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Abstract 

In this paper, our main aim is to show a better dimension reduction process from several existed 

techniques. To verify it we start with most useful singular value decomposition to reduce the 

dimensionality of data to incorporate principal components. On the other hand, we classify data in 

advance to work out Fisher’s discriminant. From many real-world examples, we will set a very 

well-known paradigm of analysis using PCA, FDA and simple projection to recognize people from 

their facial images. We will consider that we have some images of known people that can be used 

to compare and recognize new images (of the same set of face images). Moreover we will show 

graphical and tabular representation for average performance of correct recognition as well as 

analyze the effectiveness of three projections.  
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Introduction 

By the advancement of technology, people are using internet for interchanging millions of photos 

every day from one to another part of the world, where data reductions are used to send file long 

distance with in minimum period of time. In the medical science physicians are detecting body 

organs, tumor cells and complex physical phenomena by optical fibers and where image 

processing is quite useful. One of another important sector of image processing is meteorology 

where it processes satellite sending images to do daily weather forecasting or finding climate 

change. There are many other sectors such as military surveillances, underwater search, satellite 

navigation etc. Suppose there are millions of images in the database of NSA, but they do not have 

clear image of the suspect (or suspects). Their main aim is to find the image (or multiple images) 

of particular scene and identify object of interest in the image (or images). In the paper of digital 
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image processing (Twogood and Sommer 1982) showed example on medical radiology. It has 

been quite a while that researchers are finding better method to show images more clearly in 

different sectors. Here we introduced three existing methods and we gave a consultancy to the 

researcher that which method should apply. One of the mostly used method is Fisherfaces which 

derives from fisher’s discriminant analysis (R.A. Fisher 1936) or simply we say LDA (R. Duda 

and P. Hart 1973). Apart from FDA/LDA we use dimensionality reduction technique which 

produces projection directions that maximize the total scatter across all classes; known as principal 

component analysis or PCA.  

Methodology  

As images are very high dimensional, it is not easy to analyze them directly. Some common 

approaches are to reduce their diminution using principal component analysis (PCA), Fisher’s 

discriminant analysis (FDA), and other similar methods. Both PCA and LDA are linear 

transformation methods. PCA yields the directions (principal components) that maximize the 

variance of the data, whereas LDA also aims to find the directions that maximize the separation 

(or discrimination) between different classes, which can be useful in pattern classification problem 

such as image recognition.  

Our main problem is arising from 𝑌 = 𝑋𝛽 + 𝜀  where 𝑌 𝑖𝑠 𝑛 × 1 column matrix, 𝑋 𝑖𝑠 𝑛 × 𝑝 matrix 

and 𝜀 is 𝑛 × 1 matrix. If we ignore the error term and compare it with system of linear equation of 

the standard form 𝐴𝑋 = 𝑏 then for 𝑛 > 𝑝, the system is overdetermined and we consider it as 

Linear least square problems (to solve it, we us Gram Schmidt process, QR factorization, 

Householder, etc), but when 𝑛 < 𝑝 then the system becomes underdetermined and we use singular 

value decomposition shortly SVD to reduce the dimension of column of matrix 𝑋 from 𝑝 to smaller 

dimension (say,‘d’ for our case). PCA is one of the central uses of SVD. 

In our study, the main aim of a PCA analysis is to identify patterns in data; PCA aims to detect the 

correlation between variables. If a strong correlation between variables exists, the attempt to 

reduce the dimensionality only makes sense. In a sense PCA is all about finding the directions of 

maximum variance in high-dimensional data and project it onto a smaller dimensional subspace 

while retaining most of the information. 
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Mathematically, PCA is defined as an orthogonal linear transformation that transforms the data to 

a new coordinate system such that the greatest variance by the projection of the data comes to lie 

on the first coordinate (called the first principal component), the second greatest variance on the 

second coordinate and do on. Let’s say 𝑋 as,  

 

For any matrix 𝑋 ∈ 𝑅𝑛×𝑝, there exists an orthogonal matrices 𝑈 ∈ 𝑅𝑛×𝑛 and 𝑉 ∈ 𝑅𝑝×𝑝 such 

that  𝑈𝑇𝑋𝑉 = ∑ 

Where sigma= ∑ = diagonal (𝜎1, 𝜎2 … , 𝜎𝑛) ∈ 𝑅𝑛×𝑝  

𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0. The 𝜎𝑖′𝑠 are called the singular values of 𝑋 and the columns of 𝑈   

and 𝑉 are called left and right singular vectors of 𝑋 rexpectively.  

