurational properties.

Let us now present the results of the free energy calcu-
lations performed in this work. We considered a fcc close
packed structure with a reduced number density �*

= �N /V��3=1.040 86. For the smaller systems the maximum
value of � used in the calculations was �max

* =632.026, while
for the two larger systems we used �max

* =1000. We also
computed the free energy at two other number densities, �*

=1.099 975 and �*=1.150 000, in these cases considering
three and two system sizes, respectively. At �*=1.099 975
we used �max

* =1774.927 and at �*=1.150 000, the maximum
value of � was set to �max

* =2500. The integral was evaluated
using the Gauss-Legendre quadrature algorithm with be-
tween 15 and 20 different values of � in the interval �*=0
and �max

* . Typically the runs consisted of 50 000 cycles for
equilibration followed by 400 000 cycles for obtaining aver-
ages, except for N=32, and 108, for which runs ten times
longer were used.

The free energies as obtained in this work from the Ein-
stein molecule methodology �where molecule 1 is fixed� are
presented in Table I. At the smallest density we have also
computed the free energy by using the traditional Einstein
crystal methodology �where the center of mass of the system
is fixed�. For comparison, the results obtained by Polson et
al. using the Einstein crystal methodology are also included
in the table �they were taken from the empirical fit provided
in Fig. 2 of their paper�.26 For the density �*=1.040 86 the

TABLE I. Free energy for the hard-sphere solid at �*=1.040 86 using the Einstein molecule method and the
Einstein crystal method as obtained in this work. For comparison the results reported by Polson et al. using the
Einstein crystal method are also included �these values were taken from the fit given in Fig. 2 of Ref. 26, which
is valid only for N�216�. Results obtained in this work with the Einstein molecule method for �*

=1.099 975 and �*=1.150 000 are also presented. Finally, the free energies for the LJ system �truncated at 2.7��
as a function of N and at a reduced density �*=1.28 and a reduced temperature T*=T / �� /k�=2 are also
presented.

System �* N

A / �NkT�

Einstein molecule Einstein crystal Polson

HS 1.040 86 32 4.767�2� 4.767�2�
HS 1.040 86 108 4.896�2� 4.895�2�
HS 1.040 86 256 4.931�2� 4.931�2� 4.928
HS 1.040 86 500 4.944�1� 4.943�1� 4.943
HS 1.040 86 1372 4.954�1� 4.952�1� 4.953
HS 1.040 86 2048 4.955�1� 4.954�1� 4.955

HS 1.099 75 256 5.601�2�
HS 1.099 75 500 5.615�2�
HS 1.099 75 2048 5.627�1�

HS 1.150 00 256 6.240�2�
HS 1.150 00 2048 6.269�1�

LJ 1.28 256 2.570�4�
LJ 1.28 500 2.586�4�
LJ 1.28 864 2.592�3�
LJ 1.28 1372 2.594�3�
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free energy, as calculated with the Einstein molecule ap-
proach, has been plotted in Fig. 4. The first thing to be noted
is that free energies obtained from the three different sources
agree within the statistical error. That gives us confidence on
the new methodology proposed in this work. A more detailed
view of the different terms contributing to the total free en-
ergy is presented in Table II. As it can be seen, the value of
each individual term, 
A1, 
A2, and Aref, is different when
the center of mass of the system is fixed or when molecule 1
is fixed. However, the total sum does not depend on the
arbitrary choice of the reference coordinate �center of mass
or atom 1�. The results presented in Table I are independent
of the methodology �and of the author!�. At this stage we
would like to stress that the free energy of a solid with N
molecules in a certain solid structure and with a given
Hamiltonian is unique and should not depend on the meth-
odology used to determine it. Notice that for hard spheres the
only parameter needed to describe the pair potential is the
value of �. However, for a LJ system it is not sufficient to
give the values of � and �. The distance at which the poten-
tial is truncated �rc

*=rc /�� should also be provided when
describing the pair potential. According to this the free en-
ergy of a LJ fcc solid with N=256 is not the same when rc

