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Abstract: Flavonoids display a broad range of health-promoting bioactivities. Among these, their
capacity to act as antioxidants has remained most prominent. The canonical reactive oxygen species
(ROS)-scavenging mode of the antioxidant action of flavonoids relies on the high susceptibility of their
phenolic moieties to undergo oxidation. As a consequence, upon reaction with ROS, the antioxidant
capacity of flavonoids is severely compromised. Other phenol-compromising reactions, such as those
involved in the biotransformation of flavonoids, can also markedly affect their antioxidant properties.
In recent years, however, increasing evidence has indicated that, at least for some flavonoids, the
oxidation of such residues can in fact markedly enhance their original antioxidant properties. In such
apparent paradoxical cases, the antioxidant activity arises from the pro-oxidant and/or electrophilic
character of some of their oxidation-derived metabolites and is exerted by activating the Nrf2–Keap1
pathway, which upregulates the cell’s endogenous antioxidant capacity, and/or, by preventing the
activation of the pro-oxidant and pro-inflammatory NF-κB pathway. This review focuses on the
effects that the oxidative and/or non-oxidative modification of the phenolic groups of flavonoids
may have on the ability of the resulting metabolites to promote direct and/or indirect antioxidant
actions. Considering the case of a metabolite resulting from the oxidation of quercetin, we offer a
comprehensive description of the evidence that increasingly supports the concept that, in the case
of certain flavonoids, the oxidation of phenolics emerges as a mechanism that markedly amplifies
their original antioxidant properties. An overlooked topic of great phytomedicine potential is thus
unraveled.
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1. Introduction

Controlling the rates of formation and removal of reactive oxygen species (ROS) is a
dually essential function. On one hand, it is needed to secure the intracellular levels of ROS
required to perform various biological functions, and on the other hand, to prevent exceed-
ing such levels from reaching cytotoxic concentrations [1–5]. When the latter control goal
fails, an oxidative stress condition ensues that, if stringent and sustained, will ultimately
trigger a number of disease-leading molecular events [6,7].

To maintain ROS below deleterious levels, cells are naturally endowed with a se-
ries of enzymes whose functions include the removal of ROS via either dismutation (e.g.,
superoxide dismutase, SOD; catalase, CAT), catabolic (e.g., heme oxygenase-1, HO-1)
or reduction reactions (e.g., glutathione peroxidase, GSHpx; NAD(P)H:quinone oxidore-
ductase 1, NQO1), synthesizing endogenous ROS-scavenging/reducing molecules (e.g.,
reduced glutathione via gamma glutamate-cysteine ligase,
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In addition to this cooperative array of enzyme-based antioxidant defense mecha-
nisms, cells contain a number of non-enzymatically acting antioxidant molecules, of which
reduced glutathione (GSH), ubiquinol, dehydrolipoic acid, melatonin, ferritin, caeruloplas-
min, and metallothioneins are endogenously synthesized [8], while α-tocopherol, ascorbic
acid, carotenoids and phenolics are acquired through dietary sources [9]. Among the latter
molecules, academia and industry have paid a great deal of attention to phenolics, particu-
larly flavonoids, due to their comparatively higher antioxidant capacity and ubiquitous
presence in edible plants [10,11].

2. Flavonoids as Antioxidants

Flavonoids have attracted the attention of biomedical researchers due to their poten-
tial to induce an array of health-promoting biological actions [12–15]. Major support for
the potential health benefits of these compounds initially emerged from epidemiologic
studies conducted in the 1990s. At that point, inverse correlations between the intake of
flavonoid-rich foods and the relative risk of developing certain chronic noncommunica-
ble diseases (NCDs) were established [16–21]. Over the last two decades, however, the
conclusions arising from those population-based studies have gained support through a
number of animal studies, in vitro cell mechanistic investigations and human intervention
studies [19,22–27]. Comprehensive reviews on the health effects of dietary flavonoids have
appeared in recent years [15,28–31].

Near eight thousand flavonoids have been described to date in the plant kingdom [11].
The systematic study of those of dietary origin has led to the development of several reports
and/or databases that inform on their contents in foods and dietary level of consumption,
and their biotransformation and bioavailability [32–35]. From a chemical point of view, the
term flavonoid comprises all those molecules whose structural backbone (a flavan nucleus,
C6–C3–C6, Figure 1) consists of two benzene rings (A and B) that are linked through
three carbon atoms that form a pyran heterocyclic ring (C). This structure allows multiple
patterns and substitutions that give rise to various subclasses of flavonoids, among which
flavonols, flavones, flavanones, flavanols and anthocyanidins can be distinguished. Such
categorization is based on whether the flavan nucleus contains a hydroxyl moiety in C3
(i.e., flavonols, flavanols and anthocyanidins), a keto group in C4 (i.e., flavonol, flavones
and flavanones), a double bond in C2–C3 (i.e., flavonols and flavones), a double bond in
O1–C2 and another in C3–C4 (anthocyanidins).
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In addition to flavonoids, there are isoflavonoids, mainly represented by the isoflavones,
whose structure contains a double bond at C2–C3 and a keto group at C4. Isoflavones differ
from flavonoids in that ring B is attached to C3 instead of C2. Regardless of the subclass,
when the structure of a flavonoid includes one or more hydroxyl groups attached to its
rings A and/or B, it is considered a phenolic compound [36]. Common hydroxylation
points are at positions 5, 7 (A ring), 3′, 4′, 5′ (B ring), and 3 (C ring). Added to the structural
features that define a flavonoid subclass, the number and position of the hydroxyl groups
constitute a major determinant of the physicochemical characteristics and the myriad of bio-
logical actions displayed by these compounds [37,38]. In fact, depending on their structural
particularities, flavonoids can display antioxidant, anti-inflammatory, anti-allergic, anti-
platelet aggregation, anti-atherogenic, anti-angiogenic, anti-allergic, blood vessel-dilating,
lipid-normalizing, antimicrobial and/or anti-hyperglycemic actions [26,39–41]. Among all
bioactivities, the ability of flavonoids to act as antioxidants, namely as molecules capable of
essentially lowering the rate of ROS formation and/or increasing the rate of their removal,
is the only one shared by all flavonoids [42,43].

The ability of flavonoids to act in vitro as antioxidants, which primarily arises from the
phenolic hydroxyls that are attached to the flavonoids’ flavan nucleus, has long been docu-
mented [38,44,45]. Comparatively, lesser but still substantial evidence also exists for the ability
of these compounds to exert some antioxidant actions in vivo. In fact, a number of studies in
humans and animals have revealed that the increase in several markers of biological oxidation
induced by ROS, such as F2-isoprostanes, hydroperoxyoctadecadienoic acids, 8-hydroxy-2′-
deoxyguanosin, oxidized low density lipoprotein, nitrotyrosine and other nitrosylated or
carbonylated amino acids and proteins, can be effectively prevented or ameliorated by the
ingestion of certain flavonoid-rich plant foods or the administration of either flavonoid-rich
extracts or pure flavonoids, as reviewed by several authors [46–49]. The broad recognition of
the latter effects of flavonoids is likely to account for the so generalized and long perception
that “flavonoids act primarily as antioxidant molecules”.

The contribution of flavonoids to the cell’s antioxidant capacity can potentially be exerted
through a number of distinctive mechanisms, as reviewed by several authors [42,50–52]. In
general, however, most studies have drawn their attention to the ability of flavonoids to
interact via their redox-active phenolic moieties with a variety of ROS and/or target molecules
that are implicated in the formation and/or removal of these species. Regardless of the
antioxidant action mechanism of flavonoids, one of the ultimate consequences that such action
will bring to the cells is to prevent oxidative stress or left the cells metabolically better able to
deal with it.

In addition to the changes in the antioxidant capacity of the cell induced by flavonoids
and depending on the mechanism involved, the flavonoid molecule could itself undergo
no changes in its structure or be chemically modified in a manner that could severely affect
its original antioxidant properties. An example of the latter case would be illustrated by
the loss of antioxidant activity suffered by those flavonoids whose actions are exerted by
scavenging/reducing ROS, an operative mechanism that fully depends on the integrity
of the redox-active phenolic moieties present on the flavonoid’s structure [53]. It has been
generally believed that the oxidative consumption of the phenolic moieties implied in the
ROS scavenging/reducing mode of action would necessarily compromise or lead to the
loss of such antioxidant properties of the flavonoid. However, during the last two decades,
considerable evidence has emerged, indicating that, at least for certain flavonoids, the
oxidation of their phenolic moieties would be essential for them to subsequently exert an
antioxidant action [54–56]. Thus, rather than the flavonoid molecule, one (or more) of its
metabolites arising from its oxidation would serve as the actual active antioxidant species.

