
Revisiting the IDEA Philosophy

Pascal Junod1,2 and Marco Macchetti1

1 Nagracard SA
CH-1033 Cheseaux-sur-Lausanne, Switzerland

2 University of Applied Sciences Western Switzerland (HES-SO/HEIG-VD)
CH-1401 Yverdon-les-Bains, Switzerland

Abstract. Since almost two decades, the block cipher IDEA has resisted
an exceptional number of cryptanalysis attempts. At the time of writ-
ing, the best published attack works against 6 out of the 8.5 rounds (in
the non-related-key attacks model), employs almost the whole codebook,
and improves the complexity of an exhaustive key search by a factor of
only two. In a parallel way, Lipmaa demonstrated that IDEA can benefit
from SIMD (Single Instruction, Multiple Data) instructions on high-end
CPUs, resulting in very fast implementations. The aim of this paper is
two-fold: first, we describe a parallel, time-constant implementation of
eight instances of IDEA able to encrypt in counter mode at a speed of
5.42 cycles/byte on an Intel Core2 processor. This is comparable to the
fastest stream ciphers and notably faster than the best known implemen-
tations of most block ciphers on the same processor. Second, we propose
the design of a new block cipher, named WIDEA, leveraging on IDEA’s
outstanding security-performance ratio. We furthermore propose a new
key-schedule algorithm in replacement of completely linear IDEA’s one,
and we show that it is possible to build a compression function able to
process data at a speed of 5.98 cycles/byte. A significant property of
WIDEA is that it closely follows the security rationales defined by Lai
and Massey in 1990, hence inheriting all the cryptanalysis done the past
15 years in a very natural way.

Key words: IDEA block cipher, WIDEA compression function, In-
tel Core2 CPU, wordslice implementation

1 Introduction

Finding the proper balance between security and speed has always been a non-
trivial challenge for designers of block ciphers and hash functions. One possibility
consists in using low-footprint arithmetical operations, like simple Boolean oper-
ators (usually AND, OR or XOR), table lookups or modular additions, to build
a rather fast round function. Since the strength of such round function is usu-
ally low in cryptographic terms, one is forced to iterate it a sufficient number
of times to get a proper security level. Another approach consists in using more
complicated arithmetical operations, like multiplications, for instance. The in-
herent larger cryptographic strength of such operations naturally comes with a
slower speed.



2 Pascal Junod and Marco Macchetti

AES [15,37] is maybe one of the most elegant balance between efficiency and
security for a 128-bit block size. By using quite strong diffusion and confusion
elements in a design having a high internal parallelism, Daemen and Rijmen have
obtained a very fast cipher while keeping a reasonable security margin. However,
as a matter of fact, it is interesting to note that several designs of hash functions
submitted to the NIST SHA3 competition (e.g., Skein [19] and MD6 [41]) have
deliberately chosen to use much simpler operations to build a “light” round and
to iterate this round function a large number of times. This approach is preferred
by some designers because it allows low-footprint hardware implementations as
well as an easier cryptanalysis.

The IDEA block cipher [26, 27] was designed in the beginning of the 90’s
with the following philosophy in mind: mix three different and algebraically
incompatible operations. As a result, a rather strong round function is iterated no
more than 8 times to build a cipher with an outstanding security record: almost
20 years after its design, no faster attack than an exhaustive key search is known
against its full flavor, despite a very intense cryptanalysis activity resulting in
more than a dozen of academic papers discussing its security. However, as of
today, IDEA has more been known for its security than for its speed, even if some
fast implementations have been proposed by Lipmaa [29], exploiting the Intel
MMX instruction set. Furthermore, it is well-known that the implementation of
the so-called IDEA multiplication is rather delicate and, if not done properly, is
prone to timing attacks [23].

Related Work How to increase the block size of IDEA has been studied by
Nakahara and co-authors: they proposed the MESH ciphers [36], which are ci-
phers relying on the same operations than in IDEA, but having block sizes of
up to 128 bits as well as a stronger key-schedule algorithm. Other variants of
MESH ciphers, targeting 8-bit microcontrollers, were described in [32], always
exploiting the same philosophy but this times with operations working on 8-bit
variables.

Our Contributions Attacking the common belief that IDEA is rather a slow
cipher, we show that, by properly exploiting modern instruction sets, it is one
of the fastest block ciphers available on the market on the x86 and x86-64

architectures, beating AES by a large margin, and resulting in a formidable
security-speed ratio supported by almost 20 years of unsuccessful cryptanalysis.
In this paper, we revisit the IDEA philosophy (iterating only a modest number
of times a relatively strong round function) at the light of the latest multimedia
instruction sets SSE, SSE2 and SSE3 which are available today in virtually every
PC. Our contributions are double fold: first, we exhibit a so-called wordslice im-
plementation of eight parallel instances of IDEA able to encrypt in counter mode
at a speed of 5.42 clock cycles per byte, according to the eSTREAM benchmark-
ing framework, on an Intel Core23 CPU. Our implementation is notably more

3 Precisely, the CPU belongs to family 6, model 23, stepping 6.



Revisiting the IDEA Philosophy 3

than 30% faster than the fastest known implementation of AES [22], measured
at 7.81 cycles/byte on the same CPU, while it is able to handle as few as 64
bytes of data, compared to the 128 bytes of the implementation of Käsper and
Schwabe. For the sake of completeness, we note that the fastest standard (i.e.,
non-bitslice) implementation of AES has been recently reported to encrypt at
a rate of 10.57 cycles/byte on an Intel Core2 CPU [2]. Additionally, our imple-
mentation does not suffer from cache attacks [1, 39], is completely branch-free,
and is therefore time-constant.

Our second contribution is the design of a new block cipher family named
WIDEA. It relies on n parallel instances of IDEA mixed using a high-quality
diffusion element. We discuss the rationales behind our design, its security and
concretely specify the WIDEA-8 instance that operates on 512-bit data blocks.
By applying the Davies-Meyer mode of operation, we turn WIDEA-8 into a
compression function capable of processing data at 5.98 cycles/byte on the same
Intel Core2 CPU.

2 The IDEA Block Cipher

In this section, we first recall the specifications of IDEA and we discuss the
available literature dedicated to its security.

