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1 Introduction

For some time now, the ratios of semileptonic B-decay rates,

RD(∗) =
BR(B → D(∗)τν)

BR(B → D(∗)ℓν)
(with ℓ = e or µ), (1.1)

have appeared to be enhanced with respect to the Standard Model (SM) predictions with a

global significance above the evidence threshold [1–11]. In addition, LHCb reports a value

of the ratio

RJ/ψ =
BR(B+

c → J/ψτ+ντ )

BR(B+
c → J/ψµ+νµ)

, (1.2)

about 2σ above the SM [10].

In the SM, semileptonic decays proceed via the tree-level exchange of a W± boson,

preserving lepton universality. Hence, a putative NP contribution explaining the data

must involve new interactions violating lepton universality. This may entail the tree-

level exchange of new colorless vector (W ′) [12–17] or scalar (Higgs) [18–23] particles, or

leptoquarks [24–49] with masses accessible to direct searches at the LHC.

Belle has also measured the longitudinal polarization of the τ (PD
∗

τ ) [6] and of the D∗

(FD
∗

L ) [50] in the B → D∗τν decay,

PD
∗

τ =
Γ(λτ = 1

2)− Γ(λτ = −1
2)

Γ(λτ = 1
2) + Γ(λτ = −1

2)
,

FD
∗

L =
Γ(λD∗ = 0)

Γ(λD∗ = 1) + Γ(λD∗ = 0) + Γ(λD∗ = −1)
, (1.3)

– 1 –
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Observables Data (averages) SM

RD

HFLAV 2018 HFLAV 2019

0.312(19)0.407(39)(24) 0.340(27)(13)

RD∗ 0.306(13)(7)

corr = −0.20

0.295(11)(8)

corr = −0.38

0.253(4)

RJ/ψ 0.71(17)(18) 0.248(3)

PD
∗

τ −0.38(51)(19) −0.505(23)

FD
∗

L 0.60(8)(4) 0.455(9)

Table 1. Data (averages) and predictions in the SM for semileptonic b-decay observables defined in

eqs. (1.1)–(1.3). The Heavy Flavor Averaging Group (HFLAV) 2018 averages [65] of experimental

data for RD and RD∗ use data from BABAR [1, 2], Belle [3, 4, 6] and LHCb [5, 8, 9], while the

HFLAV 2019 average includes the Belle measurement of both, RD and RD∗ , with the semileptonic

tag [51]. The LHCb measurement of RJ/Ψ is reported in ref. [10] and the Belle measurements of

PD
∗

τ and FD
∗

L in refs. [10, 50]. The two experimental errors correspond to statistical and systematic

uncertainties, respectively. SM predictions are obtained as specified in section 2.3.

where λX refers to the helicity of the particle X. While PD
∗

τ is reconstructed from the

hadronic decays of the τ and is still statistically limited, the reported measurement of FD
∗

L

is rather precise and disagrees with the SM prediction with a significance of 1.7σ.

Recently, Belle announced a new combined measurement of both RD and RD∗ using

semileptonic decays for tagging the B meson in the event [51]. This presents a significant

addition to the data set because the previous combined measurements of RD(∗) had been

performed at the B factories using a hadronic tag. The new result is more consistent with

the SM than the previous HFLAV average. Thus, these new data call for a reassessment of

the significance of the tension of the signal with the SM and of the possible NP scenarios

aiming at explaining it. The purpose of this work is to provide such an analysis using

effective field theory (EFT) [52–63] and to relate it to (partial) UV completions in terms

of simplified mediators. We assume that the lepton non-universal contribution affects only

the couplings to the tau leptons. A comprehensive analysis of bounds on NP affecting

b → cℓν transitions can be found in ref. [64]. A summary of the recent data (averages) is

shown in table 1, which is compared to the SM predictions which are obtained as specified

in section 2.3.

2 Theoretical framework

2.1 Low-energy effective Lagrangian

The most general effective Lagrangian describing the contributions of heavy NP to semi-

tauonic b→ cτ ν̄ processes can be written as

LLE
eff ⊃ −4GFVcb√

2
[(1 + ǫτL)(τ̄ γµPLντ )(c̄γ

µPLb) + ǫτR(τ̄ γµPLντ )(c̄γ
µPRb) (2.1)

+ǫτSL
(τ̄PLντ )(c̄PLb) + ǫτSR

(τ̄PLντ )(c̄PRb) + ǫτT (τ̄σµνPLντ )(c̄σ
µνPLb)] + H.c.,

where GF is the Fermi constant and Vcb is the Cabibbo-Kobayashi-Maskawa (CKM) matrix

element. The five Wilson coefficients (WCs) ǫτL, ǫ
τ
R, ǫ

τ
T , ǫ

τ
SL

and ǫτSR
encapsulate the NP

– 2 –
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contributions, featuring the scaling ǫτΓ ∼ O(v2/Λ2
NP), where v ≈ 246GeV is the electroweak

symmetry breaking (EWSB) scale. In the context of the EFT of the SM (SMEFT) [66,

67], ǫτR = ǫℓR + O(v4/Λ4
NP) and the right-handed operator cannot contribute to lepton

universality violation at leading order in the (v2/Λ2
NP) expansion [25, 68, 69]. For this

reason, we do not consider the effect of ǫτR in our fits. Nonetheless, it is important to note

that this assumption could be relaxed if there was not a mass gap between the NP and the

EWSB scales, or under a nonlinear realization of the electroweak symmetry breaking [70].

The chirally-flipping scalar and tensor operators are renormalized by QCD and elec-

troweak corrections [71–74]. The latter induce a large mixing of the tensor operator into

ǫτSL
which can have relevant implications for tensor scenarios [71]. As an illustration,

defining ~ǫ T (µ) = (ǫτSR
, ǫτSL

, ǫτT )(µ), (where we have omitted flavor indices), we find that

~ǫ (mb) =M ~ǫ (1 TeV), with [71]

M =







1.737 0 0

0 1.752 −0.287

0 −0.0033 0.842






, (2.2)

and where, in a slight abuse of notation, we keep the notation for the WCs of the low-

energy EFT above the EWSB scale. Operators with vector currents do not get renormalized

by QCD, whereas electromagnetic and electroweak corrections produce a correction of a

few percent to the tree-level contributions [71, 75]. On the other hand, all the operators

in the SMEFT matching at low-energies to the Lagrangian in eq. (2.1) can give, under

certain assumptions on the flavor structure of the underlying NP, large contributions to

other processes such as decays of electroweak bosons, the τ lepton and the Higgs, or the

anomalous magnetic moment of the muon [74, 76, 77].

An interesting scenario where the new physics cannot be described by the local effective

Lagrangian eq. (2.1) consists of the addition of new light right-handed neutrinos [13, 15–

17, 32, 78, 79]. This duplicates the operator basis given in eq. (2.1) by the replacements

PL → PR in the leptonic currents (and in the hadronic current for the tensor operator) [69,

78, 80] and whose WCs we label with ǫΓ → ǫ̃Γ. None of these operators interfere with the

SM and their contributions to the decay rates are, thus, quadratic and positive. This also

means that the size of the NP contributions needed to explain RD(∗) in this case are larger

than with the operators in eq. (2.1) and they typically enter in conflict with bounds from

other processes like the decay Bc → τν [81, 82] or from direct searches at the LHC [83].