*

=2.7 and when rc
*=5 because the potential is not identical in

both cases.
The results of Table I show a strong size dependence in

the value of the free energy of a fcc hard sphere solid. This is
an intrisinc property of the fcc hard sphere solid �it remains
to be analyzed if the N dependence is so strong for other
systems�, and, therefore, any method to evaluate free energy
of solids presenting a weak N dependence for the fcc hard

spheres must be incorrect since it is an intrinsic property of
the system. The free energies presented in Table I were fitted
to the following expression:

�A

N
=

1

N
ln�N�3

V
� +

3

2
�1 −

1

N
�ln��max

*

	
�

+ d1 +
d2

N
+

d3

N2 . �21�

The origin of this expression is as follows. The free energy
of the fcc solid is obtained by adding to the free energy of
the ideal Einstein molecule �as given by Eq. �15�� the term

A. We found that 
A can be described quite well by the
following expression:


A/�NkT� = d1 +
d2

N
+

d3

N2 . �22�

When 
A / �NkT� as given by Eq. �22� is inserted in Eq. �21�,
then it is simple to show that the total free energy can be
written �for a fixed density�,

A/�NkT� = e1 +
e2

N
+

e3

N2 . �23�

As it can be seen in Eq. �22�, 
A tends to a finite value
�d1� for large values of N. We found that Eq. �21� fits the free
energies extraordinary well �the fit is equally good using Eq.
�23��. By using the free energies calculated in this work us-
ing the Einstein molecule method �taking only the data for
N256� and the fit described by Eq. �21�, we estimate that
the free energy of the infinitely large system is A / �NkT�
=4.9590�2�, which is in very good agreement with the results
given by Polson et al. �namely, A / �NkT�=4.9589�,26 by
Chang and Sandler �A / �NkT�=4.9591�,35 and by Almarza
�A / �NkT�=4.9589�.34 Therefore, the value of the free energy
of hard spheres in the thermodynamic limit for the density
�*=1.040 86 seems to be firmly established.

For the second considered density, �*=1.099 975, we
obtained that the free energy in the thermodynamic limit is
A / �NkT�=5.631�1�, which again is in good agreement with
the value reported by Frenkel and Ladd, A / �NkT�=5.635.10

Finally, at �*=1.150 000, we estimate that the free energy in
the thermodynamic limit is A / �NkT�=6.273�2�.

Let us now illustrate how the Einstein molecule ap-
proach can also be applied to a LJ system. The only differ-
ence between the free energy calculation for the HS and for
the LJ system is that, for the LJ syswtem, the value of 
A1 is
computed as

FIG. 4. Dependence of the free energy of the hard-sphere solid with the
system size. The free energy corrected with FSC-FL, FSC-HS, and FSC-
asymptotic �as given by Eq. �36�� corrections are also shown.

TABLE II. Value of the different terms that contribute to the free energy �
A1, 
A2, and Aref�, either for the Einstein molecule or Einstein crystal methods.

N �max

Einstein molecule Einstein crystal


A1 / �NkT� 
A2 / �NkT� Aref / �NkT� Atot / �NkT� 
A1 / �NkT� 
A2 / �NkT� Aref / �NkT� Atot / �NkT�

108 632.026 0.0172 −3.0046 7.8830 4.896 0.0175 −2.9400 7.8180 4.895
256 632.026 0.0174 −3.0116 7.9254 4.931 0.0175 −2.9797 7.8929 4.931

1372 1000.00 0.0018 −3.6862 8.6383 4.955 0.0018 −3.6802 8.6304 4.952
2048 1000.00 0.0018 −3.6866 8.6403 4.955 0.0015 −3.6819 8.6347 4.954
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A1

NkBT
= −

1

N
ln	exp�− ��

i=1

N−1

�
j=i+1

N
ULJ�rij�

kBT
−

ULJ,lattice

kBT
��


+
ULJ,lattice

NkBT
, �24�

where ULJ,lattice is the lattice energy of the LJ solid �the en-
ergy of the system when the molecules stand on their lattice
positions�. The brackets denote that the average is performed
over configurations generated for the ideal Einstein mol-
ecule. We shall consider a LJ system with the potential trun-
cated at 2.7� and with long range corrections �obtained by
assuming g�r�=1 beyond the cutoff�. Then we shall perform
calculations for the state T*=2.00 �*=1.28 for different sys-
tem sizes, namely, N=256, 500, 864, and 1372, and keeping
the cutoff radius constant for all these sizes. The free ener-
gies obtained from the Einstein molecule approach are pre-
sented in Table I. Extrapolation to N infinity yields
A / �NkT�=2.601. For the same state Barroso and Ferreira ob-
tained A / �NkT�=2.596 in the thermodynamic limit.36 How-
ever, the value of Barroso and Ferreira cannot be directly
compared to our value, since they changed the cutoff dis-
tance along with the system size, whereas our reported value
is for a system where the cutoff distance was fixed to rc