2.1 Overview of the Cipher

The IDEA block cipher handles 64-bit blocks of data under a 128-bit key. It
consists of 8 identical rounds (Fig. 1 illustrates one round), each parametered by
a 96-bit subkey, followed by a final key-whitening layer, often named half round.
The r-th round transforms a 64-bit data input interpreted as a vector of four

16-bit words (X
(r)
0 , X

(r)
1 , X

(r)
2 , X

(r)
3 ) to an output vector (Y

(r)
0 , Y

(r)
1 , Y

(r)
2 , Y

(r)
3 )

having a similar shape. This process is keyed by six 16-bit subkeys denoted Z
(r)
j

with 0 ≤ j ≤ 5 derived from the 128-bit master key according to a rather simple,
bit-selecting (and therefore completely linear) key-schedule (see Fig. 2). The
strength of IDEA is certainly due to an elegant design approach which consists
in mixing three algebraically incompatible group operations: the addition over
GF(216), denoted ⊕, the addition over Z216 , denoted ⊞, and the multiplication
over Z∗

216+1, denoted ⊙, where 0 represents the value 216. Round r is defined by
the following operations: one first computes two intermediate values

α(r) =
(

X
(r)
0 ⊙ Z

(r)
0

)

⊕
(

X
(r)
2 ⊞ Z

(r)
2

)

and β(r) =
(

X
(r)
1 ⊞ Z

(r)
1

)

⊕
(

X
(r)
3 ⊙ Z

(r)
3

)

.

These two values form the input of the multiplication-addition box (MA-box)
which results in

δ(r) =
((

α(r) ⊙ Z
(r)
4

)

⊞ β(r)
)

⊙ Z
(r)
5 and γ(r) =

(

α(r) ⊙ Z
(r)
4

)

⊞ δ(r).



4 Pascal Junod and Marco Macchetti

⊕

⊞ ⊞

⊙ ⊞

⊕

⊕⊕

⊕

⊙⊙

⊙⊞

⊕

MA box

γ(r) δ(r)

X
(r)
0 X

(r)
1 X

(r)
2 X

(r)
3

Z
(r)
0 Z

(r)
3Z

(r)
1 Z

(r)
2

Z
(r)
4

Z
(r)
5

Y
(r)
0 Y

(r)
1 Y

(r)
2 Y

(r)
3

Fig. 1. Round r of IDEA

The output of i-th round is then obtained through

Y
(r)
0 =

(

X
(r)
0 ⊙ Z

(r)
0

)

⊕ δ(r), Y
(r)
1 =

(

X
(r)
2 ⊞ Z

(r)
2

)

⊕ δ(r),

Y
(r)
2 =

(

X
(r)
1 ⊞ Z

(r)
1

)

⊕ γ(r) and Y
(r)
3 =

(

X
(r)
3 ⊙ Z

(r)
3

)

⊕ γ(r)

After the 8-th round, a final key-whitening layer is applied:

Y
(9)
0 = X

(9)
0 ⊙Z

(9)
0 , Y

(9)
1 = X

(9)
2 ⊞Z

(9)
1 , Y

(9)
2 = X

(9)
1 ⊞Z

(9)
2 and Y

(9)
3 = X

(9)
3 ⊙Z

(9)
3 .

2.2 Cryptanalysis of IDEA

Designed to offer resistance to differential cryptanalysis [10], the IDEA block
cipher has been subject to a very intense scrutiny by the cryptologic community
since its publication in 1990. This is probably due to the fact that, at the time of
writing, the best attack ever designed against IDEA in a classical scenario is able



Revisiting the IDEA Philosophy 5

Round i Z
(i)
1 Z

(i)
2 Z

(i)
3 Z

(i)
4 Z

(i)
5 Z

(i)
6

1 Z[0...15] Z[16...31] Z[32...47] Z[48...63] Z[64...79] Z[80...95]

2 Z[96...111] Z[112...127] Z[25...40] Z[41...56] Z[57...72] Z[73...88]

3 Z[89...104] Z[105...120] Z[121...8] Z[9...24] Z[50...65] Z[66...81]

4 Z[82...97] Z[98...113] Z[114...1] Z[2...17] Z[18...33] Z[34...49]

5 Z[75...90] Z[91...106] Z[107...122] Z[123...10] Z[11...26] Z[27...42]

6 Z[43...58] Z[59...74] Z[100...115] Z[116...3] Z[4...19] Z[20...35]

7 Z[36...51] Z[52...67] Z[68...83] Z[84...99] Z[125...12] Z[13...28]

8 Z[29...44] Z[45...60] Z[61...76] Z[77...92] Z[93...108] Z[109...124]

9 Z[22...37] Z[38...53] Z[54...69] Z[70...85]

Fig. 2. Complete key-schedule of IDEA. Z[0..15] denotes the bits 0 to 15 (inclusive) of
Z, Z[117..4] means the bits 117-127 and 0-4 of Z, and the leftmost bit of Z has the index
0.

to break only 6 out of the 8.5 rounds at a 2126.8 computational cost: breaking
the full version of IDEA might be considered by certain cryptanalysts as a kind
of “Holy Grail”. We now make a review of the available literature dedicated to
the cryptanalysis of IDEA.

Classical Attacks Differential cryptanalysis [10] has been one of the first tech-
nique to be tried against IDEA by Meier [31] to break up to 2.5 rounds faster
than an exhaustive search. Borst et al. [12] were able to break using a differential-
linear attack and 3.5 rounds using truncated differentials. Biham et al. [5] used
impossible differentials to break 4.5 rounds. Another approach to break IDEA,
based on integral attacks, has been proposed by Nakahara et al. [33] against 2.5
rounds. The approach has first been pushed to 4 rounds by Demirci [17], and
then to 5 rounds by Demirci et al. [18] in combination with meet-in-the-middle
techniques. Inspired by a work of Nakahara et al. [35], Junod [21] presented sev-
eral efficient attacks mixing the Biryukov-Demirci relation and square attacks
against up to 3.5 rounds. More recently, Biham et al. [7] described a linear attack
on 5-round IDEA improving the complexity of [18]. The same authors presented
the first attack against 6 rounds in [8] employing almost the whole codebook
and having a computational complexity of 2126.8 operations.

In the related-key setting, an attack against 6.5 rounds was proposed by
Biham et al. in [6], 7.5 rounds were reached by the same authors in [8] and
recently, an attack working against 4r-round IDEA for any r has been described
in [9].

Side-Channel Attacks A few attacks exploiting side-channel information po-
tentially leaked by implementations of IDEA have been published so far. A prac-
tical timing attack against key-dependent implementations of the IDEA multi-
plication has been described by Kelsey et al. [23]. Lemke et al. [28] have discussed
the application of DPA-oriented techniques to attack implementations of IDEA



6 Pascal Junod and Marco Macchetti

on an 8-bit microcontroller, while Clavier et al. [14] have considered fault attacks.
Protection methods have also been studied in [38].

Simplified IDEA Variants Some authors have also attacked simplified ver-
sions of IDEA. For instance, Borisov et al. [11] have replaced all the ⊞ operations
by ⊕ ones, except for the two in the output transformation. The authors showed
that for one key out of 216, there exists a multiplicative differential characteristic
over eight rounds that holds with probability 2−32. Raddum [40] considered at
the light of differential cryptanalysis another version, called IDEA-X/2, where
only half of the ⊞’s in one round are changed to ⊕ operations, namely the ⊞’s

where Z
(r)
2 and Z

(r)
3 are inserted, while the MA-structure is left unchanged.