As an illustration of the features and challenges faced by these models we consider the

operator with right-handed currents,

LLE
eff ⊃ −4GFVcb√

2
(ǫ̃τRτ̄ γµNR)(c̄γ

µPRb) + H.c., (2.3)

(with NR denoting the right-handed neutrino), which incarnates a popular NP interpreta-

tion of the anomaly [13, 15–17, 78, 79]. Finally, imaginary parts also contribute quadrati-

cally to the rates so we assume the WCs to be real, although we will briefly study also the

impact of imaginary parts below.

– 3 –
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Table 2. Quantum numbers of mediators that can explain at tree-level the RD(∗) anomalies and

their contributions to the effective operators in eqs. (2.1), (2.3).

2.2 Simplified models

The effective operators in eqs. (2.1), (2.3) can be mediated at tree level by a number of new

particles, that we list in table 2. Possibilities with new charged colorless weak bosons can

be realized with the W ′ in either a triplet (W ′

L) or a singlet (W ′

R) representation of weak

isospin. In the former case, the neutral component of the triplet, a Z ′ with a mass close to

the one of theW ′, produces large effects in either neutral-meson mixing or di-tau production

at the LHC, so that this scenario is unavoidably in conflict with data [84]. Making the W ′

a singlet of weak isospin, W ′

R=(1, 1,+1) under SU(3)×SU(2)×U(1), requires introducing

right-handed neutrinos to contribute to b→ cτ ν̄ [13, 15–17]; parametrizing the Lagrangian

for this model,

LW ′ ⊃
(

gcbc̄γµPRb+ gτN N̄RγµPRτ
)

W ′µ
R + h.c., (2.4)

one finds the contribution to the EFT,

Vcbǫ̃
τ
R =

gcbg
∗

τN

2

v2

m2
W ′

. (2.5)

Models based on extending the scalar sector of the SM, such as the two-Higgs doublet

model (labeled by H in table 2), generate the scalar operators through charged-Higgs

exchange. However, these are disfavored by experimental bounds that stem from the Bc
lifetime [81] and from the branching fraction of Bc → τν derived using LEP data [82].

Strong limits from direct searches at the LHC of the corresponding charged scalars have

also been obtained in the literature [85].

On the other hand, leptoquark exchanges can produce all the operators in eq. (2.1).1

The SM interactions of the scalar leptoquark S1=(3, 1,+1/3) can be described by the

Lagrangian,

LS1 ⊃ yLL1,iαQ̄
c
L,i ǫ LL,αS1 + yRR1,iαū

c
R,i eR,αS1 + yRR1,iαd̄

c
R,i NR,αS1, (2.6)

1We follow the notation to label the leptoquark fields introduced in refs. [86, 87].
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where ǫab is the antisymmetric tensor of rank two and where we are labeling the flavor

of the fields in the interaction basis. This model produces left-handed, scalar-tensor and

right-handed contributions [24, 29, 33, 34],

Vcbǫ
τ
L =

ỹLL,d1,33 (ỹLL,u1,23 )∗

4

v2

m2
S1

, Vcbǫ
τ
SL

= −4Vcbǫ
τ
T =

ỹLL,d1,33 (ỹRR1,23)
∗

4

v2

m2
S1

,

Vcbǫ̃
τ
R = −

ỹRR1,33(ỹ
RR
1,23)

∗

4

v2

m2
S1

, (2.7)

where the coefficients are defined at a scale equal to the leptoquark mass, µ = mS1 . The

tilde in the coefficients of eq. (2.7) and in the rest of this subsection indicates that the quark

unitary rotations have been absorbed in the definition of the couplings. For instance, if

such transformations are dL → Ld dL, uL → Lu uL, dR → Rd dR, uR → Ru uR, we

have defined ỹ
LL,u(d)
1,iα = [yLL1 Lu(d)]iα, ỹ

RR
1,iα = [yRR1 Ru]iα and ỹRR1,iα = [yRR1 Rd]iα where

summation of quark flavor indices is implicit. We have also defined these couplings in the

charged-lepton mass basis, ignoring neutrino masses.

The leptoquark with quantum numbers R2=(3, 2,+7/6) and Lagrangian,

LR2 ⊃ −yRL2,iαūR,i ǫ LL,αR2 + yLR2,iαQ̄L,ieR,αR2, (2.8)

leads to

Vcbǫ
τ
SL

= +4Vcbǫ
τ
T =

ỹRL2,23(ỹ
LR,d
2,33 )∗

4

v2

m2
R2

. (2.9)

Thus, one can achieve a tensor scenario by adjusting the masses and couplings of the S1
and R2 leptoquarks. It is important to stress that such a solution at low energies requires

some tuning due to the large electroweak mixing into scalar operators in eq. (2.2).

Among the vector leptoquarks we consider the U1=(3, 1,+2/3), which has been exten-

sively studied in the interpretation of the B anomalies [25, 26, 35–37, 39–42, 44, 46–48],

LU1 ⊃ χLL1,iαQ̄L,iγµLL,αU
µ
1 + χRR1,α d̄R,iγµeR,αU

µ
1 + χRR1,iαūR,iγµNR,αU

µ
1 , (2.10)

leading to left-handed and right-handed contributions, and a scalar contribution,

Vcbǫ
τ
L =

χ̃LL,u1,23 (χ̃LL,d1,33 )∗

2

v2

m2
U1

, Vcbǫ̃
τ
R =

χ̃RR1,23(χ̃
RR
1,33)

∗

2

v2

m2
U1

,

Vcbǫ
τ
SR

= −χ̃LL,u1,23 (χRR1,33)
∗
v2

m2
U1

. (2.11)

In particular, a combination of left-handed and right-handed couplings gives rise to a

scalar operator which is instrumental to achieve a better agreement with data in some UV

completions of the U1 leptoquark [37, 42, 47, 48].

The mediators S3=(3, 3,+1/3) and U3=(3, 3,+2/3) in table 2 provide completions of

the left-handed current operator equivalent to the S1 and U1 ones for scalar and vector lep-

toquark scenarios, respectively. Finally, we have not included in the table the leptoquarks

R̃2 = (3, 2, +1/6) and Ṽ2 = (3, 2, −1/6) because they only contribute to scalar and tensor

operators with right-handed neutrinos which are not considered in this work, as argued in

section 2.1.
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2.3 Form factors

The hadronic matrix elements in the b → c decay amplitudes are parameterized in terms

of the following form factors,

〈D(k)|c̄γµb|B̄(p)〉 = (p+ k)µf+(q
2) + (p− k)µ

m2
B −m2

D

q2
(f0(q

2)− f+(q
2)),

〈D(k)|c̄b|B̄(p)〉 =
m2
B −m2

D

mb −mc
f0(q

2),

〈D(k)|c̄σµνb|B̄(p)〉 =
2ifT (q

2)

mB +mD
(kµpν − pµkν),

〈D(k)|c̄σµνγ5b|B̄(p)〉 =
2fT (q

2)

mB +mD
ǫµναβkαpβ ,

〈V (k, ǫ)|c̄γµb|P (p)〉 =
2iV (q2)

mP +mV
ǫµναβǫ∗νkαpβ ,

〈V (k, ǫ)|c̄γ5b|P (p)〉 = − 2mV

mb +mc
A0(q

2)ǫ∗ · q,

〈V (k, ǫ)|c̄γµγ5b|P (p)〉 = 2mVA0(q
2)
ǫ∗ · q
q2

qµ + (mP +mV )A1(q
2)

(

ǫ∗µ − ǫ∗ · q
q2

qµ
)

−A2(q
2)

ǫ∗ · q
mP +mV

(

(p+ k)µ − m2
P −m2

V

q2
qµ
)