=2.7� for all the system sizes. In any case both values are
relatively close. It is interesting to mention that when the free
energies of this work are plotted as a function of 1/N, the
slopes obtained �for the larger values of N� are about −7 for
HS with �*=1.040 86, −7.8 for HS with �*=1.099 75, −8.7
for HS with �*=1.150 00, and of about −7.7 for the LJ sys-
tem truncated at rc=2.7� and at �*=1.28. Therefore the
strong size dependence found for the free energy of HS at
with �=1.040 86 seems also to exist for the LJ system and
for the HS at a higher density. Note also that for HS the slope
seems to increase slightly for the higher densities. In sum-
mary, the free energy of solid phases �for spherical poten-
tials� presents a strong size dependent and this is an intrinsic
feature of solids of finite size. It starts to be clear that free
energy calculations with a weak size dependence are prob-
ably incorrect.

B. Fluid-solid equilibria of hard spheres for systems
of finite size

Now let us compute the phase equilibria for the hard
sphere system. For that purpose NpT simulations have been
performed for hard spheres with N=32, 108, 256, and 500,
for the fluid phase and for the fcc solid. The simulations of
the fluid phase started at low pressures and the pressure was
increased from one run to the next. The runs consisted of
about 400 000 cycles �a trial move per particle plus a trial
volume change� for the systems with 256, 500 molecules and
ten times longer for the system with 32, and 108 molecules.
The final configuration of a run was used as the input con-
figuration for the next run. For the solid we started from a
pressure around p*=13 and then performed several consecu-
tive simulations decreasing the pressure. It was observed that
for the smaller size, N=32, in the neighborhood of the phase
transition, the system spontaneously visited configurations of
the fluid and solid phases in a single simulation. Therefore,

in this particular case, to estimate the equation of state it was
necessary to perform NVT simulations �that prevent the
switching between the two phases� for the thermodynamic
states near the phase transition �either above and below the
transition�, and the pressure was estimated from the virial
theorem.37 The results of the simulations for each system
size were fitted to the following expressions for the solid and
fluid phases:

Z/� = a0 + a1� + a2�2 for the solid, �25�

�Z − 1�/� = �
i=0

n

bi�
i for the fluid, �26�

where Z= p / ��kT� is the compressibility factor, ai and bi are
the adjustable parameters, and n is the number of terms in
the polynomial. The coefficients of the fit are presented in
Tables III and IV. The free energy of the fluid phase can be
obtained easily as

A/�NkT� = Aideal/�NkT� + �
0

� �Z���� − 1�
��

d��, �27�

Aideal�N�/�NkT� = ln���3� − 1 + ln�2	N�/�2N� . �28�

Without loss of generality we shall assume that the thermal
de Broglie wavelength is given by �=�3. The last term in
Aideal is a logarithmic correction to the Stirling approxima-
tion. This term is especially important for the smaller system
sizes �N=32,108,256�. Once the free energy is known, the
chemical potential can obtained simply as � / �kT�
=G / �NkT�=A / �NkT�+Z.

For sufficiently large sizes the equation of state does not
depend much on the system size. For this reason, we used
accurate analytical expressions of the equations of state to
describe the solid and fluid phases for the larger systems
�N=1372 and N=2048�. For the systems smaller than N
=500 the equations of state have been estimated from simu-

TABLE III. Coefficients of the polynomial fit of �Z−1� /�, where the first
and second coefficients have been taken as B2 and B3, respectively.