3 A Wordslice IDEA Implementation

Given the fact that IDEA does not contain S-boxes and it uses only 16-bit arith-
metical operations, it is particularly suited to be optimized on those processor
architectures that include SIMD multimedia extensions; nowadays practically ev-
ery PC is built around the x86-64 architecture, which supports these features via
the SSEx instruction sets. Moreover, this trend is also significantly showing up
in the context of embedded systems, see for instance the ARC VRaptorTM mul-
ticore architecture, the ARM NEONTM technology and the new Intel AtomTM

and VIA NanoTM processors.
Previous work [29] by Lipmaa has shown that a 4.35× increase in speed is

achievable on Pentium processors that support the MMX instruction set. We
now push the approach further, showing that IDEA can be very conveniently
implemented on all those processors that implement the SSE2 instruction set,
leading to encryption speed records; we also show that the multiplication modulo
216 + 1 can easily be implemented in a time-constant way, thanks to the SSE2
packed-word comparison instructions. We think that our results wipe away two
common misconceptions about the IDEA block cipher, once and for all: that it is
slow and difficult to secure against timing attacks [23]. On the contrary, we show
that IDEA is probably one of the fastest block cipher on current microprocessor
architectures, and it is completely immune to both timing attacks and cache
attacks [1, 39].

The SSE2 instruction set defines 144 instructions that operate on 128-bit
words; the SSE2 integer arithmetic instructions operate on packed data, i.e.
each 128-bit operand is seen as a vector of 8, 16, 32 or 64-bit words. Since IDEA
is natively operating on 16-bit variables, it is clearly possible to write SSE2 code
that carries out eight IDEA encryptions in parallel; we call this implementation
wordslice, as bitslice implementations [3, 30] would similarly work at bit level
on 128 IDEA encryptions in parallel. The main advantage of wordslice imple-
mentations over bitslice is that to reach significant speedups it is not necessary
to operate on huge amount of data, and that the orthogonalization process is
straightforward.



Revisiting the IDEA Philosophy 7

Since the multiplication is clearly the most complex operation in the IDEA
cipher, and the most critical regarding timing analysis, it deserves special care.
The piece of code of Fig. 3, written using SSE2 intrinsics, is an implementation of
the wordslice IDEA multiplication; it contains 11 pseudo-instructions, requires
a space of four 128-bit registers and performs eight IDEA multiplications in par-
allel. It leverages on the unsigned multiplication instruction _mm_mulhi_epu16 ,
whose functionality is not available in the MMX instruction set, and the compar-
ison instruction _mm_cmpeq_epi16, which essentially allows it to be branch-free
(and thus time-constant).

The two operands are initially contained in the a and b variables. The t and
c variables are used as temporary storage and c contains the final result (the
initial values of a and b are not preserved through the computation); XMM_0 is
the 128-bit zero string. The algorithm takes inspiration from known efficient
implementations [4,29], but eliminates any need of comparison or branch point.
The main idea behind it is that the two values that would be returned whether
a · b = 0 or not are calculated in parallel; the final choice is determined by the
value of a mask, the value of a at line 8, which is also derived from the input
data. The algorithm also uses the fact that the upper and the lower 16 bits of a ·b
are equal if and only if at least one of the operands is 0; this property was never
observed before and can be easily checked with an exhaustive simulation. For the
sake of clarity, a line-equivalent (but obviously inefficient) C implementation that
performs one IDEA multiplication using unsigned integer 32-bit variables is also
given. The rest of the wordslice IDEA algorithm can be implemented with packed
unsigned 16-bit additions and 128-bit XORs; this part is quite straightforward
to derive and will not be shown here.

After having written a complete implementation based on the SSE2 instruc-
tion set, we have proceeded to the performance tests to assess the speed level of
this code. It is surely interesting to test the encryption speed in ECB mode, with
pre-calculated round keys, as this gives an indication of the raw speed that can
be reached. However, by running the word-slice IDEA in counter mode one can
also obtain a quite efficient stream cipher. We have thus implemented some sim-
ple routines to realize a branch-free SSE2 implementation of the counter mode
of operation, and obtained a stream cipher with 48-bit IV and 128-bit key.

Both codes have been compiled with the Intel compiler; speed has been mea-
sured by executing the function a high number of times and taking the aver-
age time spent by the processor. We have also integrated our code in the eS-
TREAM [13] benchmarking framework and found that the figures differ by no
more than 1% with regards to the ones we obtained. The result is that plain
ECB encryption runs on an Intel Core2 processor at 5.55 cycles per byte, while
counter mode keystream generation runs at 5.42 cycles4 per byte.

4 It is noteworthy that a code with more instructions takes less time to execute. This
fact is most likely due to micro-architectural optimizations automatically performed
by the compiler. In other words, putting less stress on the pipeline sometimes allows
a better scheduling of the micro-operations.



8 Pascal Junod and Marco Macchetti

1 t = _mm_add_epi16 (a, b); /* t = (a + b) & 0xFFFF; */

2 c = _mm_mullo_epi16 (a, b); /* c = (a * b) & 0xFFFF; */

3 a = _mm_mulhi_epu16 (a, b); /* a = (a * b) >> 16; */

4 b = _mm_subs_epu16 (c, a); /* b = (c - a); */

/* if (b & 0x80000000) b = 0; */

5 b = _mm_cmpeq_epi16 (b, XMM_0); /* if (b == 0) b = 0xFFFF; */

/* else b = 0; */

6 b = _mm_srli_epi16 (b, 15); /* b = b >> 15; */

7 c = _mm_sub_epi16 (c, a); /* c = (c - a) & 0xFFFF; */

8 a = _mm_cmpeq_epi16 (c, XMM_0); /* if (c == 0) a = 0xFFFF; */

/* else a = 0; */

9 c = _mm_add_epi16 (c, b); /* c = (c + b) & 0xFFFF; */

10 t = _mm_and_si128 (t, a); /* t = t & a; */

11 c = _mm_sub_epi16 (c, t); /* c = (c - t) & 0xFFFF; */

Fig. 3. Eight parallel IDEA multiplications using the SSE2 instruction set

We think that the reached level of security vs. speed trade-off justifies addi-
tional research effort; the IDEA cipher appears as an extremely good building
block to realize other cryptographic primitives that may be used to implement
authenticated encryption and hash functions. As a first step, we proceed in the
next Section with the definition of the WIDEA block cipher family.

4 The WIDEA Block Cipher Family

In this section, we first describe the rationales behind the WIDEA cipher family
design, then we make short, preliminary cryptanalysis of our proposal, followed
by a discussion on implementation issues and performance results.