〈V (k, ǫ)|c̄σµνb|P (p)〉 =
ǫ∗ · q

(mP +mV )2
T0(q

2)ǫµναβpαkβ

+T1(q
2)ǫµναβpαǫ

∗

β + T2(q
2)ǫµναβkαǫ

∗

β ,

〈V (k, ǫ)|c̄σµνγ5b|P (p)〉 =
iǫ∗ · q

(mP +mV )2
T0(q

2)(pµkν − kµpν)

+iT1(q
2)(pµǫ∗ν − ǫ∗µpν) + iT2(q

2)(kµǫ∗ν − ǫ∗µkν), (2.12)

where q = p−k, ǫ0123 = 1, V and P stand for vector mesons (D∗ and J/ψ) and pseudoscalar

mesons (B and Bc), respectively. We take the quark masses in the MS scheme, i.e, mb ≡
mb(mb) = 4.18GeV and mc(mc) = 1.27GeV [88]. Note that the c-quark mass is derived

by the solution of the renormalization group equation for mc(µ) at two-loop order and

αs(µ) with three-loop accuracy [89]. We follow the PDG [88] for the masses of the mesons

relevant in this work.

For the B → D(∗) mode, some of the form factors are taken from Lattice QCD calcula-

tions [90, 91]. The rest are parameterized using heavy-quark effective theory (HQET) [92–

99] whose nuisance parameters are determined by the HFLAV global fits to the B̄ →
D(∗)ℓ−ν̄ data [100]. Our determination of RD and RD∗ differs from that of HFLAV in

the choice of form factors; ours, based on ref. [101], do not include some recent refine-

ments [102–104].

For the Bc → J/ψ form factors, they have been studied in a variety of approaches [105–

115] (for earlier analysis focused on this decay mode see refs. [115–118]). Here we take

V (q2), A0(q
2), A1(q

2) and A2(q
2) calculated in the covariant light-front quark model [110]

– 6 –
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because these results are well consistent with the lattice results at all available q2 points

in refs. [113, 114]. The three tensor form factors can be related through the corresponding

HQET form factor hA1(ω) at leading order in the heavy-quark expansion,

A1(ω) = (ω + 1)

√
mBc

mJ/ψ

mBc
+mJ/ψ

hA1(ω), T0(ω) = O(Λ/mQ),

T1(ω) =
√

mJ/ψ/mBc
hA1(ω) +O(Λ/mQ), T2(ω) =

√

mBc
/mJ/ψhA1(ω) +O(Λ/mQ),

(2.13)

with ω = υJ/ψ · υBc
= (m2

Bc
+m2

J/ψ − q2)/(2mBc
mJ/ψ) and where we have neglected the

Λ/mQ power corrections.

2.4 Statistical method

We follow a frequentist statistical approach to compare the measured values of nexp ob-

servables, ~Oexp, to their theoretical predictions ~Oth as functions of the Wilson coefficients

~ǫ, and of nuisance theoretical parameters ~y. The nuisance parameters parameterize the

lack of knowledge (theoretical uncertainties) of the form factors. For the B → D(∗) decays,

we employ the parametrization and numerical inputs (including correlations) described in

ref. [101]. For the Bc → J/Ψ decays we parameterize the theoretical errors reported for

the form factors in ref. [110] as uncorrelated nuisance parameters. We then define a test

statistic

χ̃2(~ǫ, ~y) = χ2
exp(~ǫ, ~y) + χ2

th(~y), (2.14)

where

χ2
exp(~ǫ, ~y) = [ ~O th(~ǫ, ~y)− ~O exp]T · (V exp)−1 · [ ~O th(~ǫ, ~y)− ~O exp],

χ2
th(~y) = (~y − ~y0)

T · (V th)−1 · (~y − ~y0), (2.15)

~y0 are a set of central values for the nuisance parameters, and V exp and V th denote the

experimental and theoretical covariance matrices, respectively. By adding the theory term

χ2
th we have in effect (from a statistical point of view) added nth (correlated) “measure-

ments” of the nth theory parameters to the nexp measurements of the observables.

We will consider scenarios (statistical models) with different subsets of the Wilson

coefficients allowed to vary and the remaining ones set to zero, and with various subsets

of the experimental observables included. In each case, we obtain best-fit values for the

model parameters, including the nuisance parameters, by minimizing χ2. To do so, in a

first step we construct a profile-χ2 function

χ2(~ǫ) = min
~y

χ̃2(~ǫ, ~y), (2.16)

which depends solely on the subset of Wilson coefficients allowed to take nonzero values

in a particular scenario, which we again refer to as ~ǫ. (Note that in the case of a single

measurement of an observable whose theoretical expression depends linearly on a single

– 7 –
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theory nuisance parameter y, such that y−y0 is proportional to the theoretical uncertainty,

the profiling reproduces the widely employed prescription of combining theoretical and

experimental errors in quadrature.) In a second step, we minimize χ2(~ǫ) over ~ǫ; the value(s)

of ~ǫ at the minimum χ2
min provide(s) the best fit (maximum likelihood fit).

Next, we compute a p-value to quantify the goodness of fit, i.e. how well a given scenario

can describe the data. We will assume that χ2(~ǫ) follows a χ2-distribution with ndof =

nexp − nǫ degrees of freedom, where nǫ is the number of parameters allowed to vary in a

given fit. Note that the theory parameters do not contribute to ndof because χ
2
th contains as

many “measurements” as theory parameters. In each scenario, the p-value is obtained from

χ2
min as one minus the cumulative χ2 distribution for ndof degrees of freedom. To illustrate

this, let us consider only the χ2
exp including RD and RD∗ and ask how well the SM describes

these data. For simplicity, let us neglect theory errors altogether (they will be included in

the following section, with little impact on the result), taking the SM prediction to be the

central values employed by HFLAV2019, RSM,HFLAV
D = 0.299 and RSM,HFLAV

D∗ = 0.258. In

this case, there are no parameters to minimize over and χ2 is simply a number. This is easily

obtained from the HFLAV2019 averages and correlation shown in table 1, substituting the

SM values for the observables, which gives ∆χ2
SM = ∆χ2(~0) as defined below, and adding a

constant χ2
min = 8.7 as stated by HFLAV.2 Nine measurements entered the combination and

we are determining zero parameters, resulting in ndof = 9. With χ2
SM = χ2(~ǫ = ~0) = 22.8,

this gives a p-value of 6.56 × 10−3 corresponding to 2.72σ, slightly reduced from 3.00σ

obtained in an analogous manner from the HFLAV2018 combination.

Finally, for each one-parameter BSM scenario, we construct ∆χ2(~ǫ) = χ2(~ǫ) − χ2
min

and obtain nσ confidence intervals from the requirement ∆χ2 ≤ n2. Similarly, for each

2-parameter scenario we construct the corresponding ∆χ2 and obtain two-dimensional 1σ

and 2σ regions from the conditions ∆χ2 ≤ 2.3 and ∆χ2 ≤ 6.18, respectively. We also

determine, for each model,

∆χ2
SM = χ2(~0)− χ2

min,

to quantify at what level the SM point is excluded in that model. The
√

∆χ2
SM is converted

to an equivalent number of standard deviations, referred to as the pull PullSM, by employing

the cumulative χ2-distribution with ndof set to 1 or 2, the number of jointly determined

parameters, as appropriate.