For 𝑛 singular values, 𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ ⋯ ≥ 𝜎𝑑 ≥ 𝜎𝑑+1 = 𝜎𝑑+2 … 𝜎𝑛 = 0. Where 𝑑 is positive 

singular value, others are zero. Now the rank of our original marix 𝑋 is 𝑑 (Figure-1). Range of X 

is the span of 𝑢1, 𝑢2, … , 𝑢𝑑 which is equal to 𝑑. Originally we had the dimension of 𝑋 was 𝑛 × 𝑝 

and now it is 𝑛 × 𝑑. Statistically, number of date is reduced from 𝑝 to 𝑑. Now, 𝑈𝑇𝑋𝑉 = ∑  

becomes  

𝑋 = 𝑈∑𝑉𝑇, that’s meaning, in original data we had 𝑝 columns and now after SVD, we obtain 𝑑 

columns.  
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Figure-1: Full singular value decomposition to reduced singular value decomposition 

Now we can use principal component analysis (PCA) using this SVD technique. Originally, our 

𝑋 is like a column form 

𝑋 = (

𝑋1

𝑋1

⋮
𝑋𝑛

) ∈ 𝑅𝑝 

With mean zero and covariance 𝐾. But now it is reduced by 𝑋 ∈ 𝑅𝑑 which is our principal 

component. Please note, if 𝑋  is not 0 then we should use 𝑋 − 𝐸(𝑋) for normalization. 

Now the covariance matrix is 𝐾 which looks like 

𝐾 = (
𝑐𝑜𝑣(𝑋1, 𝑌1) ⋯ 𝑐𝑜𝑣(𝑋1, 𝑌𝑛)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑋𝑛, 𝑌1) … 𝑐𝑜𝑣(𝑋𝑛, 𝑌𝑛)

) 

Covariance matrix is obtained by 𝑐𝑜𝑣(𝑋) = 𝐾.  

Suppose 𝑈 be the 𝑝 × 𝑝 orthogonal matrix such that the elements of the vectors 𝑍 = 𝑈𝑇𝑋 are 

uncorrelated. The uncorrelated elements of the vector 𝑍 = 𝑈𝑇𝑋 are called the component of 𝑋. 

So, our moto is to find this  𝑈 which can be obtained from the SVD of covariance matrix 𝐾. 

Precisely, 𝑐𝑜𝑣(𝑍) = 𝑈𝑇𝑐𝑜𝑣(𝑋)𝑈 = 𝑈𝑇𝐾𝑈 = ∑. Now we can compare this SVD.  

Thus 𝑍𝑖 = 𝑈𝑖
𝑇𝑋 is the principal component. More elaborately (𝑍1, 𝑍2, … ) and (𝑈1, 𝑈2, … ) are the 

principal components and directions respectively. Here, 𝑍1is the largest variance and 𝑍2is the 

second largest and so on. So, we can reduce the algorithm of PCA of given data as bellows where 

𝑋 denotes an independent observation vector ′𝑋′. Finding the sample covariance 𝐾 ∈ 𝑅𝑝×𝑝 then 

compute the SVD of  𝐾 to obtain orthogonal matrix 𝑈 ∈ 𝑅𝑑×𝑛. Then we define principal directions 

by choosing first column of 𝑈. Thus the principal component is  

𝑍𝑑×1 = 𝑈𝑑×𝑛
𝑇 𝑋𝑛×1 

Note that, if we have more correlated data then 𝑑 will be very smaller than  𝑛.  
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Figure-2: Principal component analysis 

One of the most useful demonstration of PCA is the so-called Eigen faces example. There are two 

sets of images considered for this particular study. One is known as training set; these images are 

already identified and labeled by some experts, say humans and the second one is test images; 

these are new images which are need to be identified and labeled. Our aim is to use the similarities 

between the test and training images to label the test images. 