As we have recently shown [53], the mixtures of metabolites originating from the oxi-
dation of certain flavonoids largely retained rather than lost the ROS scavenging/reducing
properties of their parent molecules. Furthermore, it has been unveiled that in some par-
ticular cases, the flavonoid oxidation mixture contains a type of metabolite that is able
to protect cells against ROS or ROS-inducing agents, with a potency two-to-three orders
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of magnitude higher than that of its precursor flavonoid [57]. This latter evidences the
existence of two apparently contrasting views, one that highlights the need for flavonoids to
occur in their non-oxidized form to be effective as ROS-scavengers and another where their
prior oxidation appears to be fundamental to the retention or even amplification of their
antioxidant action. To address the question of whether the oxidation of a flavonoid leads
to loss, the conservation or enhancement of its antioxidant properties, in this review, we
mostly focused our discussion on studies where, at least for some of these compounds, the
oxidation of (or other forms of compromising) their redox-active phenolic moieties, rather
than eliminating their original antioxidant properties, can operate as a major antioxidant-
activating mechanism.

3. Oxidation and Other Metabolic Reactions Capable of Affecting the Antioxidant
Properties of Flavonoids

The best characterized mechanism of antioxidant action of flavonoids is due to their
ability to interact with ROS by scavenging or reducing them. In this canonical direct
mechanism, the redox-active phenolic moieties of a flavonoid molecule engage with ROS
to a redox reaction where as a consequence of its scavenging action, an electron or a
hydrogen atom is transferred from such moieties [58,59]. Based on a generally large
body of in vitro evidence, for a long time—between the 1980s and early 2000s—the ROS
scavenging/reducing action of flavonoids was assumed to be the main mechanism by
which these compounds exerted their antioxidant actions in vivo [60–62]. More recently,
however, such an assumption has been increasingly questioned [42,63–66], including
kinetic and thermodynamic considerations [42,67,68]. However, a major argument against
the possibility that the ROS-scavenging/reducing mechanism could account for their
in vivo antioxidant effects of flavonoids arose after establishing a near two orders of
magnitude difference between the concentrations of many flavonoids needed to act as
ROS-scavengers/reducing in vitro (low micromolar) and those actually attained in plasma
(low-to-medium nanomolar) after the ingestion of foods rich in such flavonoids [69–71].
It should be noted, however, that a direct ROS-scavenging action of flavonoids could be
more relevant in those anatomical sites that are more directly exposed to them, such as
the mucosa of the gastrointestinal (GI) tract, and eventually, the skin after their deliberate
direct application to this tissue.

A second mechanism of the antioxidant action of flavonoids, in which the oxidation of
its phenolic moieties is also involved, is an “indirect mechanism” where these compounds
do not directly interact with ROS but with certain proteins that, via the regulation of gene
expression, ultimately upregulate the cell’s endogenous antioxidant capacity [55,67]. In this
mechanism, the oxidation of some of the flavonoid’s phenolic moieties would constitute
a step needed to subsequently exert its antioxidant action. Thus, the antioxidant action
is not triggered by the flavonoid molecule itself but through a metabolite that results
from its oxidation [54–56,72]. However, it should be noted that for those flavonoids that
act as antioxidants in vitro through a gene expression-regulating mechanism, the needed
concentrations are also within a low-to-medium micromolar range. Since, in this indirect
mechanism, an oxidized metabolite exerts the antioxidant action, its concentration in
plasma or in the target tissues, and not that of the flavonoid, would be the one to be taken
into consideration. Unfortunately, to the best of our knowledge, neither in vivo nor in vitro
studies have addressed such a fundamental issue to date.

There is a consensus that the nanomolar concentrations of flavonoids found in the
systemic circulation reflect the low oral bioavailability of these compounds and that, in
general, this latter is attributable to their poor GI absorption and, overall, to their exten-
sive biotransformation [73–76]. Prompted by the large in vitro versus in vivo flavonoid
concentration gap, several investigators have pointed out that rather than the flavonoids
themselves, some metabolites that are generated during their biotransformation and/or
oxidation could account for their in vivo antioxidant effects [66,72,77–80]. Within such
a conceptual frame, one might reason that if the metabolites formed in vivo conserved
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the same antioxidant potency shown by their precursors in vitro, such metabolites would
need to circulate in plasma at micromolar concentrations. Alternatively, if the metabolites
circulate in plasma at concentrations comparable to those attained by their precursors, the
former will need to exhibit an at least two orders of magnitude higher ROS-scavenging or
antioxidant gene expression-regulating potency.

Several biochemical processes that are involved in the metabolic handling of flavonoids
end up affecting their chemical structures, physicochemical properties and, potentially,
their bioactivities, including the antioxidant effect (Table 1). In general, flavonoids occur in
edible plants largely in their O-glycosylated form, bound to sugar moieties such as glucose,
rhamnose or galactose. The O-glycosides of flavonoids are found in edible plants, mainly
as 3 or 7 O-glycosides, although the 5, 8 and 4′ O-glycosides have also been reported in
some cases [81]. One of the earliest processes that affect the structure of flavonoids after
their ingestion is their deglycosilation during the transit along the gastrointestinal tract.
This step is critical in the absorption and metabolism of dietary flavonoid glycosides in
human subjects [82]. Whether ingested as a food component or a pure glycoside, these
compounds are hydrolyzed to aglycones by glycosidases present in the brush border
membranes (i.e., lactase-phlorizin hydrolase) or the cytosol (i.e., β-glucosidase) of the small
intestine epithelial cells, and principally, in colon-residing microbiota [83,84]. Subsequently,
most flavonoid aglycones are subject to biotransformation, a process that, through phase
I (e.g., oxidation, demethylation) and preferentially phase II (e.g., methyl-, sulpho- and
glucuronyl-conjugation) reactions, significantly modifies their structures and potentially
their antioxidant properties. This process can take place pre-systemically, during the
diffusion of the flavonoids through the epithelial cells of the proximal small intestine,
during their subsequent first-pass through the liver, and/or after reaching the colon through
the action of biotransforming enzymes present in the microbiota. Upon entering the
circulation, the flavonoid aglycones and/or their phase I/II metabolites can undergo further
biotransformation systemically, during all the post-absorption phases, namely distribution,
metabolism and excretion [22,85–89]. In the case of some flavonoids (anthocyanidins are
an exception), the effect of the pre-systemic phase II biotransformation can be so significant
that, following their intestinal absorption and transport to the liver via the portal vein,
they circulate in systemic blood almost exclusively as O-glucuronide, O-sulphate and/or
O-methyl ester/ether metabolites (generally in this order of abundance) [69,90].

In addition to its bioavailability-lowering effect, the biotransformation process often
enhances the polarity of its substrates, accelerating their elimination. An apparent exception
for the latter is the one that affects flavonoids such as quercetin whose conjugation metabolites,
after reaching (or being formed in) the liver, are biliary excreted back into the duodenum from
where they undergo enterohepatic recirculation (e.g., quercetin glucuronides) [91,92]. How-
ever, even in such a case, it has been established that after the ingestion of a large portion of
quercetin-rich vegetables, the peak plasma concentrations of its individual conjugates only fall
within the low-to-medium nanomolar range [93–95]. Although phase II conjugation reactions
take place along the intestinal absorption of flavonoids affect, in general, the bioavailability of
their aglycones, some studies have pointed out that, at least for quercetin, its 3-glucuronide
could undergo deconjugation in vascular tissues with inflammatory injuries [96]. It has been
shown that this metabolite accumulates in atherosclerotic lesions and within macrophage-like
foam cells, from where it is deconjugated by β-glucuronidase, leading to a biological effect of
endothelium function [97]. Hence, quercetin-3-glucuronide has been proposed to behave as a
quercetin carrier in plasma, which deconjugates in situ, releasing the aglycone. However, the
occurrence of deconjugation in vessels for other flavonoids remains to be investigated.