Let us close this section by contrasting to the usual approach for comparing the RD
and RD∗ measurements to the SM, as employed by HFLAV. In this approach, the true

values of RD and RD∗ are treated as free parameters, which effectively amounts to a two-

parameter BSM model. In this model, HFLAV obtain an SM pull of 3.08σ. We stress

that this is a statement about how much better than the SM a BSM model can potentially

describe the data. It is conceptually analogous to the pulls in our two-parameter Wilson

coefficient fits. (In fact, we will find in the next section a slightly higher pull for two of our

1-parameter models. This comes about because a given ∆χ2 value implies a lower p-value

(higher number of standard deviations) when determining a single parameter as opposed

2By adding χ2
min we are taking into account the goodness of the HFLAV fit to the different measurements

of R
D(∗) which is needed to obtain an accurate estimate of the p-values.
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Tensor Vector

Scalar-

Tensor

SM

Figure 1. Trajectories in the (RD, RD∗) plane of predicted deviations from the SM due to NP

where the arrows indicate the direction of positive increment of the WCs as defined in eq. 2.1.

“Vector” corresponds to either ǫτL or ǫ̃R
τ while “tensor” and “scalar-tensor” correspond to ǫτT and

ǫτSL
= −4ǫτT , respectively, at µ = 1TeV and evolved down to µ = mb using eq. (2.2). The gray,

blue and red solid ellipses are the 1σ contours of the 2018 HFLAV average, the Belle measurement

with semileptonic tag, and of the combination of the two, respectively. Red dot-dashed ellipses are

2σ and 3σ contours of the combination.

to joint determination of two parameters.) Conversely, our SM p-values are a statement

how well the SM describes the data, without reference to any comparator BSM model. As

we have seen, the data is marginally consistent with the SM at 3σ, little changed from

2018. As we will see in the subsequent sections, the impact of the new Belle data on the

best-fit values in BSM scenarios is much stronger.

3 Results

In this section, we investigate the values of the WCs determined by fitting to the exper-

imental data of RD, RD∗ , RJ/ψ, P
D∗

τ and FD
∗

L given in table 1. We also discuss the

constraints on scalar operators derived from the limits Br(Bc → τν) ≤ 30%(10%) which

are obtained using the Bc lifetime [81] (LEP searches of the decays B(c) → τν [82]). Note

that these limits have been critically discussed in refs. [58, 119, 120]. Finally, an upper

bound on the values of the WCs can be derived from the tails of the monotau signature

(pp → τhX+MET) at the LHC [83, 121, 122] (see below). We will perform fits to two

types of dataset: RD(∗) only, as well as to the full dataset in table 1 including in addition

RJ/ψ and the polarization observables.

3.1 Fits to RD(∗) only

In figure 1 we show the “trajectories” representing the correlated impact on RD and RD∗

of NP scenarios where only a single operator is present at a certain scale. Namely, the
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Best fit χ2
min p-value PullSM 1σ range

ǫτL 0.07 9.00 0.34 3.43 (0.05, 0.09)

ǫτT −0.03 9.85 0.28 3.30 (−0.04,−0.02)

ǫτSL
0.09 19.14 1.41× 10−2 1.27 (0.02, 0.15)

ǫτSR
0.13 15.84 4.47× 10−2 2.22 (0.07, 0.20)

ǫ̃τR 0.38 9.00 0.34 3.43 (0.32, 0.44)

ǫτSL
= −4ǫτT 0.09 12.25 0.14 2.92 (0.06, 0.12)

(ǫτSL
, ǫτT ) (0.07,−0.03) 8.7 0.27 3.03 ǫτSL

∈ (0.00, 0.14) ǫτT ∈ (−0.04,−0.02)

(ǫτSL
, ǫτSR

) (−0.47, 0.53) 8.7 0.27 3.03 ǫτSL
∈ (−0.66,−0.30) ǫτSR

∈ (0.37, 0.69)

(ǫτSR
, ǫτT ) (0.07,−0.03) 8.7 0.27 3.03 ǫτSR

∈ (0.00, 0.14) ǫτT ∈ (−0.04,−0.02)

(ǫτL, ǫ
τ
T ) (0.05,−0.01) 8.7 0.27 3.03 ǫτL ∈ (0.00, 0.09) ǫτT ∈ (−0.03, 0.01)

(ǫτL, ǫ
τ
SL

) (0.08,−0.04) 8.7 0.27 3.03 ǫτL ∈ (0.05, 0.10) ǫτSL
∈ (−0.13, 0.04)

(ǫτL, ǫ
τ
SR

) (0.08,−0.05) 8.7 0.27 3.03 ǫτL ∈ (0.05, 0.11) ǫτSR
∈ (−0.15, 0.04)

Table 3. Best fit values, χ2
min, p-value, pull and 1σ confidence intervals of the WCs in the fits

to all the RD(∗) data. We perform fits to one or two WCs at a time with the understanding that

the others are set to 0. For the cases of two Wilson-coefficient fits, the 1σ interval of each Wilson

coefficient is obtained by profiling over the other one to take into account their correlation.

“vector” curve is followed by scenarios with new pure left-handed (ǫτL) or pure right-handed

(ǫ̃R
τ ) currents (which are not affected by short distance QCD corrections). “Tensor” and

“scalar-tensor” interpretations involve both ǫτT and ǫτSL
coupled by the radiative corrections

in the SM, cf. eq. (2.2). The tensor trajectory describes a solution with only the tensor

operator produced at the heavy scale (cf. produced by the combination of S1- and R2-

leptoquark contributions described in section 2.2), that we take to be 1TeV. The scalar-

tensor description assumes the relation ǫτSL
(1 TeV) = −4ǫτT (1 TeV), again, at the heavy

scale (cf. produced by the S1 leptoquark). The arrows in the curves signal the direction

of positive increment of the WCs. The experimental data in table 1 is represented by the

different ellipses: the gray one is the 1σ contour of the 2018 HFLAV average, the blue

ellipse is the 1σ region of the 2019 Belle measurement with semi-leptonic tag and, finally,

the red ellipses are the 1σ, 2σ and 3σ contours of the combination of these two.

The interference of the SM with left-handed or scalar-tensor contributions can produce

a simultaneous increase of RD and RD∗ , as illustrated in figure 1 by the positive slope of

the corresponding curves at the SM point. This effect drives these solutions to agree well

with the 2018 HFLAV average. In case of the tensor scenario, interference with the SM

increases RD at the expense of reducing RD∗ or vice versa. This effect is illustrated by the

negative slope of the “Tensor” curve in figure 1. Therefore, the agreement of this scenario

with the older data set is due to the quadratic contributions of the tensor operator to the

rates. With the new Belle measurement, RD becomes more consistent with the SM while

a value of RD∗ larger than predicted is still favored. In this new scenario, “vector” models

still agree with the data but now the interference of the tensor operator with the SM can

play a role in providing a satisfactory solution.

In table 3 we show the results of fits to all the data on RD(∗) of one or two WCs at

a time, while setting the others to zero. In the two-dimensional case we only investigate

– 10 –
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χNP,min2

χSM2

ϵLτ ϵTτ ϵ~Rτ ϵSLτ ϵSRτ

4σ
3σ
2σ
1σ

-1 -0.5 0 0.5 1
1

10

100

ϵ
i

τ

χ2

Figure 2. The χ2 of the fits to RD and RD∗ with one Wilson coefficient active at a time (setting

the others to 0) and evaluated at the renormalization scale µ = mb. The solid lines correspond to

the fits to the 2019 HFLAV average. Horizontal lines show the value at the minima of the model

giving the best fit (vector scenario) and the 1σ to 4σ ranges computed from there. We also show

the line corresponding to the value of χ2
SM. The dashed lines correspond to the fits to the 2018

HFLAV average. Faded regions for ǫτSL
and ǫτSR

represent a exclusion of 30% limit on Br(Bc → τν).

the interplay between operators with left-handed neutrinos. Setting all WCs to zero, one

obtains a χ2
SM = 20.75. With 9 degrees of freedom (d.o.f.) this corresponds to a p-value

of 1.38× 10−2. As can be inferred from the table, the “vector” operators provide the best

one-parameter fit to the data, with a p-value of 0.34 and a SM pull of 3.43σ. The difference

in size of the values of the WCs between the left- and right-handed vector solutions is due

to the fact that the latter corresponds to a quadratic NP effect in the rates.