N 108 256 500

b0 �=B2� 2.094 395 2.094 395 2.09 4395
b1 �=B3� 2.741 557 2.741 557 2.741 557

b2 −3.745 924 −0.791 769 2.716 848
b3 40.031 639 21.670 039 1.249 620
b4 −80.734 920 −37.537 537 4.746 022
b5 77.664 752 32.774 223 −4.645 178
b6 −24.246 409 −6.815 284 5.273 870

TABLE IV. Coefficients of the polynomial fit to the equation of state of the
solid phase as a function of the system size.

N 108 256 500

a0 133.931 604 83.700 810 104.222 694
a1 −276.945 806 −178.152 913 −218.919 919
a2 153.148 121 104.655 212 124.941 771
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lations, as described before �some finite size effects are vis-
ible for these system sizes, specially for the smaller ones�.

Two possible equations of state that describe with ex-
traordinary accuracy the equation of state of hard spheres in
the fluid phase are the one proposed by Kolafa and
Malijevsky38 and the one proposed by Speedy.39 The
Carnahan-Starling equation40 is not sufficiently accurate to
describe the liquid phase and it yields coexistence pressures
about 0.10 higher than those obtained from the equation of
state �EOS� of Kolafa and Malijevsky38 or Speedy.39

As with regards to the solid phase, the free energy is
calculated using the following expression:

A���/�NkT� = A��ref�/�NkT� + �
�ref

�

�Z/���d��, �29�

and the values of the Helmholtz free energy at the reference
state ��=1.040 86� are taken from Table I. For small systems
�i.e., with less than 500 molecules� the equation of state is
sensitive to the size of the system and, therefore, it will be
estimated from the simulations performed in this work. For
the two larger systems �i.e., N=1372 and 2048� an analytical
EOS will be used. Two examples of accurate EOS for the fcc
solid are the equation of state proposed by Hall41 and the
equation of state of Speedy.42

In Table V the coexistence pressures are presented for all
the system sizes. Our estimated uncertainties for the coexist-
ence pressure are of about 0.03 for the larger system sizes,
about 0.05 for the intermediate ones �N=108,256,500�, and
about 0.08 for the system with N=32 particles �taking into
account all uncertainties associated with the calculations�. As
it can be seen in Table V, the coexistence pressure exhibits a
strong size dependence. The coexistence pressure increases
with N. The solid is quite stable for small system sizes. As-
suming that this behavior can be extrapolated to other sys-
tems, one may expect that in the thermodynamic limit the
fluid-solid equilibrium will be shifted in the direction of re-
ducing the “territory” of the solid phase with respect to the
transition found for a system of finite size.

Let us now consider the coexistence pressure of hard
spheres in the thermodynamic limit. It may be estimated in
two different ways. The first approach consists in evaluating
the free energy of the solid phase in the thermodynamic limit

and then computing the fluid solid equilibrium by using ana-
lytical EOS for the fluid and solid phases. In the second
approach the coexistence pressure is determined for several
values of N, and the coexistence pressure in the thermody-
namic limit is obtained by extrapolation. In Fig. 5 the coex-
istence pressure is plotted as a function of 1/N. A linear
behavior is found. By using the first approach we obtain p*

=11.55�2� in the thermodynamic limit, whereas by extrapo-
lating the coexistence pressure �for sizes N�256� we obtain
p*=11.53�3�. Both results agree quite well. As a conse-
quence we estimate that the coexistence pressure of hard
spheres is p*=11.54�4�. This value is in agreement with the
estimates of Frenkel and Smit43 �11.567�, of Wilding and
Bruce30 �11.50�9��, and of Speedy39 �11.55�11��. The effect
on the coexistence pressure of using Kolafa or Speedy EOS
for the fluid phase and/or Hall or Speedy for the solid phase
is of about 0.02. Using the value p*=11.54�4�, we obtained
that the coexistence densities are �s

*=1.0372 for the solid and
�l

*=0.9387 for the fluid, values that are in very close agree-
ment with those reproted by Frenkel and Smit43 ��s

*

=1.0376 and �l
*=0.9391�. Finally, the chemical potential at

coexistence is �*=16.04, which is consistent with the value
reported by Sweatman9 ��*=15.99–16.08�.