Regarding the effects of biotransformation on the antioxidant activity of flavonoids,
although neither the exact direction nor the magnitude of a change in such activity can be
precisely predicted on the sole basis of the chemical nature of a flavonoid [98], theoretically,
it can be expected that nu blocking via methylation, sulfation or glucuronidation, one or
more of its redox-active phenolic groups, for instance, a single phenolic, catechol or galloyl
in ring B, would compromise the flavonoid’s original antioxidant properties [61,99,100]. In
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fact, most studies indicate that when such a type of metabolites are assayed in vitro for their
ROS-scavenging/reducing activity, these have either significantly lost or only marginally
retained the antioxidant activity of their precursors, but that in no case have they undergone
a substantial gain of such activity [74,96,101–112]. Essentially, similar in vitro results have
recently been reported regarding the capacity of some flavonoids’ phase II-conjugation
metabolites to upregulate (through an indirect action) the cell’s endogenous antioxidant
capacity [80,113–115] (Table 1). It should be noted, however, that in some particular cases,
phase I and/or II biotransformation metabolites have been shown to exert a number of
other, not necessarily antioxidant-dependent, biological actions that could significantly
contribute to the health-promoting effects of their precursor flavonoids [79,116,117].

Table 1. Phenol-compromising reactions. As exemplified for quercetin (Q), the main reactions that
affect the redox-active phenol moieties of quercetin are listed. In addition, the chemical nature of
some of the formed metabolites and the impact that the phenol-compromising reactions can have on
the antioxidant properties of the metabolites are described.

Phenol
Compromising

Reactions
Metabolites Impact on

Antioxidant Potency

O-Glycosylation
(in plants)

Glycosides (e.g., Q-3-O-glucoside; Q-4′-O-glucoside;
3,4′-O-diglucoside; Q-5-O-glucoside and Q-7-O-glucoside)

In general, these metabolites have less
ROS-scavenging potency than their

corresponding aglycones

O-Deglycosylation
(in human

intestine/colon)
Quercetin O-deglycosylated in C3, C4′, C5 or C7

The ROS-scavenging potency of
O-deglycosylated metabolites is, in most cases,

considerably higher

Biotransformation
(in human

intestine/liver/kidney)

Glucuronides (e.g., Q-3-O- and Q-7-O-glucuronides)
Sulphates (e.g., Q-3-O-and Q-3′-O-sulphates)

Methyl ethers (e.g., Q-3-O- and Q-3′-O-methyl)

These metabolites have, in general, less ROS
scavenging/reduction potency but in some
particular cases are able to up-regulate the

endogenous antioxidant capacity

Metabolic Degradation
(in human microbiota)

Simple phenolics (e.g., 3,4-dihydroxy-benzoic and
3,4-dihydroxyphenylacetic acids)

Deglycosylated flavonoids (e.g., quercetin aglycone)

In general, these metabolites maintain the
original ROS-scavenging potency

Oxidative Consumption
(in plants/possibly in

human)

Q-BZF as a mayor oxidation-derived metabolite
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hough phase II conjugation reactions take place along the intestinal absorption of flavo-
noids affect, in general, the bioavailability of their aglycones, some studies have pointed 
out that, at least for quercetin, its 3-glucuronide could undergo deconjugation in vascular 
tissues with inflammatory injuries [96]. It has been shown that this metabolite accumu-
lates in atherosclerotic lesions and within macrophage-like foam cells, from where it is 
deconjugated by β-glucuronidase, leading to a biological effect of endothelium function 
[97]. Hence, quercetin-3-glucuronide has been proposed to behave as a quercetin carrier 
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A second process that can substantially compromise the structure of flavonoids, and
thereby influence the plasma circulating concentration and/or the antioxidant properties of
the generated metabolites, is the one that affects the fraction of the ingested flavonoids that
during their gastrointestinal transit was not intestinally absorbed, and that, upon reaching
the colon, undergoes substantial microbiota-mediated catabolism [84,118–121]. In fact, in
recent years, important advances have been made in defining the catabolic capacity and
structure-modifying effects of the gut microbiota on distinct flavonoids, and in parallel, how
flavonoids can affect the composition and biological activity of such bacteria [121,122]. The
enzymes present in the colonic microbiota catalyze not only the degradation of some flavonoid
aglycones through C-ring cleavage, demethylation and/or dehydroxylation reactions, but
also that of many flavonoid glycosides, through O-deglycosylation and ester hydrolysis, and
that of phase-II conjugates, through the action of β-glycosidases [123]. The former processes
can convert flavonoids into a broad set of lower molecular weight catabolites [124], of which
most are simpler phenolics and aromatic acids that appear in the blood and circulate in
their free state or as (colon-generated) phase II conjugated catabolites. Several researchers
have proposed that the bioactivities of some of these catabolites, which are not necessarily
associated with antioxidant actions, could account for at least part of the beneficial health
effects attributed to their precursors [41,119,122,125]. Interestingly, it has been reported that
some colonic catabolites can reach high micromolar concentrations in fecal water [126,127],
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from where they could be readily absorbed to reach, in some specific cases (i.e., catechol-
and pyrogallol-sulphates), low micromolar concentrations in systemic circulation, namely,
concentrations that are thus notably higher than those attained by their parent flavonoids
and/or by their corresponding flavonoid conjugates [128]. Owing to the latter, it has
been proposed that, at least part of the antioxidant effects of flavonoids seen in vivo
might be ascribed to some of their systemically circulating colonic catabolites [121,129,130].
However, most in vitro studies indicated that the ROS-scavenging/reducing potency of
such catabolites is only either slightly [100] or substantially lower [131] than that of their
precursors. A possible exception of the latter would be that of some colonic catabolites
whose structure conserves the catechol moiety of their precursor flavonoids, as has been
suggested to either retain or exhibit an even slightly higher ROS-scavenging/reducing
activity compared to their precursors [124,129]. On the other hand, although some colonic
catabolites derived from flavonoids have been reported to also be able to upregulate the
activity of several ROS-controlling enzymes [132,133], the in vitro concentrations needed
to elicit such effects ranging from 25 to 250 micromolar, which are reportedly unlikely to be
found in plasma after the ingestion of flavonoids.

The third type of process that compromises the structure of flavonoids, and that could
potentially lead to a change in their antioxidant properties, refers to the oxidation that
their phenolic groups undergo during their interaction with ROS, with certain oxidizing
enzymes, or with other molecules whose structures contain chemical residues that are
susceptible to be reduced by the redox-active phenolic moieties of flavonoids. Considering
the scope of this contribution, this specific structural modification will be addressed in the
following section.