Linear Discriminant Analysis (LDA) is a handful technique for dimensionality reduction technique 

in the pre-processing step for pattern-classification and machine learning applications. It will 

project a dataset onto a lower-dimensional space with good class-reparability in order avoid 

overfitting (“curse of dimensionality”) and also reduce computational costs. Ronald A. Fisher 

formulated the Linear Discriminant in 1936 (The Use of Multiple Measurements in Taxonomic 

Problems), and it also has some practical uses as classifier. The original linear discriminant was 

described for a 2-class problem, and it was then later generalized as “multi-class Linear 

Discriminant Analysis” or “Multiple Discriminant Analysis” by C. R. Rao in 1948. The general 

LDA technique is congruent to a PCA, but in addition to finding the component axes that maximize 

the variance of our data (PCA), we are additionally interested in the axes that maximize the 

separation between multiple classes (LDA). 

In LDA, the goal is to separate and characterize the observation after the projection. Similar 

observation should be closer and un-similar observation should be separated. In case of multiple 

class, let us take 𝐶1, 𝐶2, … , 𝐶𝑚 be m sets that partition. �̂� into 𝑚 classes. 
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Figure-3: Linear Discriminant Analysis for 2- class 

We are given, 𝑁𝑗 observations from class labeled by 𝐶𝑗. That is 𝑋𝑖
𝑗
 𝜖 𝐶𝑗 for 𝑖 = 1,2, … , 𝑁𝑗  & 𝑗 =

1,2, … , 𝑚 

Suppose, we have 𝐶𝑗 class  

𝐶1 = 𝑋1
1, 𝑋2

1, … , 𝑋𝑁1

1 → 𝜇1 𝜖 𝑅𝑛 

𝐶2 = 𝑋1
2, 𝑋2

2, … , 𝑋𝑁1

2 → 𝜇2 𝜖 𝑅𝑛 

… 

𝐶𝑚 = 𝑋1
1, 𝑋2

1, … , 𝑋𝑁1

1 → 𝜇𝑚 𝜖 𝑅𝑛 

Each 𝑋𝑖
𝑗

 ∈  𝑅𝑛 , the 𝑖𝑡ℎ observation in the 𝑗𝑡ℎ class. Let, 𝜇𝑗 be the mean of observation in class 

𝐶𝑗.  

𝜇𝑗 =
1

𝑁𝑗
∑ 𝑋𝑖

𝑗

𝑁𝑗

𝑖=1

 ∈  𝑅𝑛 

A matrix captures the separation between the classes in the between class scatter matrix.  

𝑆𝐵 = ∑(𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)
𝑇

𝑚

𝑗=1

 ∈  𝑅𝑛×𝑛 

Where 𝜇 =
1

𝑚
∑ 𝑢𝑗

𝑚
𝑗=1  

A matrix captures the average separate between elements within same class is captured by the 

within class scatter matrix.  
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𝑆𝑤 = ∑ (∑(𝑋𝑖
𝑗

− 𝜇𝑗)(𝑋𝑖
𝑗

− 𝜇𝑗)
𝑇

𝑁𝑗

𝑖=1

)

𝑚

𝑗=1,𝑖=1

 ∈  𝑅𝑛×𝑛 

Now our goal is to find the projection,  𝑍 = 𝑈𝑇𝑋. The between class scatter matrix because 

𝑆𝐵
𝑍 = 𝑈𝑇𝑆𝐵𝑈 

The within class scatter matrix becomes  

𝑆𝑤
𝑍 = 𝑈𝑇𝑆𝑤𝑈 

Now the goal is to choose 𝑈 that maximizes the following function 

𝑓(𝑈) =
𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝑆𝐵

𝑍)

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝑆𝑤
𝑍 )

     

                                     =
det (𝑈𝑇𝑆𝐵𝑈)

det (𝑈𝑇𝑆𝑤𝑈)
 
↑

↓
 ; therefore 𝑓(𝑈) ↑ 

The optimal projection is  �̂� = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓(𝑈)); 𝑤𝑖𝑡ℎ 𝑈 ∈ 𝑅𝑛×𝑑. Now, we have to find 𝑈 that the 

quantity �̂� maximize. �̂� can be solved as the generalized eigenvalue problem where we calculate 

𝑆𝐵�̂�𝑖 = 𝑒𝑖𝑆𝑤�̂�𝑖; 𝑒𝑖 represents the eigenvalues of the transformation matrix 𝑈. If 𝑆𝐵 is nonsingular 

then we can find corresponding eigenvector by calculating 𝑈 = 𝑆𝐵
−1𝑆𝑤. In our case we will use 

building MATLAB code to find eigenvector.  