C. Finite size corrections

The strong size dependence found for the coexistence
pressure means that the only reliable way of obtaining the

TABLE V. Coexistence pressure as a function of system size using the values of the free energy as obtained
using the fit given by Polson et al., using our own Einstein crystal method simulations with the Polson formula,
and using the Einstein molecule method. For the smaller sizes �N�500�, the equations of state for both the
solid and the liquid have been obtained in this work, whereas for the larger sizes we have chosen to use
analytical equations of state �Refs. 38 and 41�. Notice the good agreement between this work and the results of
Wilding �Ref. 30� and Errington �Ref. 32�.

N

p*

Polson Einstein crystal Einstein molecule Wilding Errington

32 9.69 9.69�8� 9.55
108 11.01 11.02�5� 10.94 11.00�6�
256 11.22 11.25 11.26�5� 11.23�3� 11.25�1�
500 11.33 11.34 11.35�3� 11.34�1�

1372 11.48 11.48 11.50�3�
2048 11.51 11.51 11.52�3�

FIG. 5. Dependence of the coexistence pressure with the system size for the
HS solid.
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coexistence pressure in the thermodynamic limit is either
determining the melting pressure for different system sizes
and extrapolating to infinite size, or eventually determining
the coexistence pressure for a sufficiently large system. For
instance, from the results of this work it is clear that to esti-
mate the coexistence pressure of hard spheres within 1% of
the thermodynamic limit, systems of about 1000 molecules
are needed. It should be recognized that determining coex-
istence pressure from free energy calculations is rather com-
putationally expensive. For a certain fixed value of N, about
50 simulations are needed to estimate the coexistence �in-
cluding equation of state and free energy calculations�. Re-
peating that for different sizes �say, three values of N� re-
quires about 150 simulations. And all these simulations just
to get the coexistence pressure in the thermodynamic limit.
The problem may even be more severe for molecular sys-
tems, where three to four different solid structures may ap-
pear and the whole procedure must be repeated for each of
the solid phases. All this discussion suggests that although
free energy calculations provide, in principle, accurate values
of the coexistence properties for a certain value of N, it
would be of practical interest to introduce finite size correc-
tions that allow us to estimate approximately the coexistence
properties in the thermodynamic limit. We should admit that
when performing simulations we are typically interested in
the properties of the system in the thermodynamic limit �i.e.,
with N going to infinity and with no truncation of the poten-
tial�. In many respects we simulate a finite system with a
finite range of the potential as a method to estimate the prop-
erties of the system when becomes infinitely large and when
the potential has not been truncated. The introduction of fi-
nite size corrections for the free energy of solids requires the
introduction of approximations �something similar to the
g�r�=1 approximation used to correct for the introduction of
the cutoff�.

Our first finite size correction �FSC-liquid� applies to the
liquid phase. It can be stated simply as

Aideal�N → ��
NkT


Aideal�N�

NkT
−

ln�2	N�
2N

. �30�

This equation simply amounts to neglect the logarithmic cor-
rection to the free energy of a system of finite size. Actually
this is quite oftenly used when computing the free energy of
the liquid �i.e., the logarithmic correction is not included in
the ideal term�. Notice that the ln�2	N� / �2N� is not negli-
gible for systems with less than about 200 molecules.

We shall now present some simple prescriptions that
may help us to estimate more accurately the free energy of
the solid phase in the thermodynamic limit. These three pre-
scriptions may just be considered as a first step, admitting
that further work is needed on about how to introduce finite
size corrections. The finite size corrections will correct for
the size dependence of the free energy, without modifiying
the Hamiltonian when changing the size of the system. In
this work we will keep the Hamiltonian when increasing the
system size.

The first FSC for the free energy of the solid phase will
be denoted as the Frenkel-Ladd FSC �FSC-FL�.10 It is given
by

Asolid�N → ��/�NkT�  Asolid�N�/�NkT� + �2/N�ln�N� .

�31�

The Frenkel-Ladd treatment �which provides an incorrect de-
scription of the free energy of a system of N molecules� can
be regarded as a primitive version of FSC. Although the
Frenkel-Ladd formulas are strictly incorrect, they can be re-
garded as a primitive version of the finite size correction to
the true free energy of the system �this last one given by the
Polson et al. formalism26 or alternatively by that proposed in
this paper�.