4. Oxidation of the Phenolic Moieties of Flavonoids and Its Consequences on Their
Antioxidant Properties

As already mentioned, the oxidizability of the phenolic moieties of all flavonoids is
the basis for their ability to either scavenge or reduce different ROS. During such reac-
tions, one (or more) of the phenolic groups engages in a redox reaction where either an
electron or a hydrogen atom of a hydroxyl groups is transferred to the ROS, stabilizing
these species [58,59]. The latter reaction, as described in more detail below for quercetin,
necessarily converts the flavonoid into a free radical intermediate, ultimately giving place
to the formation of an oxidized metabolite, or to a set of different metabolites. In this
mechanism, the ROS-scavenging action of the flavonoid would last as much time as it takes
to oxidatively consume its redox-active phenolic groups. However, it remains to be seen
if, after undergoing such oxidation, the flavonoids that act through this direct antioxidant
mechanism will necessarily lose their original antioxidant properties. The answer to this
question was, for a long time, positive. The reason for that was that in order to function as
a directly acting antioxidant, the redox-active phenolic groups of a flavonoid involved in its
ROS scavenging/reducing action need to exist in their reduced state. Consequently, if such
groups have already engaged in a reaction where they have been oxidatively consumed, it
seems reasonable to assume that the generated metabolite(s) will necessarily be devoid of
the flavonoid’s original ROS scavenging/reducing ability. Similarly, this argument might
be extended to those flavonoids whose original structures need to be preserved in order to
inhibit the catalytic activity of ROS-generating enzymes and/or to chelating redox-active
metals. Recently, however, some evidence has emerged revealing that such contention
needs to be revised—at least for the ROS-scavenging and ROS-reducing capacity of certain
flavonoids. In fact, in addressing the consequences that the oxidation of quercetin and that
of thirteen other structurally related flavonoids could bring on, in terms of their original
ROS-scavenging (ORAC assay) and ROS-reducing (Folin–Ciocalteu- and Fe-Triazine) prop-
erties, Atala et al. [53] reported that most of the mixtures of metabolites that resulted from
such oxidations partially or largely conserved, rather than lost, the antioxidant properties
of their precursors. These latter effects were seen regardless of the method employed to
induce their oxidative consumption (i.e., alkali-induced or mushroom tyrosinase-mediated)
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and in the case of the alkali-exposed flavonoids, the oxidation mixtures of 9 of the 14
tested flavonoids (which included flavanols, flavonols, flavones and flavanones) exhibited
ROS-scavenging remnant activities that were greater than 70%, and that thirteen of the 14
tested flavonoids retained over 50% of the original Folin–Ciocalteu-reducing properties.
While the referred to study did not establish the chemical identity of the metabolites in each
oxidation mixture, the authors speculated that the oxidation process would not grossly alter
those structural moieties that are primarily responsible for the ROS-scavenging and/or
redox-reducing properties of the flavonoids. Presumably, such moieties would comprise
phenolic groups that are capable of stabilizing ROS and/or reducing the Folin–Ciocalteu
reagent. However, other structural features that could be favorable in terms of stabilizing
the resulting phenoxyl radical(s) are also likely to be present in the structure of the putative
oxidation metabolites (i.e., electron-delocalizing and resonance-permitting moieties). Un-
der the time-controlled alkali-induced oxidation conditions employed by Atala et al. [53],
ten flavonoids (namely quercetin, myricetin, fisetin, dideoxyquercetin, taxifolin, eriodictyol,
isorhamnetin, epicatechin, luteolin and catechin) had almost completely disappeared. Out
of these, the four flavonoids that almost completely retained their original ROS-scavenging
activity were the flavonols quercetin, dideoxyquercetin, isorhamnetin and fisetin, whose
structures simultaneously include either one or two unsubstituted hydroxyl groups in ring
B, and an enol moiety (i.e., C2–C3 double bond with a C3-hydroxyl) in ring C. In turn,
flavonoids that have a catechol in ring B but lack a double bond in the C2–C3 position of
ring C (flavanols and flavanones) exhibited the lowest degree of antioxidant retention (i.e.,
catechin, epicatechin, eriodictyol, and taxifolin). In addition to its antioxidant-retaining
implications, the ability of the mixtures of oxidized flavonoids to scavenge ROS and/or
reduce the Folin–Ciocalteu and Fe-triazine reagents might have some methodological impli-
cations [134]. That is, when a flavonoid is assayed using any of the previously mentioned
(flavonoid-oxidizing) methods, a mixture of compounds is likely to be formed that could
inadvertently contribute to the observed results. During the initial phase of oxidation, this
mixture may comprise the reduced flavonoid plus several redox-active metabolites gener-
ated during the assay of the flavonoid, which could be particularly important when the
sum of the ROS scavenging/reducing activities of such metabolites is comparable to that of
the flavonoid from which they originate. In such cases, the antioxidant activity believed to
strictly arise from the reduced flavonoid is likely to be overestimated, eventually limiting
the interpretation of some structure–antioxidant activity relationship studies. However,
prior to questioning the interpretation of such a study type, it should be considered that
the composition as well as the degree of antioxidant capacity retained by any mixture of
metabolites will depend, not only on the structural particularities of the flavonoid but
also on the conditions employed to induce its oxidation and the method used to assay its
antioxidant activity. Nonetheless, as discussed below, at least in the case of quercetin, it has
been reported that, regardless of the experimental mode used to induce its oxidation, an
essentially similar set of metabolites is always formed [135].

As already pointed out, during the last two decades, a growing body of evidence
has emerged to reveal that, in addition to the ROS-scavenging/reducing mechanism of
action, some flavonoids are also able to promote antioxidant effects via the previously
mentioned indirect mechanism of action. In this mechanism, the flavonoid ultimately
modulates the expression of certain genes that code for the synthesis of ROS-forming
enzymes (inhibiting it) and/or ROS-removing enzymes (inducing it), and/or by upregu-
lating the expression of genes that code for antioxidant-synthesizing enzymes. The most
commonly reported mediator of these indirect antioxidant actions is the redox-sensitive
transcription protein, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), that regulates the
expression of a large number of genes that contain an enhancer sequence in their promoter
regulatory regions termed antioxidant response elements (AREs), or probably more accu-
rately named, electrophile-response elements (EpRE) [67,136,137]. The regulation of the
Nrf2 pathway is mainly mediated by the interaction between Nrf2 and its cytoplasmic
repressor Kelch-like ECH-associated protein 1 (Keap1), an E3 ubiquitin ligase substrate
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adaptor that under physiological or unstressed conditions targets Nrf2 for rapid ubiquiti-
nation and proteasomal degradation, resulting in a limited cytoplasmatic concentration
of Nrf2 [138,139]. Keap1 contains, however, several highly reactive cysteine residues that,
upon undergoing conformational modification, facilitate the swift translocation of Nrf2
into the nucleus (i.e., Nrf2-Keap1 activation). Although some of the critical cysteines in
Keap1 can be directly oxidized or covalently modified, the Nrf2–Keap1 pathway can also be
modulated by the transcriptional modification of Nrf2, particularly via phosphorylation by
a series of redox-sensitive protein kinases such as the extracellular signal-regulated protein
kinase (ERK1/2), protein kinase C (PKC) and c-Jun N-terminal kinase (JNK) [140,141].
Following its translocation into the nucleus, Nrf2 undergoes dimerization with small mus-
culoaponeurotic fibrosarcoma oncogene homologue (sMAF) proteins. The heterodimers
thus formed induce the de novo synthesis of a variety of proteins that are encoded in the
ARE/EpRE-containing genes. The activation of the Nrf2-dependent ARE/EpRE signaling
pathway translates into increasing the cells’ enzymatic (e.g., SOD, CAT, GSHpx, NQO1,
HO-1) and non-enzymatic (e.g., GSH) antioxidant capacity [142–148] and/or its capacity
to conjugate a broad range of electrophiles via phase II biotransformation enzymes (e.g.,
glutathione S-transferases, UDP-glucuronosyltransferases) [149]. Although under normal
conditions the Nrf2–Keap1 pathway plays an essential role in maintaining the intracellular
redox homeostasis, substantial evidence indicates that its activation by certain ROS and/or
by a large number of electrophiles is pivotal to protect cells from the detrimental effects
associated with the intracellular accumulation of these species [150–152]. An early Nrf2
activation by low concentrations of certain ROS and/or electrophiles would protect cells
not only by preventing them undergoing the otherwise redox-imbalance (oxidative stress)
expected to arise from a sustained accumulation of ROS, but also by preventing the covalent
binding of electrophiles to DNA and certain proteins whose normal functioning is vital to
cells. Compared to the antioxidant effects that arise from the ROS-scavenging/reducing
actions of flavonoids, those resulting from the activation of Nrf2 require a lag time to mani-
fest but are comparatively longer lasting since their duration is essentially defined by the
half-lives of de novo synthesized antioxidant enzymes. Additionally, due to the catalytic
character of any enzyme, the antioxidant effects of flavonoids exerted via this indirect
mechanism are amplified and manifested beyond the time-restricted action of the direct
acting flavonoids whose antioxidant effects are limited by their stoichiometric oxidative
consumption. Cumulative experimental evidence [153,154], and more recent evidence
provided by several clinical trials [155,156], indicate that molecules that are able to induce
the activation of Nrf2 could become an effective means to prevent and/or treat a number
of pathological and/or toxicological conditions whose common etiological denominator is
the early and sustained occurrence of oxidative stress [157,158].