The tensor operator also gives a good fit to the data, where the solution driven by

the interference piece is now preferred. Scalar models do not provide good fits and require

values that may be in conflict with the bounds from Bc → τν. In figure 2 we show the

functions χ2 of the one-parameter fits for each of the WCs. We also show in dashed lines the

results obtained from the fits to the 2018 HFLAV average, to emphasize the change in the

structure and values of the WCs needed with the new data. Horizontal lines showing the

values of the 1- to 4σ ranges have been computed taking the best model (vector operators)

giving χ2
min = 9.00 as reference.

In figure 3 we show the contour plots that are obtained from each of the six two-

dimensional fits to the 2019 HFLAV averages of RD and RD∗ . In the appendix, table 7,

we provide the correlation matrices for the fits to two WCs. We also show with empty

red contours the results of the fits to the 2018 HFLAV averages. Black empty contours

represent the 2σ upper limits that can be set by analyzing the tails of pp→ τX+MET at

the LHC (solid line) and by estimating the projected sensitivity at the HL-LHC (dashed

line) [83].
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Figure 3. Constraints from the fits to RD and RD∗ with two WCs active at a time (setting the

others to 0) and evaluated at the renormalization scale µ = mb. Solid ellipses (empty red ellipses)

represent 1σ and 2σ allowed regions from the fits to all the data (2018 HFLAV average). The

empty black solid (dashed) ellipses indicate the 2σ upper bounds from the LHC data (HL-LHC

projections) on pp→ τhX+MET. Regions in gray and light gray represent 30% and 10% exclusion

limits from Br(Bc → τν), respectively.

Adding the new Belle data in the fit results in regions which are slightly closer to the

SM, although all NP scenarios still describe the data better with a significance of 3.03σ.

As expected, constraints from Br(Bc → τν) play an important role in excluding regions of

the parameter space of the scalar models. For instance, in case of the pure scalar fit, with

(ǫτSL
, ǫτSR

), the 1σ region is almost excluded by the softer limit based on the Bc lifetime.

Even the 2σ region is also excluded if the more aggressive limit of 10% on Br(Bc → τν)

is used. Constraints in the (ǫτSL
, ǫτT ) plane are interesting for UV completions involving

S1 and R2 leptoquarks. In this scenario, data favors the parameter space in which the

two WCs have the opposite sign, like the contribution of the S1 and unlike the one of
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the R2, cf. eqs. (2.7) and eq. (2.9). A fit with the scalar-tensor contribution produced

by the S1 leptoquark (evaluated at µ = 1TeV) gives a fit with a p-value 0.15 that is

considerably better than for the SM. However, this scenario performs worse than those

with pure left-handed or tensor operators. Constraints in the (ǫτL, ǫ
τ
SR

) plane are interesting

for UV completions of the U1 leptoquark involving left- and right-handed currents to the

fermions [37, 42, 47, 48].

The LHC data also probes the parameter space of the preferred regions in the different

scenarios. As already anticipated in [83], scenarios involving large quadratic contributions

of the tensor operator are excluded by more than 2σ. Furthermore, the current LHC

exclusion region independently covers a large portion of the 1σ ellipse in the pure scalar

scenario and all the parameter space of the 2σ region will be probed by the HL-LHC.

In fact, with the high-luminosity data set we should be able to probe all the interesting

regions in all the scenarios, although less deeply than for the results of the fits to the 2018

HFLAV average.

A potential caveat concerning the interpretation of these LHC bounds is that their

validity relies on the assumption that the NP scale is significantly larger than the partonic

energies probing the effective interaction in the pp→ τν collisions at the LHC. In ref. [83]

this was studied by assessing the sensitivity to NP of the distribution in the tau transverse-

mass, mT , of the pp→ τhX+MET analyses [121, 122]. Most of the sensitivity of the LHC

stems from mT . 2TeV and, for mediator masses above this mark, the EFT provides a

faithful description of the NP signal. By taking the central values of the one-parameter fits

shown in table 3, and assuming O(1) couplings in eqs. (2.5), (2.7), (2.9) and (2.11) we find

that the masses of the putative new mediators are mS1 ≃ 2.3TeV, mU1 ≃ 3.3TeV for left-

handed current couplings and approximately a factor two lighter for right-handed current

couplings, cf. mW ′ ≃ 1.4TeV. For the tensor scenario, mS1 ≃ mR2 ≃ 2.3TeV. Therefore,

in the comparison with the LHC bounds shown figure 3 we are implicitly assuming that

the mediators are in this regime of couplings and masses.

Extending the comparison to the right-handed currents, the value ǫ̃τR = 0.38(6) ob-

tained in the fit would still be challenged by the bound |ǫ̃τR| ≤ 0.32 at 2σ resulting from the

collider analysis in the EFT. Turning to explicit UV completions in the range of masses

below 2TeV, LHC bounds are stronger than the EFT counterpart for the W ′ but weaker

for the leptoquarks [83].3

Finally, in our fits we have assumed real WCs, but is clear from section 2.2 that

these are generally complex. The imaginary part of WCs does not interfere with the

leading, SM contribution. Hence it is expected that fits with purely imaginary WCs are

susceptible to bounds from, eg, the rate Bc → τν. This is particularly the case for scalar

WCs, that require large magnitude of WCs to account for RD(∗) . For example, in the left

panel of figure 4 we show the fit of the complex WC ǫSL
with best fit value located at

ǫSL
= −0.88 ± 0.74 i and where the 2σ C.L. region is excluded by the Bc lifetime and

LHC constraints. However, in some cases allowing a complex phase may improve a WC

3For a reanalysis of the impact of the 2019 Belle data in the collider bounds using the monotau searches

in the models addressing the R
D(∗) anomalies see [123].
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Figure 4. Constraints from the fits to RD and RD∗ on the complex ǫτSL
plane evaluated at the

renormalization scale µ = mb: Left: all WCs other than ǫτSL
are set to 0; Right: the condition

ǫτSL
= 4ǫτT is imposed at the matching scale µ = MR2

=1TeV, as in the R2-mediator model, and

all WCs other than ǫτSL
and ǫτT are set to 0. Solid regions (empty red regions) represent 1σ and 2σ

allowed regions from the fits to the 2019 (2018) HFLAV average of RD(∗) data. The empty black

solid (dashed) ellipses indicate the 2σ upper bounds from the LHC data (HL-LHC projections) on

pp → τhX+MET. Regions in gray and light gray represent 30% and 10% exclusion limits from

Br(Bc → τν), respectively.