A second alternative formula for the finite size correction
is

Asolid�N → ��/�NkT�  Asolid�N�/�NkT� + �7/N� . �32�

The origin of this formula is as follows. It has been previ-
ously discussed that when the free energy of the fcc solid is
plotted as a function of 1/N a slope close to −7 is obtained
for both the HS solid and for the LJ solid. Therefore, by
adding 7/N to the free energy of a system of finite size, a
rough estimate of the free energy of the system is recovered.
This empirical correction will be denoted as hard sphere fi-
nite size corrections �FSC-HS�.

The third proposed FSC consists in taking the thermody-
namic limit �N→�� of the expression used to calculated the
free energy �Eq. �21�� and, for that reason, it will be named
FSC asymptotic. As seen in Eq. �21�, the free energy of the
solid is obtained by adding the free energy of an ideal Ein-
stein molecule plus the free energy change between this ref-
erence system and the system of interest �
A / �NkT��. Based
on this, we propose three alternative ways of defining the
FSC asymptotic. In the first approach we will use simply the
expression of the free energy of the ideal Einstein molecule
in the thermodynamic limit �rather than its value for finite
N�. The approximation resembles that proposed for the liquid
before. Simply one takes the limit of N going to infinity in an
analytical expression �that of the ideal Einstein crystal mol-
ecule�. This approximation can be written as

Asolid�N → ��/�NkT� 
3

2
ln��max

*

	
�

+ 
A�N,�max
* �/�NkT� . �33�

As it can be seen the first version of the FSC asymptotic
amounts to replace the free energy of the ideal Einstein mol-
ecule of N molecules by its thermodynamic limit.

The second proposed variant of the FSC asymptotic con-
sists on taking also the limit of the integral

A�N ,�max

* � / �NkT� when N tends to infinite. Assuming that

A1 is almost independent of the system size,

A�N ,�max

* � / �NkT� shows the same dependence with N as
the term 
A2. 
A2 is the integral of a sum of �N−1� terms,
divided by a factor N �see Eq. �17��. Supposing that all the
terms of the sum �i.e., the contribution to the mean square
displacement of each particle� are equal, 
A2 can be approxi-
mated by
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A2

NkT
=

N − 1

N
I = �1 −

1

N
�I , �34�

where I is the contribution to the integral of one single arbi-
trary particle. In the limit of infinite size, only the term I
remains, and the FSC asymptotic is given by the expression

Asolid�N → ��/�NkT�


3

2
ln��max

*

	
� +


A�N,�max
* �/�NkT�

�1 − 1/N�
. �35�

Finally, we have observed that both expressions give a
free energy that deviates slightly from the thermodynamic
limit. While the first proposed correction �Eq. �33�� underes-
timates the true free energy, the second one �Eq. �35�� over-
estimates it. Based on this observation we propose the third
version of FSC asymptotic as the mean value of the two
previous expressions,

Asolid�N → ��
NkT

=
3

2
ln��max

*

	
� +

1

2
�
A�N,�max

* �
NkT

+

A�N,�max

* �/�NkT�
�1 − 1/N�

� . �36�

In Table VI the free energy of the fcc solid phase is
presented for several values of N including all the proposed
finite size corrections, namely, FSC-FL, FSC-HS, and the
three variants of the FSC-asymptotic. Results are presented
for the HS solid �for three densities� and for the LJ solid. The
results for HS at �=1.040 86 have been plotted in Fig. 4. The
FSC-FL yields, in general, free energies closer to the
asymptotic limit than those of the finite size system. How-