Although Nrf2 activators comprise a large group of structurally distinct molecules,
oxidizable diphenols have emerged among the earliest ones discovered [159]. Particular
attention was initially placed on simple catechols (1,2-diphenols) and hydroquinones (1,4-
diphenols) since these compounds are able to readily participate in one- or two-electron
reversible oxidation reactions giving rise to electrophilic ortho- and para-quinones, re-
spectively [160,161]. Due to their ability to avidly react with sulfhydryl groups, these
phenol-derived electrophilic species are able to ultimately modify, via either oxidation,
alkylation, or thiol-disulfide interchange reactions, some of the critical redox-sensitive
cysteine residues in Keap1 [54,137,162]. Since the electron-deficient core of these quinones
can also easily react with nucleophilic thiols present in other cysteine-containing proteins
and/or with the sulfhydryl moiety of glutathione, such interactions can be potentially
deleterious when the electrophiles occur within cells at high concentrations [163]. At low
nanomolar intracellular concentrations, however, the formation of phenol-derived quinoids
is only associated with an increase in the so-called ‘nucleophilic tone’ of the cells [42]. In
addition to certain phenolic alcohols and acids, a great deal of attention has been placed
in recent years on other compounds, among which terpenoids, isothiocyanates, indoles,
organo-sulfides, curcuminoids, stilbenes, chalcones and flavonoids are included. In the case
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of flavonoids, the list of compounds capable of acting as Nrf2 activators comprises specific
congeners of each of the six flavonoids subclasses [164–166]. Although flavonoids do not
have electrophilic activity as such, in some cases, their oxidation leads to the formation of
electrophilic and/or pro-oxidant metabolites [167]. Particularly, flavonoids that exhibit a
1,2- or a 1,4-diphenol, or a galloyl moiety (1,2,3-triphenol) in the B ring, but not the mono- or
1,3-diphenol variants, have a higher probability of being readily oxidized to semiquinones
and quinones, resulting in redox cycling and production of ROS, of which both chemi-
cal species could potentially react with the sulfhydryl moiety of certain Keap1-contained
cysteines [168,169]. Early work by Lee-Hilz et al. [54] showed that the ability of certain
flavonoids to activate an ARE/EpRE-mediated antioxidant response correlates well with
their redox properties characterized by quantum mechanical calculations, that flavonoids
with a higher intrinsic potential to generate oxidative stress and/or redox cycling are the
most potent inducers, and that activation exerted by flavonoids increases after decreasing
the intracellular GSH and vice versa, supporting an oxidative mechanism. Recognition of
all the latter is coherent with the contention that rather than the flavonoid itself, the ultimate
Nrf2-activating species would be the flavonoids’ electrophilic metabolites, or alternatively,
the ROS derived from the potential of its quinones to undergo redox cycling [42,54]. As
shown by Zoete et al. [170], the HOMO energy or electron-releasing power (i.e., the easiness
with which a molecule donates an electron and oxidizes) of 30 different polyphenols corre-
lated well with their capacity to induce the EpRE-mediated gene transcription of NQO1,
a phase II detoxifying enzyme known to be induced by Nrf2. In line with such results,
Lee-Hilz et al. [54] also reported that the HOMO energy of 21 different flavonoids correlated
well with their induction factor for the EpRE-mediated gene transcription. According to
these latter investigators, flavonoids with a higher intrinsic potential to generate oxidative
stress and redox cycling are the most potent inducers of EpRE-mediated gene expression.
Over the last decade, a considerable number of studies has demonstrated the ability of some
specific flavonoids to induce, via the activation of the Nrf2–Keap1 system, the expression of
antioxidant and phase II detoxifying enzymes, in diverse cell models. Such an ability would
reside in the capacity of such flavonoids to undergo enzymatic and/or non-enzymatic
oxidation reactions that, at some point, convert them into electrophilic quinoid species (e.g.,
semi-quinones, and quinone methides) and/or certain ROS [171–173]. The latter species
can be generated during the interaction of some specific flavonoids (i.e., diphenols) with: (i)
certain ROS (e.g., superoxide anions, hydroxyl and peroxyl radicals) since after scavenging
or reducing them, the flavonoids are converted into phenoxyl radicals and potentially into
quinoid species; (ii) catalytic concentrations of some redox-active transition metals which
in, their reduced state (e.g., Cu1+ or Fe2+) and, presence of oxygen will generate superoxide
anions that subsequently, via dismutation, will form hydrogen peroxide; and (iii) certain
metalloenzymes (e.g., peroxidases, tyrosinases, oxidoreductases) that are able to catalyze
their oxidation, leading to the formation of semiquinones and quinones. In the case of
quercetin, shown to accumulate in large amounts within mitochondria [174], the formation
of its quinone/quinone methide metabolites has been reported to take place not only in
peroxidase containing cell-free systems [175] but also in tyrosinase-rich cells (i.e., B16F-10, a
mouse melanoma cell line) [171]. According to Awad et al. [171], the intracellular formation
of these quinoid species could also take place in other mammalian cells known to contain
peroxidase-like activities.

Flavonoids that carry two or more hydroxyl moieties in their B ring are recognized
to be more prone to form quinoid intermediates, and consequently rank highest among
the Nrf2-inducers. It should be noted, however, that some flavonoids that carry a single
hydroxyl group in their B ring can be o-hydroxylated by human cytochrome P450 (CYP)
enzymes to form catechols within cells. For instance, CYP1 has been shown to catalyze the
hydroxylation of kaempferol in B-3′, converting it into quercetin, and that of galangin in
B-4′, converting it into kaempferol [85,176,177]. Another example is the demethylation of 4′-
methoxyflavone catalyzed by human CYP1B1.1 and CYP1B1.3, which initially leads to the
formation of 4′-hydroxyflavone and subsequently to that of 3′,4′-dihydroxyflavone [178].
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Thus, it appears that, in humans, the oxidation of flavonoids can take place via reactions
catalyzed by CYP enzymes. These enzymes, however, rather than inducing the oxida-
tive consumption of the redox-active phenolic of the flavonoids, are able to catalyze the
incorporation of one or more hydroxyl groups in benzene rings of the flavonoid struc-
ture [177]. Although a greater number of hydroxyl groups in the structure of phenolics
is generally associated with a greater ROS-scavenging potency [179], the extent to which
the CYP-hydroxylation of certain flavonoids contribute to enhance the cell’s antioxidant
capacity remains to be established.

As described above, when it comes to the ROS-scavenging properties of flavonoids,
the oxidation of certain flavonoid structures (i.e., flavonols) is associated with the formation
of mixtures of metabolites whose antioxidant activities are largely retained. In view of the
ubiquitous distribution and abundance of the flavonol quercetin in edible plants [32,33],
and its relatively low toxicity in humans [180], particular attention has been paid to the
study of the consequences that the oxidation of this flavonoid brings on its antioxidant
properties.

5. Oxidation of Quercetin and Its Consequences on Its Antioxidant Properties

Among dietary flavonoids, quercetin (5,7,3′,4′-tetrahydroxyflavonol or 3,5,7,3′,4′-
pentahydroxyflavone, included in Figure 2) remains one of the most studied molecules [181].
Its early and well-established in vitro capacity to lower ROS formation by scavenging
these species [61,182], by chelating redox-active ROS-forming metals [183–185], and/or
by inhibiting the activity of ROS-generating enzymes such as xanthine oxidase, lipoxy-
genases, mono-aminooxidase and cyclooxygenase [186–190], has continuously prompted
many scientists to engage in the study of its potential as an antioxidant. Regarding its
ROS-scavenging property, quercetin possesses key structural features: ortho-dihydroxy
substitution in B-ring (catechol structure), which confers high stability to the flavonoid
phenoxyl radical via hydrogen bonding or by expanded electron delocalization; the C2–C3
double bond (in conjugation with the 4-oxo group) which determines the coplanarity of
the heteroring and participates in radical stabilization via electron delocalization over all
three ring systems; and the presence of the 3-OH and 5-OH groups for maximum radical
scavenging capacity [191,192].
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Quercetin has been shown to be a flavonoid expressing higher antioxidant activity due
to the presence of hydroxyl groups and the twisting angle of the B ring [193]. As seen for
other flavonoids, however, studies conducted during the last two decades have revealed
that the antioxidant effects of quercetin can also arise from actions exerted via the indirect
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Nrf2 mechanism. In fact, a number of in vitro and in vivo studies have addressed the
capacity of quercetin to upregulate, via the Nrf2–Keap1 pathway, the expression of genes
that code for the synthesis of antioxidant enzymes such as HO-1 [194], NQO1 [143], and
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-Glu–Cys ligase [145]. However, a question regarding this Nrf2-mediated antioxidant-
amplifying effects of quercetin remains as to whether the Nrf2-activating chemical species is
the quercetin molecule itself or one or more of its metabolites generated after its oxidation.
In an apparently paradoxical manner, different investigators have demonstrated that
the ability of quercetin and that of some other limited number of flavonoids to activate
Nrf2 correlates well with their intrinsic potential to generate pro-oxidant metabolites,
to undergo redox cycling and/or to generate oxidative stress [54,80,159]. Some of the
metabolites formed (e.g., o-quinones) during the ROS-mediated (or enzymatically induced)
oxidation of quercetin exhibit a significant degree of electrophilicity and/or ability to
act as pro-oxidant [195,196]. Thus, it would seem that quercetin has a dual antioxidant
potential, acting initially, in its non-oxidized form, as an ROS scavenger, and subsequently,
after undergoing oxidation, through some of its pro-oxidant metabolites (up-regulating
antioxidant responses) [57].

