Advances in the Theory of Nonlinear Analysis and its Applications **2** (2018) No. 2, 85–87. https://doi.org/10.31197/atnaa.431135 Available online at www.atnaa.org Research Article

Revisiting the Kannan Type Contractions via Interpolation

Erdal Karapınar

Department of Mathematics, Atilim University 06836, Incek, Ankara, Turkey.

Abstract

In the paper we revisited the well-known fixed point theorem of Kannan under the aspect of interpolation. By using the interpolation notion, we propose a new Kannan type contraction to maximize the rate of convergence.

Keywords: Kannan Type Contraction, Interpolation, fixed point, rate of convergence. 2010 MSC: 47H 10, 49T99, 54H25.

1. Introduction

After the distinguished fixed point of Banach, one of the pivotal metric fixed point result was reported by Kannan [1, 2]. A mapping that satisfies Banach contraction inequality is necessarily continuous. In 1968, Kannan [1] introduced a new type of contraction which is an affirmative answer to the natural question below: Whether there is a discontinuous mapping that fulfils certain contractive conditions and posses a fixed point in the frame of complete metric spaces.

Theorem 1.1. [1] Let (X, d) be a complete metric spaces and $T : X \to X$ be a Kannan contraction mapping, *i.e.*,

 $d(Tx, Ty) \le \lambda \left[d(x, Tx) + d(y, Ty) \right],$

for all $x, y \in X$, where $\lambda \in [0, \frac{1}{2})$. Then T has a unique fixed point.

Received April 20, 2018, Accepted: May 18, 2018, Online: June 08, 2018.

Email address: erdalkarapinar@yahoo.com (Erdal Karapınar)

2. Main results

We start our results by the generalization of the definition of Kannan type contraction via interpolation notion, as follows.

Definition 2.1. Let (X, d) be a metric space. We say that the self-mapping $T : X \to X$ is an interpolative Kannan type contraction, if there exist a constant $\lambda \in [0, 1)$ and $\alpha \in (0, 1)$ such that

$$d(Tx, Ty) \le \lambda \left[d(x, Tx) \right]^{\alpha} \cdot \left[d(y, Ty) \right]^{1-\alpha}.$$
(2.1)

for all $x, y \in X$ with $x \neq Tx$.

Theorem 2.2. Let (X, d) be a complete metric space and T be an interpolative Kannan type contraction. Then T has a unique fixed point in X.

Proof. Let $x_0 \in (X, d)$. We shall set a constructive sequence $\{x_n\}$ by $x_{n+1} = T^n(x_0)$ for all positive integer n. Without loss of generality, we assume that $x_n \neq x_{n+1}$ for each nonnegative integer n. Indeed, if there exist a nonnegative integer n_0 such that $x_{n_0} = x_{n_0+1} = Tx_{n_0}$, then, x_{n_0} forms a fixed point. Thus, we have

 $d(x_n, Tx_n) = d(x_n, x_{n+1}) > 0$, for each nonnegative integer n.

Taking $x = x_n$ and $y = x_{n-1}$ in (2.1), we derive that

$$d(x_{n+1}, x_n) = d(Tx_n, Tx_{n-1}) \le \lambda [d(x_n, Tx_n)]^{\alpha} \cdot [d(x_{n-1}, Tx_{n-1})]^{1-\alpha}$$

= $\lambda [d(x_{n-1}, x_n)]^{1-\alpha} \cdot [d(x_n, x_{n+1})]^{\alpha},$ (2.2)

which yields that

$$[d(x_n, x_{n+1})]^{1-\alpha} \le \lambda [d(x_{n-1}, x_n)]^{1-\alpha}.$$
(2.3)

Thus, we deduce that the sequence $\{d(x_{n-1}, x_n)\}$ is non-increasing and non-negative. As a result, there is a nonnegative constant L such that $\lim_{n \to \infty} d(x_{n-1}, x_n) = L$. We shall indicate that L > 0. Indeed, from (2.3), we derive that

$$d(x_n, x_{n+1}) \le \lambda d(x_{n-1}, x_n) \le \lambda^n d(x_0, x_1).$$

$$(2.4)$$

Letting $n \to \infty$ in the inequality above, we observe that L = 0.

As a next step, we shall show that the sequence $\{x_n\}$ is Cauchy by using a standard arguments based on the triangle inequality. More precisely, we have

$$d(x_{n}, x_{n+r}) \leq d(x_{n}, x_{n+1}) + \dots + d(x_{n+r-1}, x_{n+r}) \leq \lambda^{n} d(x_{0}, x_{1}) + \dots + \lambda^{n+r-1} d(x_{0}, x_{1}) \leq \frac{\lambda^{n}}{1-\lambda} d(x_{0}, x_{1})$$
(2.5)

Letting $n \to \infty$ in the inequality above, we find that the sequence $\{x_n\}$ is Cauchy. Since (X, d) is a complete metric space, there exists $x \in X$ such that $\lim_{n \to \infty} d(x_n, x) = 0$.

On what follows we shall show that the limit x of the iterative sequence $\{x_n\}$ forms a fixed point for the given self-mapping T. By substituting $x = x_n$ and y = x in (2.1), we find that

$$d(Tx_n, Tx) \le \lambda \left[d(x_n, Tx_n) \right]^{\alpha} \cdot \left[d(x, Tx) \right]^{1-\alpha}.$$
(2.6)

Taking $n \to \infty$ in the inequality above, we derive that d(x, Tx) = 0 that is, Tx = x.

For the uniqueness, we shall use the method of *Reductio ad Absurdum*. Suppose, on the contrary that T has a two distinct fixed point $x, y \in X$. Thus, from (2.1) we have

$$d(x,y) = d(Tx,Ty) \le \lambda [d(x,Tx)]^{\alpha} \cdot [d(y,Ty)]^{1-\alpha}$$

$$\le \lambda [d(x,x)]^{\alpha} \cdot [d(y,y)]^{1-\alpha} = 0,$$
(2.7)

which yields that d(x, y) = 0, a contradiction. Hence, the observed fixed point is unique.

Example 2.3. Let $X = \{x, y, z, w\}$ be a set endowed with a metric d such that

 $\begin{array}{ll} d(x,x) &= d(y,y) = d(z,z) = d(w,w) = 0, \\ d(y,x) &= d(x,y) = 3, \\ d(z,x) &= d(x,z) = 4, \\ d(y,z) &= d(z,y) = \frac{3}{2} \\ d(w,x) &= d(x,w) = \frac{5}{2} \\ d(w,y) &= d(y,w) = 2 \\ d(w,z) &= d(z,w) = \frac{3}{2}. \end{array}$

We define a self-mapping T on X by $T: \begin{pmatrix} x & y & z & w \\ x & w & x & y \end{pmatrix}$. It is clear that T is not Kannan contraction. Indeed, there is no $\lambda \in [0, \frac{1}{2})$ such that the following inequality is fulfilled:

$$d(Tw, Tz) = d(y, x) = 3 \le \lambda(d(Tw, w) + d(z, Tz)) = 6\lambda.$$

On the other hand, for $\alpha = \frac{1}{8}$ and $\lambda = \frac{9}{10}$, the self-mapping T forms an interpolative Kannan type contraction and x is the desired unique fixed point of T. Notice that in the setting of interpolative Kannan type contraction, the constant lies between 0 and 1 although in the classical version it is restricted with 1/2.

References

- [1] R. Kannan, Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71-76 (1968).
- [2] R. Kannan, Some results on fixed points. II. Am. Math. Mon. 76, 405-408 (1969.