ever, it tends to overestimate the free energy of the solid. The
FSC-HS gives, in general, quite good predictions of the free
energy in the thermodynamic limit, for either the HS and LJ
solid. However, as seen before, the slope of the free energy
against 1 /N shows a slight dependence on the density and,
obviously, this means that the FSC-HS will not work as well
for the higher density �see the results for �*=1.150 00 in
Table VI�. In spite of this, the deviations are not too large
and, in general, it is a quite good approximation. As with
regards to the FSC asymptotic, the first variant �Eq. �33��
works very well for all the considered densities of the HS
solid, but its predictions are not so good for the LJ solid. The
same is true for the second variant of the FSC asymptotic
�Eq. �35��, the only difference is that now the true free en-
ergy is underestimated, whereas with the first variant �Eq.
�33�� the true free energy was overestimated. This observa-
tion took us to define the third variant of the FSC asymptotic
�Eq. �36��, which corresponds just to take the mean of the
other two proposed FSC asymptotic. This last approximation
seems to work extremely well for all the densities and for
both the HS and the LJ solid. Further work would be needed
to understand why this correction provides so accurate re-
sults. We checked �results not shown� that also for the poten-
tial u�r�=��� /r�12 the FSC-HS yield quite good estimates of
the free energy of the system in the thermodynamic limit.
This can be checked easily by using the results reported by
Polson et al. �see Fig. 1 of their paper�.

In Table VII the coexistence pressures as obtained for
N=108, 256, and 500 �using simulation results of this work
for the EOS in the fluid and solid phases for these sizes� and
the finite size corrections are presented. As it can be seen the

TABLE VI. Free energies of HS �three densities� and LJ as obtained in this work �true free energy� and when
including finite size corrections �FSC�, with the FSC-FL, FSC-HS, and FSC-asymptotic approximations �in the
last column the first value corresponds to Eq. �33�, the second to Eq. �35�, and the third to Eq. �36��.

System �* N

A / �NkT�

True free energy FSC-FL FSC-HS FSC asymptotic

HS 1.040 86 32 4.767 4.984 4.986 5.014,4.920,4.967
HS 1.040 86 108 4.896 4.982 4.960 4.969,4.941,4.955
HS 1.040 86 256 4.931 4.975 4.959 4.962,4.950,4.956
HS 1.040 86 500 4.944 4.969 4.958 4.960,4.954,4.957
HS 1.040 86 1372 4.954 4.964 4.959 4.960,4.957,4.959
HS 1.040 86 2048 4.955 4.963 4.959 4.959,4.958,4.959
HS 1.040 86 � 4.959 4.959 4.959 4.959

HS 1.099 975 256 5.601 5.644 5.628 5.638,5.623,5.631
HS 1.099 975 500 5.615 5.640 5.629 5.634,5.626,5.630
HS 1.099 975 2048 5.627 5.635 5.631 5.632,5.630,5.631
HS 1.099 975 � 5.631 5.631 5.631 5.631

HS 1.150 000 256 6.240 6.283 6.267 6.276,6.264,6.270
HS 1.150 000 2048 6.269 6.276 6.272 6.274,6.272,6.273
HS 1.150 000 � 6.274 6.274 6.274 6.274

LJ 1.28 256 2.570 2.613 2.597 2.618,2.593,2.606
LJ 1.28 500 2.586 2.611 2.600 2.611,2.598,2.604
LJ 1.28 864 2.592 2.608 2.600 2.606,2.599,2.603
LJ 1.28 1372 2.594 2.605 2.599 2.603,2.598,2.601
LJ 1.28 � 2.601 2.601 2.601 2.601
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introduction of finite size corrections yields an improved es-
timate of the coexistence properties in the thermodynamic
limit. In fact, the Frenkel-Ladd correction provides better
estimates of the coexistence pressure in the thermodynamic
limit than those obtained from the Polson et al. formula �this
last formula provides the exact value of the coexistence pres-
sure of the system of N molecules, but, unfortunately, the
coexistence pressure is quite far away from the thermody-
namic limit�. Looking in retrospective the use of the Frenkel-
Ladd formulas has been more appropriate in estimating the
coexistence properties of systems in the thermodynamic limit
than the true and correct Polson et al. formulas.26 Maybe for
this reason it took some time to conclude that they were not
fully correct. The estimates of the coexistence pressure in the
thermodynamic limit provided by including the FSC-HS cor-
rection are quite good even for small systems. The same
applies when the FSC-asymptotic corrections are included.