In this study, we compute the principal component (PCA) of training images and project them 

down to the smaller size. That is, each training image is now represented by a small vector size 𝑘. 

For the test image, we can project them down to a 𝑘 vector, using the same projection and then we 

find the nearest image in the training set by computing 𝑘 vectors. In case of FDA, the low 

dimensional projection is determined by using scatter matrices.   

We will assume 𝑛2 training images each for 𝑛1 people in our database. The size of each image is 

𝑠1 × 𝑠2. These images are taken at different orientations, different facial expressions etc.  

There are two parts to the procedure. One is to analyze the training images and compute a 

projection to their principal 𝑘 −dimensional subspace and comparing with training data. In this 

work we will start from the following.  
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Let us consider vector in a matrix size (𝑠1 × 𝑠2) × (𝑛1 × 𝑛2) is the arrangement of training images 

and we call it 𝑌𝑡𝑟𝑎𝑖𝑛. First 𝑛2 columns are images of person  1, and next 𝑛2 columns are images of 

person  2, and so on, with a total of 𝑛1 × 𝑛2 columns. Then we use PCA, FDA and Simple 

projection and we compare these three procedure.  

To perform PCA from our dataset 𝑌𝑡𝑟𝑎𝑖𝑛, we need to calculate SVD and designate 𝑈1 be the first 

𝑘 columns of the orthogonal matrix 𝑈. The size of 𝑈 is now (𝑠1 × 𝑠2) × 𝑘. 

Now we will use FDA, where we still consider PCA to reduce the size of our data 𝑌𝑡𝑟𝑎𝑖𝑛 from 

(𝑠1 × 𝑠2) × (𝑛1 × 𝑛2) to 𝑑 × (𝑛1 × 𝑛2), where 𝑑 =
𝑛1×𝑛2

2
. So, we get a new matrix and let us call 

it  �̃�𝑡𝑟𝑎𝑖𝑛 and call the (𝑠1 × 𝑠2) × 𝑑 projection matrix 𝑈0. Use all the vectors from the same person 

as observations from the same cluster. In �̃�𝑡𝑟𝑎𝑖𝑛, the first 𝑛2 columns designate the first person, the 

second 𝑛2 columns designate the second person, and so on. We have two scatter matric, one is 

between class and another is with-in class scatter matrices, and use the generalized eigen 

decomposition to find 𝑘 eigen vectors that correspond to the largest eigen values. So, we get this 

result as a matrix form and say it submatrix 𝑉. Now we find the orthogonal columns 𝑑 × 𝑘 matrix. 

Define a (𝑠1 × 𝑠2) × 𝑘 orthogonal matrix 𝑈1 = 𝑈0𝑉. 

We will use simple projection for comparison with PCA and FDA. In this case, we will take 

another projection where 𝑈1 is simply first 𝑘 columns of (𝑠1 × 𝑠2) identity matrix.  

Now, we will repeat the followings for upper three cases one by one. We will use the 

projection 𝑌1 = 𝑈1
𝑇 𝑌𝑡𝑟𝑎𝑖𝑛 with size 𝑘 × (𝑛1 × 𝑛2), which simplify each image in  𝑌𝑡𝑟𝑎𝑖𝑛 in a 

reduced form of 𝑘 −dimensional vector. After using this procedure for each cases we can perform 

classification. We have 𝑛2 test images per person and the test data set 𝑌𝑡𝑒𝑠𝑡 is in the same form as 

the training data set  𝑌𝑡𝑟𝑎𝑖𝑛. We will take an image 𝐼 randomly from the test set which represents 

a random column from 𝑌𝑡𝑒𝑠𝑡 actually. Projection of 𝐼 can be found from 𝐼1 = 𝑈1
𝑇𝐼 where 𝐼1 is a 

𝑘 × 1 vector. Using 𝑙2 norm we can find the distance between 𝐼1 and each column of  𝑌1. Now, to 

find the label of the column that has the smallest distance to 𝐼1. If this label matches the true label 

then our recognition is successful otherwise it is a failure. For computing the percentage of 

successful recognition 𝐹(𝑘), we perform the above procedure 500 times, which will also give us 

the average performance of upper three methods. After plotting 𝑘 against each of the three 

projection we can easily discuss the performance.  
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Figure-4: Paradigm of 5 different Eigen faces for test and train datasets 

For these image the image size is 𝑠1 = 28 and 𝑠2 = 23 where 𝑛1 = 40 which is the number of 

people. The number of training images per person is 𝑛2 = 5. So we have the matrix size of  𝑌𝑡𝑟𝑎𝑖𝑛 

is (𝑠1 × 𝑠2) × (𝑛1 × 𝑛2), i.e. (28 × 23) × (40 × 5). We take  5 different training as well as test 

images from data set and compare them with each other. 