4.1 Design Rationale

We now show how a computational skeleton composed of n IDEA instances
computed in parallel can be transformed in a natural and efficient way into a
(n · 64)-bit block cipher. Basically, we need to define a minimal modification
that provides diffusion over the new block size; the term minimal bears several
meanings here:

– The modification must require minimal computational overhead.
– The modification must alter the skeleton in the least noticeable way, in

particular it must not affect the achieved degree of parallelism and it must
be elegant.

– The modification must follow and enforce all original IDEA design criteria.

The first problem is to define the way in which we provide full diffusion within
one round; MDS matrices over GF(2n) are regarded as an optimal and efficient
way to solve the problem [42], and have been extensively used in well-known



Revisiting the IDEA Philosophy 9

z0,0

z0,n

z1,0

z1,n

z2,0

z2,n

z3,0

z3,n

z4,0

z4,n

z5,0

z5,n

MDS

Fig. 4. The first round of WIDEA-n.

constructions [15, 16]: since the IDEA structure naturally operates on 16-bit
words, we choose MDS matrices over GF(216) as our diffusion primitive. A second
problem is to identify the location in the IDEA round function to insert the
diffusion block. The MA-box is an interesting place for two main reasons: it is
already used to provide diffusion in the IDEA round function and it does not
contain XOR operations. There are four arcs connecting the four operations
inside the IDEA MA-box, but only a diffusion block inserted into the right arc
would guarantee that full diffusion is still achieved. We therefore modify the n-
way IDEA structure as shown in Fig. 4. The third dimension is used to represent
the fact that n instances of IDEA can independently be computed and are tied
together by the application of the MDS matrix.

The IDEA design criteria are effectively enforced; more specifically:

1. Full diffusion in the new block cipher is still obtained in one round, i.e. every
round output bit depends on all n · 64 input bits.

2. Every operation is still preceeded and followed by operations defined over
algebraically incompatible groups.



10 Pascal Junod and Marco Macchetti

1 b = _mm_and_si128 (a, XMM_0x8000);

2 a = _mm_slli_epi16 (a, 1);

3 b = _mm_cmpeq_epi16 (b, XMM_0x8000);

4 b = _mm_and_si128 (b, XMM_POLY);

5 a = _mm_xor_si128 (a, b);

Fig. 5. The wordslice Xtime operation

3. No dependence on arbitrary constants is introduced, the only choices being
limited to the irreducible polynomial that defines the algebraic structure of
GF(216) and the coefficients of the n×n MDS matrix that can be chosen in
order to minimize the number of operations.

We call the new core of the round function MAD-box (standing for Multiply-Add-
Diffuse) and we refer to the global (n ·64)-bit construction as WIDEA (the name
providing enough hints for a "wide" block IDEA cipher); the particular members
of the family obtained by fixing the value of n are identified as WIDEA-n.

Compared with AES-like constructions operating on wide blocks (such as
the W block cipher instanced in the Whirlpool hash function [20]), the WIDEA
structure needs only one eighth of total MDS applications, thus keeping the
computational cost of diffusion quite small. Variants with n = 4 (256-bit) and
n = 8 (512-bit) block sizes are easily defined for instance by taking the same MDS
matrices used in the AES and in the W ciphers, but defined over GF(216). These
ciphers are very useful, as they can be used to build compression functions for
256-bit and 512-bit hash functions (this scenario also justifies the huge key sizes);
as a reference, a complete specification of WIDEA-8 is given in the Appendix.

As we believe the new structure is not deviating substantially from IDEA,
we think that it is not possible to exploit the bigger block size to mount attacks
based on incomplete diffusion (such as integral attacks [24]) against more rounds
than in IDEA, due to the fact that full diffusion is again obtained after one round.
For this reason we keep the number of rounds of WIDEA at 8.5.

Instead, we focus our improvement effort on the key-schedule algorithm,
which is significantly changed in order to remove the problem of weak keys and
to render attacks that exploit the controllability of the key input more difficult.
This is a valid scenario for related-key attacks and in case the block cipher is
used to build a compression function (and a hash function). As in IDEA, we keep
the key size equal to (2n · 64)-bit (twice the block size), accepting the fact that
not all key material can be used to key each round. However, to compensate for
this we define a new key scheduling algorithm based on a non-linear feedback
shift register, similarly to what is done in the MESH block ciphers [36]; we intro-
duce non-linearity, diffusion and diversification in the WIDEA key scheduling,
but always in a way to preserve the n-way parallelism already achieved in the
cipher round function.

We denote with Zi, 0 ≤ i ≤ 51, the subkeys that are used in the 8.5 rounds of
WIDEA-n; note that due to the n-way parallelism each subkey has a size of n ·16
bits (thus each subkey Zi can be split into the n slices zi,0 . . . zi,n). Moreover,



Revisiting the IDEA Philosophy 11

denoting with Ki, 0 ≤ i ≤ 7, the 8 words that represent the WIDEA master key,
the new key scheduling algorithm is defined by the following equations:

Zi = Ki 0 ≤ i ≤ 7

Zi = ((((Zi−1 ⊕ Zi−8)
16

⊞ Zi−5)
16
≪ 5) ≪ 24) ⊕ C i

8
−1 8 ≤ i ≤ 51, 8 | i

Zi = ((((Zi−1 ⊕ Zi−8)
16
⊞ Zi−5)

16
≪ 5) ≪ 24) 8 ≤ i ≤ 51, 8 ∤ i

The symbols and the notation are explained more formally in the Appendix.
Rotation by 5 bit positions is independently carried out on each 16-bit slice of Zi,
as suggested by the superscript; rotation by 24 bit positions (3 byte positions) is
instead carried out globally on each n · 16 bits word. The values of the constants
C0 ÷ C5, that are injected every 8 iterations, should vary with the particular
instance of the cipher.

The key scheduling is designed in a way such that it can be computed using
a shift register of eight n · 16-bit words and the same 16-bit arithmetical and
logical operations used in the round function; the two rotation operations have
been chosen as a practical and simple way to mix information between the n slices
of the key schedule algorithm. Note that the byte level rotation is completely
transparent in the context of 8-bit implementations. One could also think of
fixing n = 1, basically obtaining IDEA with a strengthened key schedule, or
n = 2 obtaining a cipher operating on the same block and key sizes as AES.

4.2 Preliminary Security Analysis

The fact that WIDEA is heavily based on the IDEA construction implies that
all related cryptanalytic results may apply in a quite natural way, and therefore
should be taken into consideration. We start this brief discussion by pointing out
that considerable effort has been spent to strengthen the key-schedule part, as
indicated above. Non-linearity is added by mixing XORs with integer addition,
and different constants are injected every 8 iterations; thanks to this, it is very
difficult to exploit repetitive patterns in the subkeys, or to find long sequences of
subkeys characterized by low Hamming weight. We have verified with software
simulations that thanks to the diffusion provided by the bit-level and byte-level
rotations, coupled with integer additions, every bit of key material used starting
from round 4 (non-linearly) depends on all the 1024 bits of the master key. For
these reasons we expect that no weak keys can be found for WIDEA, and that
the related-key attacks against IDEA cannot be transposed to WIDEA.