IV. CONCLUSIONS

In this paper we have proposed a new method to esti-
mate the free energy of a solid phase. The method is denoted
as the Einstein molecule. The method can be regarded as a
variant of the Frenkel-Ladd method. Instead of fixing the
center of mass, as in the original Frenkel-Ladd methodology,
one of the atoms of the system is fixed. The derivation of the
main equations of the methodology and the implementation
of the algorithm within a Monte Carlo program are quite
simple. The free energies obtained from the new methodol-
ogy are coincident with those reported previously by Polson
et al.26 The fluid-solid equilibria have been computed from
the free energies of the fluid and solid phases. It is shown
that both the free energies and the coexistence pressures �for
the fluid-solid equilibria of hard spheres� present an impor-
tant system size dependence. The predicted coexistence pres-
sures obtained from free energy calculations are fully consis-
tent with those obtained by Wilding and Bruce30 and
Wilding31 from phase switch Monte Carlo simulations.
Therefore both methods are appropriate methods to deter-
mine fluid-solid equilibria. The estimate of the coexistence
pressure for hard spheres from this work is p*=11.54�4�,
which is in good agreement with the estimates of Wilding
and Bruce30 �p*=11.50�9��, of Frenkel and Smit43 �p*

=11.567�, and of Speedy39 �p*=11.55�11��. It is now clear
that the classical value of the coexistence pressure p*

=11.70 given by Hoover and Ree2 is somewhat high. Besides
we have found that the accurate estimation of the coexistence
pressure requires a good equation of state for both the fluid
and solid phases. Probably for the solid an extremely accu-
rate EOS is not as important, since, after all, the free energy
calculations can be performed at a density close to the value
at coexistence. However, for the liquid �for which the free
energy is obtained by integrating the EOS from zero den-
sity�, this is absolutely needed. In this respect, the
Carnahan-Starling40 equation of state is not good enough �in
fact, it shifts incorrectly the coexistence pressure by about
0.10�. The EOS of Kolafa and Malijevsky38 or that of
Speedy39 is more appropriate.

In principle, the only correct way of determining the free
energy of a solid in the thermodynamic limit is to repeat the
calculations for several sizes and extrapolate to infinite size.
However, this is computationally expensive. Therefore, we
have proposed some finite size corrections, which are based
on some approximations but that may yield reliable estimates
of the properties of the system in the thermodynamic limit.
Several FSC corrections have been considered in this paper.
The first one is the Frenkel-Ladd expression10 �that can be
regarded as a logarithmic correction to the true free energy of
the system, as given in the paper by Polson et al.26�. The
second one, the FSC-HS, amounts to add 7/N to the free
energy of the solid of N molecules. The addition of this term
is motivated by the fact that for hard spheres this yields
approximately the free energy of the system in the thermo-
dynamic limit. The third variant, the FSC asymptotic, con-
sists on taking the limit of N infinite in the expression used to
calculate the free energy. Depending on how this limit is
taken, we propose three different variants. For spherical po-
tentials, one the variants of FSC asymptotic yields very good
estimates of the free energy in the thermodynamic limit. It
should be recognized that all the FSC corrections proposed
here are approximate, but they may still be quite useful. Fur-
ther work is needed to analyze in more details whether these
corrections can or cannot be applied to system with orienta-
tional degrees of freedom or whether other approximations
can be more appropriate.

We do hope that this paper, along with the work per-
formed on the previous decade on fluid solid equilibria,
stimulates further work in the area of coexistence between
fluid and solid phases, that started 40 years ago with the
work of Hoover and Ree. Probably the fluid-solid equilibria
remind us that finite size effects can be really important even
in computer simulations of simple systems, a lesson, well
known at the beginning but somehow forgotten, probably
due to the fact that the effects seem to be more important for
solid phases than for the fluid ones.
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TABLE VII. Comparison of the exact coexistence pressure as a function of
the system size as calculated using the Einstein molecule method with the
results of applying FSC corrections to the fluid �Eq. ��30��� and solid phases.
The values in parentheses in the third column were obtained using the ana-
lytical EOS of Kolafa and Malijevsky for the liquid �instead of the EOS for
the finite size system�.

N

p*

Exact value FSC-FL FSC-HS FSC asymptotic

108 11.02 12.20 �11.80� 11.98 12.06,11.78,11.92
256 11.26 11.83 �11.73� 11.67 11.70,11.59,11.64
500 11.35 11.68 �11.67� 11.57 11.59,11.53,11.56
� 11.54 11.54 11.54 11.54
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