Although quercetin displays a number of bioactivities that do not necessarily arise
from its antioxidant properties [197–200], most of the currently available evidence still
supports the contention that a large part of the health benefits associated with its dietary
consumption and/or administration are derived from its overall oxidative stress-controlling
capacity [43,201,202]. Regarding the latter capacity, it is conceivable that under in vivo
conditions, the indirect antioxidant effects of quercetin, increasingly assumed to be the
most relevant ones, concur with its direct ROS-scavenging actions. In the latter case, the
oxidation of quercetin affects first its 3′ and 4′ hydroxyl moieties in a reaction that leads to
the formation of electrophilic intermediates which are endowed with electrophilic and/or
pro-oxidant potential [163,167,195]. Subsequently, such intermediates will undergo other
oxidative changes that will ultimately affect the flavonoid’s skeleton.

As shown in Figure 2, the two-electron oxidation of quercetin leads to the forma-
tion of a para-quinone-methide intermediate that, upon protonation, is converted into a
flavylium cation; subsequently, the latter compound swiftly undergoes complete hydration
to generate the 2,5,7,3′,4′-pentahydroxy-3,4-flavandione. After a ring−chain tautomeric
equilibrium, which leads to the formation of a 2,3,4-chalcan-trione intermediate, a polar
metabolite identified as 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone
(Q-BZF) is formed [135,203–205] (Figure 2). As for other flavonoids, some of the electrophilic
intermediates formed during the oxidation of quercetin were implied in the mutagenicity
and cytotoxicity reported for this flavonoid in vitro [195,196,206] and in vivo [207]. How-
ever, as critically reviewed by Harwood et al. [180], the actual biological significance of
such purported toxic actions is highly debatable and lacks any in vivo evidence.

The oxidation of quercetin has been broadly investigated from a chemical standpoint
and comprises studies in which its oxidation has been chemically [208–211], electrochemi-
cally [203,211–213] and enzymatically induced [135,209,214]. Comparatively, a very limited
number of studies have addressed the implications that quercetin oxidation has on its
antioxidant properties. In fact, until very recently, only the works by Ramos et al. [215] and
by Gülsen et al. [211] had addressed this issue. Using the 2,2-diphenyl-1-picrylhydrazyl
(DPPH) assay, Ramos et al. [215] reported that while some quercetin oxidation products
retained the scavenging properties of quercetin, others were slightly more potent. Using the
DPPH, a hydrogen peroxide, and hydroxyl free radical scavenging assay, Gülsen et al. [211]
reported that all quercetin oxidation products were less active than quercetin. From a
structural point of view, the oxidative conversion of quercetin into its Q-BZF does not affect
rings A and B of the flavonoid but drastically changes ring C, as its six-atom pyran ring
is converted into a five-atom furan ring. Taking into consideration the three Bors’ criteria
for optimal activity [191], the free radical scavenging capacity of Q-BZF is expected to be
significantly less than that of quercetin by the sole fact that its structure lacks the C2–C3
double bond needed for radical stabilization. Based on the latter, it seems reasonable to
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assume that an ultimate consequence of the oxidation of quercetin would be the relative
loss of its original free radical scavenging potency.

Based on the earlier studies of Atala et al. [53], in which the oxidation of several
flavonoids resulted in the formation of mixtures of metabolites that largely retained the
ROS-scavenging properties of the unoxidized flavonoids, the assumption that oxidation
leads to the loss of such activity needed to be revised. In the case of quercetin, the mixtures
of metabolites that resulted from its exposure to either alkaline conditions or to mush-
room tyrosinase did not differ in terms of their ROS-scavenging capacity, retaining both
mixtures near 100% of the original activity. Although the exact chemical composition of
the aforementioned oxidation mixtures was not established [53], early studies by Zhou
and Sadik [135] and more recently by Heřmánková et al. [205] demonstrated that when it
comes to quercetin, regardless of the methods employed to induce its oxidation (i.e., free
radical, enzymatic- or electrochemically mediated), an essentially similar set of metabolites
is formed.

Prompted by the unexpected retention of the free radical scavenging activity of the
mixture of metabolites that arise from quercetin autoxidation (Qox), Fuentes et al. [57]
investigated the potential of Qox to protect Hs68 (from a human skin fibroblast) and Caco-
2 (from a human colonic adenocarcinoma) cells against the oxidative damage induced
by hydrogen peroxide or by the ROS-generating non-steroidal anti-inflammatory drug
(NSAID) indomethacin [216–218]. When exposed to either of these agents, the quercetin-
free Qox mixture afforded total protection with a 20-fold greater potency than that of
quercetin (effective at 10 µM). The composition of Qox, as analyzed by HPLC-DAD-ESI-
MS/MS, included eleven major metabolites [57]. Each of these metabolites was isolated and
assessed for its antioxidant capacity in indomethacin-exposed Caco-2 cells. Interestingly,
out of all metabolites, only one, identified as Q-BZF, was able to account for the protection
afforded by Qox. The latter was evidenced not only by testing the antioxidant activity
of Q-BZF, chromatographically isolated from Qox, but also, after comparing the activity
of Qox with that of a Qox preparation from which Q-BZF was experimentally removed
by chemical subtraction. Remarkably, the antioxidant protection afforded by the isolated
Q-BZF was seen at a 50 nM concentration, namely at a concentration 200-fold lower than
that of quercetin [57].

To the best of our knowledge, there are no reports in the literature of any flavonoid or
flavonoid-derived molecule capable of acting as antioxidant within cells at such extremely
low concentrations. The possibility that such a difference in intracellular antioxidant
potency being explained in terms of a 200-fold difference in ROS-scavenging capacity is
extremely low since; in addition to lacking the double bond present in ring C of quercetin,
Q-BZF does not differ from quercetin in terms of the number and position of their phenolic
hydroxyl groups. Considering the extremely low concentration of Q-BZF needed to afford
protection against the oxidative and lytic damage induced by hydrogen peroxide or by
indomethacin to Hs68 and Caco-2 cells, Fuentes et al. [57] proposed that such effects
of Q-BZF could be exerted via Nrf2 activation. Regarding the potential of the Q-BZF
molecule to activate Nrf2, several chalcones have already been shown to act as potent
Nrf2 activators [219,220]. The electrophilic carbonyl groups of chalcones, including those
in the 2,3,4-chalcan-trione intermediate of Q-BZF formation (Figure 2), could be able to
oxidatively interact with the cysteinyl residues present in Keap1, the regulatory sensor
of Nrf2. Interestingly, an upregulation of this pathway has already been established for
quercetin [143–145]. Considering the fact that the concentration of Q-BZF needed to afford
antioxidant protection is at least 200-fold lower than that of quercetin, and that Q-BZF
can be generated during the interaction between quercetin and ROS [135,208], one might
speculate that if such a reaction took place within ROS-exposed cells, only one out of
200 hundred molecules of quercetin would be needed to be converted into Q-BZF to
account for the protection afforded by this flavonoid—though the occurrence of the latter
reaction in mammalian cells remains to be established.
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Interestingly, in addition to quercetin, several other structurally related flavonoids have
been reported to undergo chemical and/or electrochemical oxidation that leads to the for-
mation of metabolites with structures comparable to that of Q-BZF. Examples of the lat-
ter flavonoids are kaempferol [203,221], morin and myricetin [221], fisetin [221–224], rham-
nazin [225] and rhamnetin [226] (Figure 3). The formation of the 2-(benzoyl)-2-hydroxy-3(2H)-
benzofuranone derivatives (BZF) corresponding to each of the six previously mentioned
flavonoids requires that a quinone methide intermediate be formed, follows a pathway
comparable to that of the Q-BZF (Figure 2), and leads to the formation of a series of BZF
where only the C-ring of the parent flavonoid is changed [203,225]. From a structural
requirement perspective, the formation of such BZF is limited to flavonols and appears
to require, in addition to a hydroxy substituent in C3, a double bond in the C2–C3 and
a carbonyl group in C4 (i.e., the basic features of any flavonol), the flavonol possesses at
least one hydroxyl group in their ring B [203,221,223]. Based on the already established
large increase in antioxidant potency described for quercetin and Q-BZF, it is possible to
hypothesize that an amplification of the antioxidant potency could also be seen with the
BZF known to be derived from the chemical oxidation of the six previously mentioned
flavonols. Our ongoing preliminary work supports such a hypothesis (data not shown),
and suggests the emergence of the BZF as a novel group of antioxidants whose intracellular
action is exerted with a superior potency compared to that of their precursors. In the per-
spective of using the Q-BZF, and eventually other BZF, as an antioxidant, it is particularly
interesting that the oxidation of quercetin has already been reported in cells of the outer
scales of onions (Allium cepa L. cepa group) where, in addition to high concentrations of
quercetin (of which 87% occurs as aglycone) [227], the Q-BZF occurs [228].
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6. Onion Peel as a Natural Source of Q-BZF