Best fit χ2
min p-value PullSM 1σ range

ǫτL 0.07 14.56 0.20 3.46 (0.05, 0.09)

ǫτT −0.03 15.70 0.15 3.29 (−0.04,−0.02)

ǫτSL
0.08 25.23 8.44× 10−3 1.14 (0.01, 0.14)

ǫτSR
0.14 21.24 3.10× 10−2 2.30 (0.08, 0.20)

(ǫτSL
, ǫτT ) (0.07,−0.03) 14.75 0.14 3.00 ǫτSL

∈ (0.00, 0.13) ǫτT ∈ (−0.04,−0.02)

(ǫτSL
, ǫτSR

) (−0.51, 0.56) 12.14 0.28 3.37 ǫτSL
∈ (−0.69,−0.34) ǫτSR

∈ (0.41, 0.73)

(ǫτSR
, ǫτT ) (0.08,−0.03) 14.38 0.16 3.05 ǫτSR

∈ (0.01, 0.14) ǫτT ∈ (−0.04,−0.02)

(ǫτL, ǫ
τ
T ) (0.05,−0.01) 14.32 0.16 3.06 ǫτL ∈ (0.01, 0.10) ǫτT ∈ (−0.03, 0.01)

(ǫτL, ǫ
τ
SL

) (0.08,−0.06) 14.09 0.17 3.09 ǫτL ∈ (0.06, 0.10) ǫτSL
∈ (−0.14, 0.03)

(ǫτL, ǫ
τ
SR

) (0.08,−0.05) 14.33 0.16 3.06 ǫτL ∈ (0.05, 0.11) ǫτSR
∈ (−0.14, 0.05)

Table 4. Best fit values, χ2
min, p-value, pull and 1σ confidence intervals of the WCs in the fits to

all the data in RD, RD∗ , RJ/ψ, P
D∗

τ and FD
∗

L . We perform fits to one or two WCs at a time with

the understanding that the others are set to 0. For the cases of two WC fits, to take into account

correlation between the two WCs, the 1σ interval of each WC is obtained by profiling over the

other WC.

fit. An interesting example is that of the combination ǫτSL
= 4ǫτT that is the case of the

R2 leptoquark mediator, eq. (2.9); the right panel of figure 4 shows the constraints on

the complex ǫτSL
(µ = mb) plane, with best fit point at ǫSL

= −0.08 ± 0.30 i, and having

imposed the condition ǫτSL
= 4ǫτT at the matching scale µ =MR2 = 1 TeV.4

4Complex coefficients for a model based on R2 were considered in ref. [43].
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Figure 5. Constraints in the WCs planes from the fits to all the data in RD and RD∗ , and to RJ/ψ,

PD
∗

τ and FD
∗

L setting two WCs to zero. The solid ellipses represent 1σ and 2σ allowed regions while

the empty black solid (dashed) ellipses indicate the 2σ upper bounds from the LHC data (HL-LHC

projections) on pp→ τhX+MET. Regions in gray and light gray represent 30% and 10% exclusion

limits from Br(Bc → τν), respectively.

3.2 Fits to RD, RD∗, RJ/ψ, P
D∗

τ and F
D∗

L data

In this section, we perform a global fit of ǫτL, ǫ
τ
T , ǫ

τ
SL

and ǫτSR
to all the data including RD

and RD∗ , RJ/ψ, P
D∗

τ and FD
∗

L . We implement the LHC monotau constraints by demanding

that the WCs are within the corresponding 2σ bounds, i.e., we take |ǫτL| ≤ 0.32, |ǫτT | ≤ 0.16,

|ǫτSL
| ≤ 0.57 and |ǫτSR

| ≤ 0.57. In addition, we impose the constraint from the Bc lifetime

by requiring that Br(Bc → τν) ≤ 30%. One obtains a χ2
min,SM = 26.53 with 12 degrees of

freedom (d.o.f) if all the WCs are set to 0, corresponding to a p-value of 9.02× 10−3. The
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Best fit 1σ range 2σ range 3σ range

ǫτL 0.16 (−0.04, 0.36) (−0.41, 0.42) (−0.45, 0.47)

ǫτT 0.05 (−0.04, 0.14) (−0.14, 0.18) (−0.15, 0.23)

ǫτSL
−0.33 (−0.54,−0.12) (−1.07, 0.57) (−1.11, 0.76)

ǫτSR
0.14 (−0.08, 0.36) (−1.27, 0.57) (−1.34, 0.62)

Table 5. Different confidence-level intervals of the WCs in the fits to all the data in RD, RD∗ ,

RJ/ψ, P
D∗

τ and FD
∗

L , obtained from the profile χ2 where the rest of WCs are minimized within the

2σ LHC mono-tau bound. We have also applied the 30% bound on Br(Bc → τν).

resulting WCs from the fit are,










ǫτL
ǫτT
ǫτSL

ǫτSR











=











0.16± 0.20

0.05± 0.09

−0.33± 0.21

0.14± 0.22











, (3.1)

with the correlation matrix,

ρ =











1.000 0.816 0.913 −0.915

1.000 0.951 −0.920

1.000 −0.986

1.000











, (3.2)

and where χ2
min = 12.80 for 8 d.o.f., corresponding to a p-value of 0.12 and a PullSM = 2.64.

This provides an approximation of the χ2
min in the immediate vicinity of the minimum that

is closest to the SM, although it is not appropriate to obtain realistic confidence-level re-

gions. For instance, the 1σ intervals may seem to violate the LHC bounds described above.

In order to investigate this in more detail we perform, first, fits of two WCs to RD and

RD∗ , RJ/ψ, P
D∗

τ and FD
∗

L setting the others to 0. This allows one to compare to the results

of the two-parameters fits to RD and RD∗ presented in section 3.1. The corresponding six

possible combinations of two WCs fits are shown in figure 5 and the results of the fits are

shown in table 4. In the appendix, table 8, we provide the correlation matrices for these

fits. As compared with figure 3, one notes that although not precise, the data RJ/ψ, P
D∗

τ

and FD
∗

L is sensitive enough to exclude the same regions allowed at 2σ by the fit to RD(∗)

independently excluded by the LHC monotau signature or Bc → τν (see also ref. [124]).

However, for the favored regions of the fits closer to the SM the addition of the current

data on these observables has a small impact.

Finally, in order to obtain realistic confidence-level regions with the four active WCs

we obtain profile likelihoods functions depending on one or two WCs at a time. The

monotau LHC constraints and the Bc lifetime bound are implicitly imposed when profiling

over the other “nuisance” WCs in each case. In figure 6, we show the results of the fits as

constraints in the six two-WCs plots. In table 5 we show the final 1σ, 2σ and 3σ confidence-

level intervals for the WCs. The 1σ intervals are consistent with those obtained from the

fit in eq. (3.1), while the 2σ and 3σ intervals differ from those obtained using the gaussian

approximation of the χ2.
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Figure 6. Constraints in the WCs planes from the fits to all the data in RD, RD∗ , RJ/ψ, P
D∗

τ

and FD
∗

L profiling over the other WCs. The solid ellipses represent 1σ and 2σ allowed regions while

the empty black solid (dashed) ellipses indicate the 2σ upper bounds from the LHC data (HL-LHC

projections) on pp→ τhX+MET. Note that we have considered the 30% bound on Br(Bc → τν).

3.3 The sensitivity of observables to New Physics

As shown above, different NP scenarios currently give a good description of the data, so the

natural question is which other observables, beyond RD and RD∗ , allow one to discriminate

among them. Only total rates are sensitive to the effects from the vector operators as their

effects cancel in normalized observables. On the other hand, scalar and tensor operators

change the kinematic distributions of the decays and show up in observables such as tau

and recoiling-hadron polarizations (if the latter carries spin), q2-distribution of the rate or

angular analyses.
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Figure 7. Dependence of all the observables on q2 in the SM (red-solid lines) and the NP scenarios

ǫτT = −0.03 (blue dotted lines), (ǫτSL
, ǫτT ) = (0.07,−0.03) (green dashed lines) and (ǫτL, ǫ

τ
SR

) =

(0.08,−0.05) (purple dot-dashed lines). Shaded area around SM curves represent the uncertainties

of the SM predictions.