Regarding the classical attack scenarios, one may question if attacks can be
based on the fact that the round function of WIDEA-n is based on n parallel
instances of IDEA. Actually, the effect of the MDS diffusion matrix is to keep
at 8 the number of full diffusions applied in the encryption process; to make
a comparison, the AES block cipher applies a total of 5 to 7 full diffusions,
depending on the key size. Recent proposals of big and efficient block ciphers,
such as Threefish [19], are also quite conservatively designed to implement 7 or 8
full diffusions, depending on the digest size. Due to this property we do not expect



12 Pascal Junod and Marco Macchetti

that integral attacks, differential or linear attacks constitute a bigger threat for
WIDEA than for IDEA. Obviously, independent cryptanalysis is needed to verify
our claims, and we encourage further research in this direction.

4.3 WIDEA-8 Implementation Results

WIDEA-8 is certainly the most interesting member of the cipher family, since
it can efficiently be computed using the XMM registers available in the x86-64

architecture5. The coding of WIDEA naturally takes advantage of the optimiza-
tions discussed in §3; the same code is used to perform the wordslice IDEA
multiplications. Concerning the MDS matrix multiplication, we show how to
perform a wordslice GF(216) multiplication times 2 (this is equivalent to the
AES xtime operation [37]). We use the _mm_cmpeq_epi16 instruction to gener-
ate a polynomial mask to be XORed to the left-shifted input basing on the value
of the MSB of each 16-bit slice of the input. The code using SSE intrinsics is
given in Fig. 5; it contains 5 pseudo instructions.

The initial and final values are stored in a, while b is used as temporary
storage; XMM_0x8000 is a vector of eight 16-bit words with only the MSB set
to 1 and XMM_POLY contains eight instances of the polynomial reduction mask.
This xtime operation is used to compute the MDS matrix multiplication; the
total number of xtime operations is determined by the maximum degree of the
elements in the MDS matrix (this is equal to three for WIDEA-8). We also
exploit the fact that the MDS matrix is circulant to optimize the number of
computational steps; since this technique is highly dependent on the entries of
the MDS matrix, it will not be discussed here.

Regarding the key-schedule algorithm, the operations are quite elementary
and do not deserve special mention. The Intel SSE2 instruction set can be used
to implement it easily using a bank of 9 XMM registers (8 to store the state
of the non-linear feedback shift register plus one for temporary storage); if the
SSE3 instruction set is supported by the target processor, which is the case of
all Core2 CPUs, the _mm_shuffle_epi8 byte shuffling instruction can be used
in place of shift instructions to implement the byte-level rotation.

The WIDEA-8 cipher has been implemented by hand in Intel assembly lan-
guage; this is done to exploit as much as possible the bank of XMM registers,
as their number is increased from 8 to 16 when the code is executed in 64-bit
mode. In this case it is possible to compute the key scheduling algorithm on-the-
fly during encryption. Quite amazingly, in only one point in the code the space
provided by the XMM register bank is not sufficient, and we need to save a vari-
able in the cache memory; thus our optimized WIDEA code is almost completely
acting solely on the processor register bank, and in a completely time-constant
way.

5 We note that in the future it may be possible to implement efficiently a WIDEA-16
instance, as Intel is planning to introduce in future micro-architectures the YMM
registers, characterized by a size of 256 bits (however, only floating point instructions
are planned so far for such operand size)



Revisiting the IDEA Philosophy 13

Hash Function Speed (cycles per byte)

EDON-R 512 2.29
WIDEA-8 5.98

CubeHash8/32 6.03
Skein-512 6.10
Shabal-512 8.03
LUX 9.50
Keccak 10.00
BLAKE-64 10.00
Cheetah 13.60
Aurora 26.90
Grostl 30.45
ECHO-SP 35.70
SHAvite-3 38.20
Lesamnta 51.20
MD6 52.64
ECHO 53.50
Vortex 56.05
FUGUE 75.50

Fig. 6. Speed comparison of WIDEA used as a Davies-Meyer construction in the
Merkle-Damgard mode and some SHA-3 candidates on the Intel Core2 CPU in 64-
bit mode.

Having on-the-fly key-scheduling is important because we want to test the
speed of WIDEA-8 in the cases when it is used to build a compression function
using the Davies-Meyer construction. From our experiments, we have determined
that such compression function is able to process data at the speed of 5.98 cycles
per byte on a Intel Core2 processor. We anticipate that such cryptographic
primitive can be used to define hash functions characterized by an outstanding
security vs. speed trade-off; we do not offer the definition of a full hash function
here, but we consider this as a very promising future work which will also benefit
from the insights about hash modes of operation obtained during the SHA-3
competition. Anyway, speed comparison between some SHA3 candidates and
our compression function used in a straightforward Merkle-Damgard mode is
provided6 in Table 6. The expiration of the patent protecting IDEA in a near
future, and the fact that no intellectual property was applied for WIDEA, might
also increase the interest in our work 7.

6 All the data are the ones provided by their respective designers in the presentation
slides of the First SHA-3 Candidate Conference for the Intel Core2 x86-64 architec-
ture.

7 As a matter of fact, several SHA-3 submissions are re-using AES components; for
instance, Vortex [25], is only about three times faster than the basic compression
function we have devised here when implemented using the future Intel AES dedi-
cated instructions.



14 Pascal Junod and Marco Macchetti

Acknowledgments

We would like to thank Olivier Brique, Jérôme Perrine and Corinne Le Buhan
Jordan for their kind support during this work.

References

1. D. Bernstein. Cache-timing attacks on AES. Available on http://cr.yp.to/

papers.html, 2005.

2. D. Bernstein and P. Schwabe. New AES software speed records. To appear in the
proceedings of Indocrypt’08. Available via http://cr.yp.to/papers.html, 2008.

3. E. Biham. A fast new DES implementation in software. In E. Biham, editor, Fast
Software Encryption: 4th International Workshop, FSE’97, Haifa, Israel, January
1997. Proceedings, volume 1267 of Lecture Notes in Computer Science, pages 260–
272. Springer-Verlag, 1997.

4. E. Biham. Optimization of IDEA. Technical report, nes/doc/tec/wp6/026/1,
NESSIE Project, 2002. Available on https://www.cryptonessie.org.