Considering the notably high antioxidant potency of Q-BZF, its occurrence in the
dry peels of onions [228] and the fact that this metabolite can be easily formed during
the exposure of quercetin to polyphenol-oxidase [53,214], Fuentes et al. [229] explored
by HPLC-DAD-ESI-MS/MS the occurrence of Q-BZF in the peel and/or flesh of a large
number of quercetin-rich plant foods, including almond, apples, capers, chives, clove,
curcuma, white garlic, ginger, goji, mushrooms, yellow onions, purple onions, oregano,
potatoes, radishes, yellow shallots, purple shallots, spinach and walnuts [32]. In addition
to corroborating the early finding of Ly et al. [228], these authors found that, among all the
other food plants studied, Q-BZF only occurs in shallots (Allium cepa L. aggregatum group)
and, as in onions, also limited to its dry outer scales. While the outer scales of onions and
shallots may serve to protect the bulb of these foods against pathogens by providing a
both physical and biochemical barrier, the actual reason for which Q-BZF is only contained
in these two plant foods and its presence is restricted to the outer scales remains to be
established.

The dry peels of onions, generally discarded as a waste of onion consumption and
processing, represents in Europe part of the 450,000 tons of onion solid waste produced
yearly [230,231]. Taking advantage of the natural presence of Q-BZF in the outer scales of
onions and the fact that this compound has emerged as a particularly potent antioxidant,
Fuentes et al. [229] recently developed an aqueous extract from such plant material (OAE).
Standardized in terms of its Q-BZF, quercetin and other phenolic contents, OAE was demon-
strated to protect Caco-2 cells against oxidative stress (i.e., 2′,7′-dichlorodihydrofluorescein
oxidation), and the mitochondrial (i.e., tetrazolium salt reduction-inhibition) and lytic
(i.e., lactate dehydrogenase leakage) damage induced by indomethacin, a nonsteroidal
anti-inflammatory drug (NSAID). Notably, an antioxidant protection of 65% was seen at a
concentration of Q-BZF in OAE as low as 0.03 nM, with a maximum protection of near 85%
within the 10–100 nM concentration range (Figure 4).
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As shown in the figure, the antioxidant effects of OAE are described by a concentration-
dependent curve that was fully overlapped by another curve that described the protection
afforded by a pure Q-BZF preparation. According to the same authors [229], such protection
was totally lost after the selective chemical subtraction of Q-BZF from OAE, revealing that
the ability of the extract to protect cells resides in the presence of Q-BZF in its composition
and, that within the aforementioned range of Q-BZF concentrations, any component other
than Q-BZF would not contribute to its antioxidant effectiveness. Interestingly, beyond
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the 100 nM Q-BZF concentration, the protection afforded by the extract and by pure
Q-BZF started to swiftly decline, to reach zero at a Q-BZF concentration of 200 nM in
OAE and at a 500 nM concentration for Q-BZF. The biphasic concentration-dependent
behavior of the antioxidant protection suggests that Q-BZF triggers a “para-hormetic” [42]
or hormetic [232] response, where this molecule is able to induce opposite biological
effects at different concentrations [233]. Presumably, the oxidized metabolite of quercetin
efficiently increases the antioxidant cell capacity at low concentrations and promotes such
an effect less efficiently, to reach zero at higher concentrations.

More recently, the ability of Q-BZF, as a pure compound or as part of OAE, to protect
Caco-2 cells against the oxidative stress and lytic damage induced by indomethacin was ex-
tended to several other NSAIDs [234]. Assessing the protective potential of Q-BZF and/or
OAE against the latter agents responds to the lagging need to effectively prevent or ame-
liorate the adverse gastrointestinal side effects associated with their administration. Such
effects comprise a damage that typically begins in the gastric mucosa and that subsequently
generates ulcers, hemorrhages and perforations [235]. However, various studies conducted
in humans have demonstrated that the duodenal and colonic mucosa are also affected and
in an almost similar proportion [236,237]. Although the precise pathogenic mechanism(s)
by which NSAIDs induce damage to the gastric and small intestinal mucosa has not been
fully established [238], at the cellular level, the co-occurrence of mitochondrial dysfunction
and oxidative stress has emerged as a key, early and common molecular event [239–241].
Particular attention has been paid to the functional consequences associated with the oxida-
tive stress that affects cells from intestinal epithelia, as the latter leads to alterations of their
intercellular tight junctions [242,243] and subsequently, to the loss of the intestinal barrier
function [242,244].

The transepithelial electrical resistance (TEER) of monolayers of Caco-2 cells (a human
colon epithelial cancer cell line) is a parameter widely used to anticipate the changes in the
intestinal barrier function that would take place in vivo [245]. When these cells are grown
on a semipermeable filter, they spontaneously differentiate to form a confluent monolayer
that structurally and functionally resembles the small intestinal epithelium. As recently
demonstrated by Fuentes et al. [234], the simultaneous addition of OAE (containing 100 nM
of Q-BZF) to Caco-2 cell monolayers exposed to indomethacin, diclofenac, piroxicam,
metamizole or ibuprofen, each added at a concentration that elicited an identical degree
of oxidative stress, effectively prevented (by 84–86%) the oxidative stress induced by
these agents. However, relative to its antioxidant efficacy, the protection afforded by OAE
against the loss of TEER induced by these NSAIDs was highly dissimilar, ranging from
18% (against piroxicam) to 73% (against indomethacin). Fuentes et al. [234] reported that,
when correlating both protections, an R2 value of 0.087 was obtained, suggesting that the
ability of Q-BZF to prevent the oxidative stress is not mechanistically related to its—uneven
and only limited—ability to protect the monolayers against the loss of barrier function
induced by the former agents. Furthermore, Fuentes et al. [234] observed that, in addition
to inducing oxidative stress, the five NSAIDs were able to induce, though to a different
extent, the activation of the pro-oxidant and pro-inflammatory nuclear expression factor,
nuclear factor kappa B (NF-κB) in monolayers of Caco-2 cells. Interestingly, while OAE fully
prevented the NF-κB activation induced by indomethacin, it exerted no inhibitory effect on
that induced by the four other NSAIDs, suggesting that the inhibition of NF-κB activation
is not necessary to prevent the increase in TEER induced by the latter agents. Although
the activation of NF-κB can be both a cause and a consequence of the genesis of ROS [246],
in the case of indomethacin, Mazumder et al. [247] recently reported that this NSAID
activates the atypical zeta isoform of protein kinase C (PKCζ), which phosphorylates
MAPK p38 [248], which in turn activates NF-κB [249]. This nuclear factor can also be
activated by different PKC, and this activation can be mediated by ROS [250]. Since
indomethacin-induced NF-κB activation may be directly attributed to an increase in ROS
or to an indirectly promoted PKCζ activation by the same species, the inhibition of NF-κB
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activation by Q-BZF could either be attributed to a direct activation-inhibiting action on
PKCζ or to an indirect ROS-removing action via Nrf2 activation.