In figure 7, we study the q2 spectra of RD(∗) and of a selection of polarization and angu-

lar observables5 showing their sensitivity to NP. We select scenarios that can be motivated

by UV completions such as those involving scalar-tensor or vector-scalar combinations

of operators, and we also study the tensor scenario. The values of the WCs are fixed

to the results of the fits to the RD(∗) data, i.e, ǫτT = −0.03, (ǫτSL
, ǫτT ) = (0.07,−0.03),

(ǫτL, ǫ
τ
SR

) = (0.08,−0.05). In table 6 we show the results of these observables integrated

over the whole kinematic region for the SM and the different NP scenarios considered. In-

5All of them have been defined in section 1, except the tauonic forward-backward asymmetry,

AFB =

∫ 1

0
dΓ

d cos θ
d cos θ −

∫ 0

−1
dΓ

d cos θ
d cos θ

∫ 1

−1
dΓ

d cos θ
d cos θ

, (3.3)

which is independent of overall normalization [125].
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Observables SM ǫτT = −0.03
(ǫτSL

, ǫτT ) (ǫτL, ǫ
τ
SR

) (ǫτL, ǫ
τ
T , ǫ

τ
SL
, ǫτSR

)

= (0.07,−0.03) = (0.08,−0.05) = (0.16, 0.05,−0.33, 0.14)

RD 0.312+0.019
−0.018 0.303+0.019

−0.018 0.340+0.023
−0.021 0.339+0.020

−0.018 0.343+0.017
−0.016

PDτ 0.338+0.033
−0.034 0.358+0.033

−0.034 0.427+0.032
−0.032 0.288+0.034

−0.034 0.117+0.033
−0.033

ADFB −0.358+0.003
−0.003 −0.344+0.004

−0.003 −0.334+0.005
−0.004 −0.363+0.002

−0.002 −0.383+0.002
−0.001

RD∗ 0.253+0.004
−0.004 0.293+0.004

−0.004 0.291+0.004
−0.003 0.293+0.004

−0.004 0.297+0.009
−0.008

PD
∗

τ −0.505+0.024
−0.022 −0.477+0.020

−0.019 −0.487+0.019
−0.017 −0.513+0.023

−0.021 −0.430+0.042
−0.041

AD
∗

FB 0.068+0.013
−0.013 0.030+0.012

−0.012 0.038+0.012
−0.012 0.073+0.013

−0.013 0.083+0.017
−0.016

FD
∗

L 0.455+0.009
−0.008 0.444+0.008

−0.007 0.440+0.007
−0.007 0.452+0.008

−0.008 0.497+0.015
−0.014

RJ/ψ 0.248+0.003
−0.003 0.291+0.004

−0.004 0.289+0.004
−0.004 0.288+0.004

−0.004 0.284+0.003
−0.003

P
J/ψ
τ −0.512+0.011

−0.010 −0.481+0.009
−0.008 −0.490+0.008

−0.008 −0.519+0.010
−0.010 −0.453+0.020

−0.019

A
J/ψ
FB 0.042+0.006

−0.006 0.007+0.006
−0.006 0.013+0.006

−0.006 0.046+0.006
−0.006 0.061+0.007

−0.007

F
J/ψ
L 0.446+0.003

−0.003 0.434+0.003
−0.003 0.430+0.002

−0.002 0.443+0.003
−0.003 0.490+0.005

−0.005

Table 6. Predictions in the SM and different NP scenarios for binned observables integrating over

the whole kinematic regions.

terestingly, none of the preferred scenarios with up to two WCs can satisfactorily describe

the Belle measurement of FD
∗

L along with the experimental enhancements reported in RD
and RD∗ .

From the plots in figure 7 and predictions in table 6, one concludes that a clear pat-

tern emerges in these observables for the different NP scenarios currently favored by the

data, although high precision measurements will be required to discriminate among them.

The most sensitive ones for this purpose turn out to be the tau polarization and forward-

backward asymmetry of the B → Dτν decay mode. Interestingly, with the 50 ab−1 ex-

pected to be collected by Belle II a relative statistical uncertainty better than ∼ 10% has

been estimated for these observables integrated over the whole q2 region [125].

4 Summary and outlook

In this work, we have studied in detail the status of the new-physics interpretations of

the b → cτν anomalies after the addition of the Belle measurements of RD(∗) using the

semileptonic tag and FD
∗

L to the data set. We perform two types of fits: first, we fit with

one and two parameters (Wilson coefficients) to the 2019 HFLAV average of RD and R∗

D

with particular attention to the evolution of the preferred scenarios with the new data

and to the consistency with the upper bounds that can be derived from the lifetime of the

Bc meson and the pp → τhX+MET signature at the LHC. The main conclusion is that

NP interpretations driven by left-handed currents and tensor operators are favored by the

data with a significance of ∼ 3.5σ with respect to the SM hypothesis. Solutions based

on pure right-handed currents remain disfavored by the LHC data while scenarios with

that only have scalar contributions are in conflict with both, the LHC and the Bc-meson

experimental inputs. In fact, the LHC upper bounds currently exclude large regions of
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the parameter space allowed by the RD(∗) data, and in the high-luminosity phase it should

start probing all the interesting regions.

We also perform a second global fit of all the NP operators with (left-handed neutri-

nos) to the RD(∗) data, RJ/Ψ, F
D∗

L and PD
∗

τ . The main effect of the added observables, in

particular of FD
∗

L , is to exclude the regions involving large values of the WCs, in comple-

mentarity with the upper LHC bounds. Otherwise, the favored regions by the global fits

are equivalent to the ones resulting from the fit to RD(∗) .

A caveat to our conclusions is that the LHC bounds derived from the analysis in

terms of effective operators are not applicable if the mass scale of the new mediators they

correspond to is lighter than ∼ 2TeV. Scenarios based on S1 and U1 leptoquarks coupled

to right-handed neutrinos remain challenged by the monotau signature at the LHC except

for the mass range which is being independently probed by pair-production at the LHC.

A S1 leptoquark producing a scalar-tensor scenario does not provide a solution as optimal

as with the 2018 HFLAV average, whereas in combination with the R2 leptoquark it can

provide the optimal tensor scenario. The R2 leptoquark alone can also explain the data

successfully when the couplings take complex values and, interestingly, its detection should

be at reach in the HL-LHC. Best solutions are incarnated by the S1 and U1 leptoquarks

with pure left-handed couplings, possibly in combination with right-hand currents in the

latter case.

Finally, we investigate the sensitivity of different observables to NP. We find that the

tau polarization in the B → Dτν decay is sensitive to the various scenarios favored by the

data. Interestingly, Belle II could achieve a precision in this observable that would provide

discriminating power among them.
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A Uncertainties and correlations of the two-dimensional fits

In tables 7 and 8 we provide the correlation matrices for the two-parameter fits to the 2019

HFLAV average of RD and RD(∗) , table 3, and to all the observables, table 4.
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1σ uncertainty ρ

(ǫτSL
, ǫτT ) (±0.10,±0.01) 0.079

(ǫτSL
, ǫτSR

) (±0.27,±0.25) −0.925

(ǫτSR
, ǫτT ) (±0.10,±0.02) 0.275

(ǫτL, ǫ
τ
T ) (±0.07,±0.03) 0.896

(ǫτL, ǫ
τ
SL

) (±0.04,±0.13) −0.496

(ǫτL, ǫ
τ
SR

) (±0.04,±0.14) −0.733

Table 7. The 1σ uncertainty and correlation ρ for two WC fits in table 3.