Result discussion: 

We have summarized the result by using table and graphs. Then we will show an example of sets 

of images when the dimensionality parameter 𝑘 changes then the performance 𝐹(𝑘) becomes 

improved so that the quality of image gets better.  We demonstrate it by few examples using test 

images and the closest images in the training set finally.  

 

Table 1: Representation of average performance of correct recognition 𝐹(𝑘) versus the number 𝑘 

for three cases. 

𝑘 𝐹𝑃𝐶𝐴(𝑘) 𝐹𝐹𝐷𝐴(𝑘) 𝐹𝑆𝑃(𝑘) 𝑘 𝐹𝑃𝐶𝐴(𝑘) 𝐹𝐹𝐷𝐴(𝑘) 𝐹𝑆𝑃(𝑘) 

1 0.114 0.12 0.162 21 0.876 0.836 0.45 

2 0.414 0.228 0.19 22 0.872 0.868 0.462 

3 0.554 0.438 0.248 23 0.86 0.816 0.464 

4 0.608 0.54 0.214 24 0.86 0.862 0.486 
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5 0.648 0.614 0.246 25 0.862 0.858 0.48 

6 0.676 0.622 0.334 26 0.864 0.824 0.46 

7 0.752 0.666 0.38 27 0.864 0.872 0.514 

8 0.752 0.746 0.398 28 0.882 0.868 0.52 

9 0.81 0.782 0.41 29 0.896 0.892 0.566 

10 0.846 0.778 0.426 30 0.87 0.9 0.584 

11 0.83 0.778 0.408 31 0.872 0.886 0.584 

12 0.834 0.792 0.476 32 0.9 0.888 0.578 

13 0.818 0.84 0.474 33 0.868 0.876 0.574 

14 0.868 0.838 0.504 34 0.884 0.878 0.602 

15 0.862 0.85 0.484 35 0.868 0.902 0.572 

16 0.832 0.818 0.45 36 0.872 0.912 0.602 

17 0.81 0.828 0.474 37 0.854 0.888 0.598 

18 0.842 0.856 0.48 38 0.878 0.878 0.534 

19 0.844 0.868 0.478 39 0.846 0.894 0.598 

20 0.842 0.852 0.484 40 0.888 0.916 0.662 

 

Observation we wish to make from Table-1 is that regarding our training datasets has to do with 

relative behavior of Simple projection (SP), FDA and PCA as the dimensionality parameter 𝑘 

becomes larger. The performance of these transforms gets better as the value of 𝑘 increases. What’s 

the difference between the three is that while the recognition rate with PCA  

saturates around 11.4% to 88.8% when 𝑘 varies from 1 to 40 while the performance of simple 

projection vary widely from PCA and FDA. For the experiments under discussion, the average 

performance of correct recognition best for 𝐹𝑃𝐶𝐴(𝑘) = 90% when 𝑘 = 32, 𝐹𝐹𝐷𝐴(𝑘) =

91.6% when 𝑘 = 40, 𝐹𝑆𝑃(𝑘) = 66.2% when 𝑘 = 40. From the table we can conclude that the 

values of 𝐹(𝑘) is increasing with the increment of 𝑘 where FDA shows relatively best performance 

and SP reflects weaker performance. However the performance of PCA is quite similar to FDA.  
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Figure-5: Variation between percentage of successful recognition 𝐹(𝑘) and the number 𝑘 

Here we calculate the average performance. After performing PCA, FDA and Simple projection 

500 times and computing the percentage of successful recognition, we draw the graph of 