5. E. Biham, A. Biryukov, and A. Shamir. Miss-in-the-middle attacks on IDEA
and Khufru. In L. Knudsen, editor, Fast Software Encryption: 6th International
Workshop, FSE’99, Rome, Italy, March 1999. Proceedings, volume 1636 of Lecture
Notes in Computer Science, pages 124–138. Springer-Verlag, 1999.

6. E. Biham, O. Dunkelman, and N. Keller. Related-key boomerang and rectangle
attacks. In R. Cramer, editor, Advances in Cryptology – Eurocrypt 2005: 24th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, May 22–26, 2005. Proceedings, volume 3494 of Lec-
ture Notes in Computer Science, pages 507–525. Springer-Verlag, 2005.

7. E. Biham, O. Dunkelman, and N. Keller. New cryptanalytic results on IDEA.
In X. Lai and K. Chen, editors, Advances in Cryptology – Asiacrypt 2006: 12th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Shangai China, December 3-7, 2006. Proceedings, volume 4284 of
Lecture Notes in Computer Science, pages 412–427. Springer-Verlag, 2006.

8. E. Biham, O. Dunkelman, and N. Keller. A new attack on 6-round IDEA. In
A. Biryukov, editor, Fast Software Encryption, 14th International Workshop, FSE
2007, Luxembourg, Luxembourg, March 26-28, 2007. Revised Selected Papers, vol-
ume 4593 of Lecture Notes in Computer Science, pages 211–224. Springer-Verlag,
2007.

9. E. Biham, O. Dunkelman, and N. Keller. A unified approach to related-key attacks.
In K. Nyberg, editor, Fast Software Encryption, 15th International Workshop, FSE
2008, Lausanne, Switzerland, February 10-13, 2008. Revised Selected Papers, vol-
ume 5086 of Lecture Notes in Computer Science, pages 73–96. Springer-Verlag,
2008.

10. E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

11. N. Borisov, M. Chew, R. Johnson, and D. Wagner. Multiplicative differentials. In
J. Daemen and V. Rijmen, editors, Fast Software Encryption: 9th International
Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002. Revised Papers, vol-
ume 2365 of Lecture Notes in Computer Science, pages 17–33. Springer-Verlag,
2002.



Revisiting the IDEA Philosophy 15

12. J. Borst, L. Knudsen, and V. Rijmen. Two attacks on reduced IDEA (extended
abstract). In W. Fumy, editor, Advances in Cryptology – Eurocrypt’97: Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
Konstanz, Germany, May 1997. Proceedings, volume 1233 of Lecture Notes in Com-
puter Science, pages 1–13. Springer-Verlag, 1997.

13. C. De Cannière. eSTREAM testing framework. Available at http://www.ecrypt.
eu.org/stream/perf/.

14. C. Clavier, B. Gierlichs, and I. Verbauwhede. Fault analysis study of IDEA. In
T. Malkin, editor, Topics in Cryptology - CT-RSA 2008, The Cryptographers’
Track at the RSA Conference 2008, San Francisco, CA, USA, April 8-11, 2008.
Proceedings, volume 4964 of Lecture Notes in Computer Science, pages 274–287.
Springer-Verlag, 2008.

15. J. Daemen and V. Rijmen. The Design of Rijndael. Information Security and
Cryptography. Springer, 2002.

16. J. Damen, L. Knudsen, and V. Rijmen. The block cipher SQUARE. In E. Biham,
editor, Fast Software Encryption: 4th International Workshop, FSE’97, Haifa, Is-
rael, January 1997. Proceedings, volume 1267 of Lecture Notes in Computer Sci-
ence, pages 149–165. Springer-Verlag, 1997.

17. H. Demirci. Square-like attacks on reduced rounds of IDEA. In K. Nyberg and
H. Heys, editors, Selected Areas in Cryptography: 9th Annual International Work-
shop, SAC 2002, St. John’s, Newfoundland, Canada, August 15-16, 2002. Re-
vised Papers, volume 2595 of Lecture Notes in Computer Science, pages 147–159.
Springer-Verlag, 2003.

18. H. Demirci, A. Selçuk, and E. Türe. A new meet-in-the-middle attack on the
IDEA block cipher. In Selected Areas in Cryptography: 10th Annual International
Workshop, SAC 2003, Ottawa, Canada, August 2003. Revised Papers, volume 3006
of Lecture Notes in Computer Science, pages 117–129. Springer-Verlag, 2004.

19. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker. The Skein hash function family – version 1.1. NIST SHA-3 Submis-
sion. Available via http://ehash.iaik.tugraz.at/wiki/The_eHash_Main_Page,
2008.

20. ISO. Information technology – Security techniques – Hash-functions – Part 3:
Dedicated hash-functions. ISO/IEC 10118-3:2004, International Organization for
Standardization, Genï£¡ve, Switzerland, 2004.

21. P. Junod. New attacks against reduced-round versions of IDEA. In H. Gilbert and
H. Handschuh, editors, Fast Software Encryption, 12th International Workshop,
FSE 2005, Paris, France, February 21-23, 2005. Revised Selected Papers, volume
3557 of Lecture Notes in Computer Science, pages 384–397. Springer-Verlag, 2005.

22. E. Käsper and P. Schwabe. Faster and timing-attack resistant AES-GCM. IACR
ePrint Archive Report 2009/129. Available on http://eprint.iacr.org/2009/

129.
23. J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis of

product ciphers. Journal of Computer Security, 8(2/3), 2000.
24. L. Knudsen and D. Wagner. Integral cryptanalysis (extended abstract). In J. Dae-

men and V. Rijmen, editors, Fast Software Encryption: 9th International Work-
shop, FSE 2002, Leuven, Belgium, February 4-6, 2002. Revised Papers, volume
2365 of Lecture Notes in Computer Science, pages 112–127. Springer-Verlag, 2002.

25. M. Kounavis and S. Gueron. Vortex: A new family of one way hash functions
based on Rijndael rounds and carry-less multiplication. NIST SHA-3 Submission.
Available via http://ehash.iaik.tugraz.at/wiki/The_eHash_Main_Page, 2008.



16 Pascal Junod and Marco Macchetti

26. X. Lai. On the design and security of block ciphers, volume 1 of ETH Series in
Information Processing. Hartung-Gorre Verlag, 1992.

27. X. Lai and J. Massey. A proposal for a new block encryption standard. In
I. Damgård, editor, Advances in Cryptology – Eurocrypt’90: Workshop on the
Theory and Application of Cryptographic Techniques, Aarhus, Denmark, May
1990. Proceedings, volume 473 of Lecture Notes in Computer Science, pages 389–
404. Springer-Verlag, 1991.

28. K. Lemke, K. Schramm, and C. Paar. DPA on n-bit sized Boolean and arith-
metic operations and its application to IDEA, RC6, and the HMAC-construction.
In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded
Systems – CHES 2004: 6th International Workshop, Cambridge, MA, USA, Au-
gust 11-13, 2004. Proceedings, volume 3156 of Lecture Notes in Computer Science,
pages 205–219. Springer-Verlag, 2004.