1σ uncertainty ρ

(ǫτSL
, ǫτT ) (±0.10,±0.02) 0.070

(ǫτSL
, ǫτSR

) (±0.26,±0.24) −0.921

(ǫτSR
, ǫτT ) (±0.10,±0.02) 0.256

(ǫτL, ǫ
τ
T ) (±0.07,±0.03) 0.891

(ǫτL, ǫ
τ
SL

) (±0.04,±0.12) −0.487

(ǫτL, ǫ
τ
SR

) (±0.04,±0.15) −0.732

Table 8. The 1σ uncertainty and correlation ρ for two WC fits in table 4.
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[28] S. Fajfer and N. Košnik, Vector leptoquark resolution of RK and RD(∗) puzzles, Phys. Lett.

B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].

– 22 –

https://doi.org/10.1103/PhysRevD.97.072013
https://doi.org/10.1103/PhysRevD.97.072013
https://arxiv.org/abs/1711.02505
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02505
https://doi.org/10.1103/PhysRevLett.120.121801
https://arxiv.org/abs/1711.05623
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.05623
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://arxiv.org/abs/1607.00299
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00299
https://doi.org/10.1007/JHEP07(2017)102
https://arxiv.org/abs/1703.06019
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.06019
https://doi.org/10.1016/j.physletb.2018.01.073
https://arxiv.org/abs/1711.09525
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.09525
https://doi.org/10.1007/JHEP08(2017)145
https://arxiv.org/abs/1706.01463
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.01463
https://doi.org/10.1007/JHEP01(2019)168
https://arxiv.org/abs/1811.04496
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.04496
https://doi.org/10.1007/JHEP09(2018)169
https://arxiv.org/abs/1804.04642
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.04642
https://doi.org/10.1007/JHEP09(2018)010
https://arxiv.org/abs/1804.04135
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.04135
https://doi.org/10.1007/BF01571294
https://doi.org/10.1007/BF01571294
https://arxiv.org/abs/hep-ph/9411405
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9411405
https://doi.org/10.1007/JHEP01(2013)054
https://arxiv.org/abs/1210.8443
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.8443
https://doi.org/10.1016/j.physletb.2017.05.037
https://arxiv.org/abs/1612.07757
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.07757
https://doi.org/10.1016/j.nuclphysb.2017.10.014
https://doi.org/10.1016/j.nuclphysb.2017.10.014
https://arxiv.org/abs/1708.06176
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.06176
https://doi.org/10.1103/PhysRevD.98.035016
https://doi.org/10.1103/PhysRevD.98.035016
https://arxiv.org/abs/1805.08189
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.08189
https://doi.org/10.1103/PhysRevD.98.115012
https://arxiv.org/abs/1805.04098
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.04098
https://doi.org/10.1103/PhysRevD.88.094012
https://arxiv.org/abs/1309.0301
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0301
https://doi.org/10.1007/JHEP10(2015)184
https://arxiv.org/abs/1505.05164
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05164
https://doi.org/10.1140/epjc/s10052-016-3905-3
https://arxiv.org/abs/1512.01560
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.01560
https://doi.org/10.1103/PhysRevD.92.054018
https://doi.org/10.1103/PhysRevD.92.054018
https://arxiv.org/abs/1506.08896
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.08896
https://doi.org/10.1016/j.physletb.2016.02.018
https://doi.org/10.1016/j.physletb.2016.02.018
https://arxiv.org/abs/1511.06024
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06024


J
H
E
P
1
2
(
2
0
1
9
)
0
6
5

[29] M. Bauer and M. Neubert, Minimal leptoquark explanation for the RD(∗) , RK and (g − 2)g
anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].

[30] X.-Q. Li, Y.-D. Yang and X. Zhang, Revisiting the one leptoquark solution to the R(D(∗))

anomalies and its phenomenological implications, JHEP 08 (2016) 054 [arXiv:1605.09308]

[INSPIRE].

[31] R. Barbieri, C.W. Murphy and F. Senia, B-decay anomalies in a composite leptoquark

model, Eur. Phys. J. C 77 (2017) 8 [arXiv:1611.04930] [INSPIRE].
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constrain explanations of B-decay anomalies, Phys. Rev. Lett. 122 (2019) 131803

[arXiv:1811.07920] [INSPIRE].

– 25 –

https://doi.org/10.1140/epjc/s10052-017-5058-4
https://arxiv.org/abs/1612.07233
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.07233
https://doi.org/10.1016/0550-3213(86)90262-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B268,621%22
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4884
https://doi.org/10.1016/j.physletb.2006.05.079
https://arxiv.org/abs/hep-ph/0603202
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0603202
https://doi.org/10.1016/j.nuclphysb.2009.12.020
https://arxiv.org/abs/0908.1754
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.1754
https://doi.org/10.1103/PhysRevD.92.055018
https://doi.org/10.1103/PhysRevD.92.055018
https://arxiv.org/abs/1505.05804
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05804
https://doi.org/10.1016/j.physletb.2017.07.003
https://arxiv.org/abs/1706.00410
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00410
https://doi.org/10.1007/JHEP09(2017)158
https://doi.org/10.1007/JHEP09(2017)158
https://arxiv.org/abs/1704.06639
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.06639
https://doi.org/10.1007/JHEP01(2018)084
https://arxiv.org/abs/1711.05270
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.05270
https://doi.org/10.1007/JHEP11(2018)191
https://arxiv.org/abs/1806.10155
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.10155
https://doi.org/10.1016/0550-3213(82)90303-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B196,83%22
https://doi.org/10.1103/PhysRevLett.118.011801
https://arxiv.org/abs/1606.00524
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.00524
https://doi.org/10.1007/JHEP09(2017)061
https://arxiv.org/abs/1705.00929
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.00929
https://doi.org/10.1007/JHEP02(2019)119
https://doi.org/10.1007/JHEP02(2019)119
https://arxiv.org/abs/1807.04753
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.04753
https://doi.org/10.1007/JHEP10(2018)092
https://arxiv.org/abs/1807.10745
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.10745
https://arxiv.org/abs/hep-ph/9902311
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9902311
https://doi.org/10.1103/PhysRevLett.118.081802
https://arxiv.org/abs/1611.06676
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.06676
https://doi.org/10.1103/PhysRevD.96.075011
https://arxiv.org/abs/1708.04072
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.04072
https://doi.org/10.1103/PhysRevLett.122.131803
https://arxiv.org/abs/1811.07920
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.07920


J
H
E
P
1
2
(
2
0
1
9
)
0
6
5

[84] D.A. Faroughy, A. Greljo and J.F. Kamenik, Confronting lepton flavor universality

violation in B decays with high-pT tau lepton searches at LHC, Phys. Lett. B 764 (2017)

126 [arXiv:1609.07138] [INSPIRE].

[85] S. Iguro, Y. Omura and M. Takeuchi, Test of the R(D(∗)) anomaly at the LHC, Phys. Rev.

D 99 (2019) 075013 [arXiv:1810.05843] [INSPIRE].

[86] W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in lepton-quark collisions, Phys. Lett.

B 191 (1987) 442 [Erratum ibid. B 448 (1999) 320] [INSPIRE].
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