In line with the in vitro protection exerted by Q-BZF or by OAE against the increased
paracellular permeability of Caco-2 monolayers induced by indomethacin [234], the capac-
ity of OAE to protect in vivo against the loss of intestinal barrier function induced by the
same agent was recently described in rats [251]. In their studies, Fuentes et al. [251], assess-
ing the intestinal permeability using the non-digestible probe 3-5-kDa dextran conjugated
with fluorescein isothiocyanate (FITC dextran), observed that the oral administration of
Q-BZF (80 µg/Kg body weight) as OAE completely abolished the 30-fold increase in the
concentration of FITC dextran seen in the serum of rats simultaneously given indomethacin
(40 mg/Kg body weight). This effect was found to be dose-dependent and largely con-
served (by 85%) when OAE was given 180 min prior to indomethacin. As previously
observed by the same authors in vitro [234], the in vivo observed intestinal barrier function-
protective effect of OAE was accompanied by a full prevention of the NF-κB activation and
of the increase in the inflammatory parameters interleukine-8 and myeloperoxidase that are
typically elevated in the duodenal mucosa of animals given indomethacin [252,253]. It is
noteworthy that OAE administration did not alter the basal intestinal mucosa NF-κB levels
in animals given no indomethacin. Since deregulated NF-κB activation is a significant
causal factor in the pathogenesis of multiple chronic inflammatory diseases [254,255], the
ability Q-BZF to prevent the activation of NF-κB opens the possibility of considering the
exploration of its therapeutic potential in such types of disorders. With regard to the
latter contention, it is worth mentioning the fact that vast literature supports the use of
quercetin, the precursor of Q-BZF, as a promising therapeutic strategy to manage several
inflammation-related chronic diseases [256]. On the other hand, the administration of Q-
BZF, as part of OAE, to the indomethacin given rats was associated with a 21-fold increase
in Nrf2 in duodenal mucosa, and a 7-fold and 9-fold increase in the activity of the antiox-
idant enzymes HO-1 and NQO1, respectively. Such results are in line with a number of
studies showing that Nrf2 plays a pivotal role in maintaining the integrity of the intestinal
barrier function by suppressing the oxidative stress that downregulates the expression
of tight junction proteins that are key in the regulation of paracellular permeability [257].
Based on the former findings, Fuentes et al. [251] proposed that the intestinal epithelial
barrier function-protective effect of OAE would involve a dual action of Q-BZF, on the one
hand inhibiting the activation of NF-κB induced by indomethacin, and on the other hand
inducing the activation of Nrf2. Although the mechanism by which Q-BZF activates Nrf2
remains to be elucidated, one might speculate that it may be related to that of its precursor
quercetin, whose capacity to activate Nrf2 and protect the intestinal epithelia against ROS
has already been well described [258].

At least from a theoretical point of view, it is worth mentioning the recent work by
Vásquez-Espinal et al. [259], who used molecular docking calculations. These authors
concluded that compared to quercetin, the stability of the interaction of Q-BZF with the
Keap1 kelch domain of Nrf2 was more favorable, thus suggesting a superior potential of
the oxidized metabolite to act as an inhibitor of the protein–protein interaction between
Keap1 and Nrf2. The modulating role that quercetin and other polyphenols play in the
maintenance of the intestinal barrier function [260–263] suggested that the potential of
Q-BZF would not be limited to protecting against the loss of such function induced by
NSAID but also that it may contribute to the favorable modulation of its maintenance.

7. Conclusions

Faced with the question of whether flavonoids lose, conserve or enhance their antioxi-
dant properties after undergoing oxidation, the current evidence reveals that, at least in
the case of certain flavonoids, the mixtures of metabolites that result from their oxidation
could conserve, though to a different extent, the ROS-scavenging/reducing capacity of their
non-oxidized precursors. Furthermore, in the case of some flavonoids whose oxidation
leads to their conversion into pro-oxidant and/or electrophilic metabolites (intermediates
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or final metabolites), there is increasing evidence to support the concept that through the
latter species, such flavonoids would be able to act as an antioxidant, indirectly, through
Nrf2 activation. An emerging and noteworthy example of the latter is that of quercetin
whose oxidation leads to the generation of Q-BZF, a metabolite that was recently found to
be two-to-three orders of magnitude more potently antioxidant than its precursor within
cells. The latter metabolite naturally occurs in specific tissues of onions and shallots but not
in many of the quercetin-rich plant foods studied to date. In vitro studies conducted with
Q-BZF as a pure compound and as part of an aqueous extract obtained from the outer scales
of onions revealed the capacity of Q-BZF to protect Caco-2 cells against oxidative stress,
mitochondrial and lytic damage induced by ROS such as hydrogen peroxide or NSAIDs.
The use of NSAIDs as ROS-generating agents has opened the possibility of projecting the
potential use of Q-BZF (and OAE) for protecting against some of the more serious adverse
gastrointestinal effects associated with the use of NSAIDs. Within such a conceptual frame
of particular interest, there has been the demonstration that nanomolar concentrations
of Q-BZF (or Q-BZF contained in OAE) protect Caco-2 monolayers against the oxidative
stress and the increase in paracellular permeability induced by NSAIDs. Towards the
same aim, studies conducted in rats have recently demonstrated that the loss of epithelial
barrier function induced by indomethacin is totally abolished by the oral administration of
extremely low doses of Q-BZF contained in OAE. Although the exact mechanisms underly-
ing the intestinal barrier function-protecting effect of Q-BZF remains to be elucidated, the
above in vivo studies revealed that such protection might be mechanistically associated
with the in vivo ability of the Q-BZF-containing extract to upregulate the activity of certain
antioxidant enzymes through the Nrf2 pathway and to abolish the indomethacin-induced
activation of NF-κB. This dual capacity of Q-BZF warrants further evaluation under diverse
conditions in which controlling the oxidative stress and/or preventing the activation of
NF-κB appear to be important for the prevention of certain pathologies.
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EpRE electrophile response elements
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and ubiquitous presence in edible plants [10,11]. 

2. Flavonoids as Antioxidants

Flavonoids have attracted the attention of biomedical researchers due to their poten-

tial to induce an array of health-promoting biological actions [12–15]. Major support for 

the potential health benefits of these compounds initially emerged from epidemiologic 

studies conducted in the 1990s. At that point, inverse correlations between the intake of 

flavonoid-rich foods and the relative risk of developing certain chronic noncommunicable 

diseases (NCDs) were established [16–21]. Over the last two decades, however, the con-

clusions arising from those population-based studies have gained support through a 

number of animal studies, in vitro cell mechanistic investigations and human intervention 

studies [19,22–27]. Comprehensive reviews on the health effects of dietary flavonoids 

have appeared in recent years [15,28–31]. 

Near eight thousand flavonoids have been described to date in the plant kingdom 

[11]. The systematic study of those of dietary origin has led to the development of several 

reports and/or databases that inform on their contents in foods and dietary level of con-

sumption, and their biotransformation and bioavailability [32–35]. From a chemical point 

of view, the term flavonoid comprises all those molecules whose structural backbone (a 

flavan nucleus, C6–C3–C6, Figure 1) consists of two benzene rings (A and B) that are 

linked through three carbon atoms that form a pyran heterocyclic ring (C). This structure 

allows multiple patterns and substitutions that give rise to various subclasses of flavo-

noids, among which flavonols, flavones, flavanones, flavanols and anthocyanidins can be 

distinguished. Such categorization is based on whether the flavan nucleus contains a hy-

droxyl moiety in C3 (i.e., flavonols, flavanols and anthocyanidins), a keto group in C4 (i.e., 

flavonol, flavones and flavanones), a double bond in C2–C3 (i.e., flavonols and flavones), 

a double bond in O1–C2 and another in C3–C4 (anthocyanidins). 

-Glu–Cys ligase gamma glutamate–cysteine ligase
GI gastrointestinal
GSH reduced glutathione
GSHpx glutathione peroxidase
GSSGred glutathione reductase
HO-1 heme oxygenase-1
Keap1 Kelch-like ECH-associated protein 1
NF-κB nuclear factor kappa B
NQO1 NAD(P)H:quinone oxidoreductase 1
Nrf2-Keap1 nuclear factor (erythroid-derived 2)-like 2
NSAID non-steroidal anti-inflammatory drugs
OAE onion peel aqueous extract
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PKC protein kinase C
PKCζ protein kinase C zeta type
Q-BZF 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone
Qox quercetin oxidation mixture
ROS reactive oxygen species
SOD superoxide dismutase
TEER transepithelial electrical resistance
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