29. H. Lipmaa. IDEA: a cipher for multimedia architectures? In S. Tavares and H. Mei-
jer, editors, Selected Areas in Cryptography: 5th Annual International Workshop,
SAC’98, Kingston, Ontario, Canada, August 1998. Proceedings, volume 1556 of
Lecture Notes in Computer Science, pages 248–263. Springer-Verlag, 1999.

30. M. Matsui and J. Nakajima. On the power of bitslice implementation on Intel Core2
processor. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and
Embedded Systems – CHES 2007: 9th International Workshop, Vienna, Austria,
September 10-13, 2007. Proceedings, volume 4727 of Lecture Notes in Computer
Science, pages 121–134. Springer-Verlag, 2007.

31. W. Meier. On the security of the IDEA block cipher. In T. Helleseth, editor, Ad-
vances in Cryptology – Eurocrypt’93: Workshop on the Theory and Application
of Cryptographic Techniques, Lofthus, Norway, May 1993. Proceedings, volume 765
of Lecture Notes in Computer Science, pages 371–385. Springer-Verlag, 1993.

32. J. Nakahara. Faster variants of the MESH block ciphers. In A. Canteaut and
K. Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004: 5th In-
ternational Conference on Cryptology in India, Chennai, India, December 20-22,
2004. Proceedings, volume 3348 of Lecture Notes in Computer Science, pages 162–
174. Springer-Verlag, 2004.

33. J. Nakahara, P. Barreto, B. Preneel, J. Vandewalle, and Y. Kim. Square attacks
on reduced-round PES and IDEA block ciphers. In B. Macq and J.-J. Quisquater,
editors, Proceedings of 23rd Symposium on Information Theory in the Benelux,
Louvain-la-Neuve, Belgium, May 29-31, 2002, pages 187–195, 2002.

34. J. Nakahara, B. Preneel, and J. Vandewalle. The Biryukov-Demirci attack on
IDEA and MESH ciphers. Technical report, COSIC, ESAT, Katholieke Universiteit
Leuven, Leuven, Belgium, 2003.

35. J. Nakahara, B. Preneel, and J. Vandewalle. The Biryukov-Demirci attack on
reduced-round versions of IDEA and MESH block ciphers. In H. Wang, J. Pieprzyk,
and V. Varadharajan, editors, Information Security and Privacy: 9th Australasian
Conference, ACISP 2004, Sydney, Australia, July 13-15, 2004. Proceedings, volume
3108 of Lecture Notes in Computer Science, pages 98–109. Springer-Verlag, 2004.

36. J. Nakahara, V. Rijmen, B. Preneel, and J. Vandewalle. The MESH block ci-
phers. In K. Chae and M. Yung, editors, Information Security Applications, 4th
International Workshop, WISA 2003, Jeju Island, Korea, August 25-27, 2003. Re-
vised Papers, volume 2908 of Lecture Notes in Computer Science, pages 458–473.
Springer-Verlag, 2004.

37. National Institute of Standards and Technology, U. S. Department of Commerce.
Advanced Encryption Standard (AES), NIST FIPS PUB 197, 2001.



Revisiting the IDEA Philosophy 17

38. O. Neisse and J. Pulkus. Switching blindings with a view towards IDEA. In M. Joye
and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Systems –
CHES 2004: 6th International Workshop, Cambridge, MA, USA, August 11-13,
2004. Proceedings, volume 3156 of Lecture Notes in Computer Science, pages 230–
239. Springer-Verlag, 2004.

39. D. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: the
case of AES. In D. Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, The
Cryptographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February
13-17, 2006. Proceedings, volume 3860 of Lecture Notes in Computer Science, pages
1–20. Springer-Verlag, 2006.

40. H. Raddum. Cryptanalysis of IDEA-X/2. In T. Johansson, editor, Fast Software
Encryption, 10th International Workshop, FSE 2003, Lund, Sweden, February 24-
26, 2003. Revised Papers, volume 2887 of Lecture Notes in Computer Science.
Springer-Verlag, 2003.

41. R. Rivest, B. Agre, D. Bailey, C. Crutchfield, Y. Dodis, K. Fleming, A. Khan,
J. Krishnamurthy, Y. Lin, L. Reyzin, E. Shen, J. Sukha, D. Sutherland, E. Tromer,
and Y. Yin. The MD6 hash function – a proposal to NIST for SHA-3. NIST SHA-3
Submission. Available via http://ehash.iaik.tugraz.at/wiki/The_eHash_Main_

Page, 2008.
42. C. Schnorr and S. Vaudenay. Black box cryptanalysis of hash networks based

on multipermutations. In A. De Santis, editor, Advances in Cryptology – Euro-

crypt’94: Workshop on the Theory and Application of Cryptographic Techniques,
Perugia, Italy, May 1994. Proceedings, volume 950 of Lecture Notes in Computer
Science, pages 47–57. Springer-Verlag, 1995.

Appendix: Specification of WIDEA-8

Notation WIDEA-8 is a block cipher having block size of 512 bits and fixed key
size of 1024 bits, which is heavily based on the IDEA cipher. In the following we
will indicate 128-bit words with capital letters and 16-bit words with lowercase
letters. The input, state and output of the cipher can be seen as an array of four
128-bit words, where each 128-bit word can in turn be seen as an array of eight
16-bit words. Thus, each 16-bit word is indexed by two numbers: the index of
the 128-bit word that contains it, followed by the index of its position in the
128-bit word (128-bit words are indexed by only one number). We adopt here a
big-endian ordering, so that the index of the most significant part of a variable
is equal to 0 and the index of its least significant part is the largest one. Thus,
indicating with X the 512-bit input of the cipher, we have X = X0‖X1‖X2‖X3

and X0 = x0,0‖x0,1‖x0,2‖x0,3‖x0,4‖x0,5‖x0,6‖x0,7. Different arithmetic and logic
operations are used in WIDEA-8. The IDEA multiplication of two 16-bit words
(multiplication over Z∗

216+1 where the zero 16-bit string represents the number

216) is denoted with “⊙”; addition over Z216 is denoted with “⊞”. Each 16-bit
word can also be seen as an element of the finite field GF(216) defined with the
following irreducible polynomial P (x) = x16 + x5 + x3 + x2 + 1. Addition over
GF(216), as well as bitwise logical XOR, is denoted with “⊕” while multiplica-
tion over the same field is denoted with “ ·”; logical left rotation of n positions
is denoted with “≪ n”. The same operators may be applied in a vectorial way



18 Pascal Junod and Marco Macchetti

over the 128-bit variables, i.e. each 16-bit slice of the operand(s) undergoes the
transformations above; in this case we place the superscript “16” over the oper-
ator symbol, to distinguish the operation from the one carried out over the full
128 bits.

The Key-Schedule The WIDEA-8 key Z has size equal to 1024 bits and can
be seen as an array of eight 128-bit words Z = Z0‖Z1‖Z2‖Z3‖Z4‖Z5‖Z6‖Z7.
This array is filled with key material starting from the most significant positions
and proceeding toward the least significant ones. Once the key has been set,
the subkeys can be generated. WIDEA-8, similarly to IDEA, uses a total of 52
128-bit subkeys; the first 8 are taken directly from the key, starting naturally
from Z0. The additional 44 128-bit subkeys Zi with 8 ≤ i ≤ 51 are generated
using the following equations:

Zi = ((((Zi−1 ⊕ Zi−8)
16

⊞ Zi−5)
16
≪ 5) ≪ 24) ⊕ C i

8
−1 8 ≤ i ≤ 51, 8 | i

Zi = ((((Zi−1 ⊕ Zi−8)
16
⊞ Zi−5)

16
≪ 5) ≪ 24) 8 ≤ i ≤ 51, 8 ∤ i

In practice, the same recurrence relation is used for each iteration, and a different
constant is added whenever the subkey index is a multiple of 8. The six 128-bit
constants are given below, in hexadecimal format:

C0 = 1dea‖0000‖0000‖0000‖0000‖0000‖0000‖0000
C1 = 3825‖0000‖0000‖0000‖0000‖0000‖0000‖0000
C2 = 1dd7‖0000‖0000‖0000‖0000‖0000‖0000‖0000
C3 = 3ea4‖0000‖0000‖0000‖0000‖0000‖0000‖0000
C4 = e57a‖0000‖0000‖0000‖0000‖0000‖0000‖0000
C5 = f7ba‖0000‖0000‖0000‖0000‖0000‖0000‖0000

Encryption WIDEA-8 encryption consists in 8 full rounds followed by one
half round; every round uses some subkeys calculated using the key scheduling
algorithm specified above. We add an apex to each variable to indicate the

round number, starting from 1; thus δ
(i)
0,0 is the value of δ0,0 in the i-th round.

The input of the i-th round is denoted as X(i) = X
(i)
0 ‖X

(i)
1 ‖X

(i)
2 ‖X

(i)
3 and the

output Y(i) = X(i+1) is calculated, for a full round, as follows. First, the inputs
of the MAD-box are calculated as:

A(i) =

(

X
(i)
0

16
⊙ Z6(i−1)

)

⊕

(

X
(i)
2

16
⊞ Z6(i−1)+2

)

B(i) =

(

X
(i)
1

16

⊞ Z6(i−1)+1

)

⊕

(

X
(i)
3

16
⊙ Z6(i−1)+3

)

Then, the MAD-box calculation is carried out, resulting in:

∆(i) = MDS

((

A(i)
16
⊙ Z6(i−1)+4

)

16

⊞ B(i)

)

16
⊙ Z6(i−1)+5

Γ (i) =

(

A(i)
16
⊙ Z6(i−1)+4

)

16

⊞ ∆(i)



Revisiting the IDEA Philosophy 19

The MDS operation is a left-multiplication over GF(216) of a 128-bit string with
a fixed matrix, its elements defined over GF(216), and is defined as follows:

Y =

























y0

y1

y2

y3

y4

y5

y6

y7

























=

























1 1 4 1 8 5 2 9
9 1 1 4 1 8 5 2
2 9 1 1 4 1 8 5
5 2 9 1 1 4 1 8
8 5 2 9 1 1 4 1
1 8 5 2 9 1 1 4
4 1 8 5 2 9 1 1
1 4 1 8 5 2 9 1

















































x0

x1

x2

x3

x4

x5

x6

x7

























= MDS(X)

Thus, we could equivalently write a set of equations looking as this:

y0 = x0 ⊕ x1 ⊕ 4 · x2 ⊕ x3 ⊕ 8 · x4 ⊕ 5 · x5 ⊕ 2 · x6 ⊕ 9 · x7

The output of the round is finally obtained combining the outputs of the MAD-
box ∆ and Γ with A and B as follows:

Y
(i)
0 =

(

X
(i)
0

16
⊙ Z6(i−1)

)

⊕ ∆(i) Y
(i)
1 =

(

X
(i)
2

16
⊞ Z6(i−1)+2

)

⊕ ∆(i)

Y
(i)
2 =

(

X
(i)
1

16

⊞ Z6(i−1)+1

)

⊕ Γ (i) Y
(i)
3 =

(

X
(i)
3

16
⊙ Z6(i−1)+3

)

⊕ Γ (i)

On the other hand, a half round contains less operations and is defined as
follows:

Y
(i)
0 = X

(i)
0

16
⊙ Z6(i−1) Y

(i)
1 = X

(i)
2

16

⊞ Z6(i−1)+1

Y
(i)
2 = X

(i)
1

16

⊞ Z6(i−1)+2 Y
(i)
3 = X

(i)
3

16
⊙ Z6(i−1)+3

Decryption WIDEA-8 decryption also consists in 8 full rounds followed by one
half round; every round uses some subkeys calculated using the key scheduling
algorithm specified above. The definitions of the full and half rounds for decryp-
tion is the same as that given above for encryption; the only difference is that the
subkeys (previously inverted with respect to the proper law group) must be used
in the inverse order. Note that the WIDEA key schedule algorithm is designed
to be easily invertible, thus one may also apply on-the-fly inverse key scheduling
for decryption, where the master key contains the last 8 subkeys derived for
encryption.

Test vectors

PLAINTEXT

0000 0011 0022 0033 0044 0055 0066 0077

0088 0099 00aa 00bb 00cc 00dd 00ee 00ff



20 Pascal Junod and Marco Macchetti

ff00 ee00 dd00 cc00 bb00 aa00 9900 8800

7700 6600 5500 4400 3300 2200 1100 0000

KEY

0000 0001 0002 0003 0004 0005 0006 0007

0008 0009 000a 000b 000c 000d 000e 000f

0000 0010 0020 0030 0040 0050 0060 0070

0080 0090 00a0 00b0 00c0 00d0 00e0 00f0

0000 0100 0200 0300 0400 0500 0600 0700

0800 0900 0a00 0b00 0c00 0d00 0e00 0f00

0000 1000 2000 3000 4000 5000 6000 7000

8000 9000 a000 b000 c000 d000 e000 f000

CIPHERTEXT

c28c 1bcf b923 65f9 d8a0 2d77 417c 3da8

f6ed 06ba 961e 3948 4162 ccaa a62a da5b

d6f2 b750 ecfb 22ce 71a3 3380 c8ef aa90

1424 67da 51fd 1d38 0978 cccc c99a 5f5a