𝑘 versus  𝐹(𝑘). Figure-5 shows LDA is the most proficient technique compared to other two 

techniques. In fact, LDA > PCA > SimPro in our experiment. The performance of FDA is strictly 

increasing up to almost 55% when 𝑘  runs up from 0 to 3 continuously, then there are some 

fluctuations of performances with some small ups and downs.  FDA achieves almost 91.6% 

accuracy when dimensionality parameter 𝑘 becomes 40 which shows best performance in our 

analysis. In case of PCA, 𝐹(𝑘) represents 90%  efficiency when 𝑘 is 32 and then it again declines 

a little and fluctuates close to  88.8% till 𝑘  becomes 40. Performance graph of FDA and PCA 

intersect each other as they both show similar performances. FDA and PCA both shows most of 

its up grading performance when dimensionality 𝑘 lays in the interval form 0 to 10 and then they 

stay in a constant rate almost in the rest of the interval. Hence Simple Projection (SimPro) does 

not represent good performance compared to other two method. However, Simple projection 

method also reveals a upward trend of the performance with dimensionality.  

To validate our numerical results in table and graphical results with real image, as we want to use 

our method (PCA, FDA and SP) to recognize new images and compare them with some images of 



12 
 

known people. For this case, we have chosen different 𝑘   values such as 4, 27, 40 and take a person 

(say person 2) from test image and compare with our experiment using train images. Figure-6 is 

indicating the perfection of our study.  

 

Figure-6: Comparison of Eigen faces using test images with PCA, FDA and SP performed 

images 

Conclusion 

In this study, PCA, FDA and simple projection have been executed for face recognition. Although 

people might think that LDA always outperform PCA since LDA deals directly with class 

separation, empirical evidence suggests otherwise. PCA might outperform LDA when the number 

of samples per class is small or when the training data non-uniformly sample the underlying 

distribution. For our face recognition problem, underlying distributions for different classes are 

unknown. So, in practice it would be difficult to assertion whether or not the available training 

data is adequate for the job. The analysis we report validate our claim. That is, PCA is better 

performing than FDA. In addition, simple projection is easy to compute but which shows relatively 

less performance than PCA and FDA.  
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                                                                   Appendix 

Used codes 

close all; 

clear all; 

  

load TrainImages.mat; 

  

load TestImages.mat; 

  

% Computing the PCA of Ytrain 

  

[U S V]=svd(Ytrain);   %SVD of Ytrain 

  

[~,Index]=classifier(Ytrain,Ytest); % labeling the testing dataset 

  

    for k=1:40  

        tm=0; 

        fm=0; 

        for m=1:500 

         

            U1=U(:,1:k); % U1 is the 1st k columns of the orthogonal matrix U 

            Y1=U1'*Ytrain;  % Ytrain reduced to a k-dimensional vector using 

the projection 

            %randomly choosing an image from the Ytest 

            idx=randsample(200,1); 

            I=Ytest(:,idx); 

            I1=U1'*I;   % projection of I 

            T_index=Index(idx); %index of our desired image in Ytrain data 

            [~,ridx]=classifier(Y1,I1); % index of the recognized image 

            if ridx==T_index 

                tm=tm+1; 

            else 

                fm=fm+1; 
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            end  

        end  

        tm; 

        F_PCA(k)=tm/500; 

    end   

figure(1); 

plot(F_PCA,'r--'); 

%Computing the FDA of Ytrain 

  

d=200/2;  % define d acording to our problem given 

  

U0=U(:,1:d); % computation of the projection matrix 

  

Ytrain_new=U0'*Ytrain;  % constructing the new training matrix 

  

[V,lambda]=lda(Ytrain_new); %calculation of the matrix V 

  

V=orth(V);  %to make the column orthogonal 

  

for k=1:40  

        tm=0; 

        fm=0; 

        for m=1:500  

            V1=V(:,1:k); 

            

            U1=U0*V1; %orthogonal matrix 

            

            Y1=U1'*Ytrain;  %projected reduced Ytrain data 

            

            idx=randsample(200,1);  %randomly selecting image from test data 

set  

            I=Ytest(:,idx); 

            I1=U1'*I;   % projection of I 

            T_index=Index(idx); %index of our desired image in Ytrain data 

            [~,ridx]=classifier(Y1,I1); % index of the recognized image 

            if ridx==T_index 

                tm=tm+1; 

            else 

                fm=fm+1; 

            end  

        end  

        tm; 

        F_FDA(k)=tm/500; 

end 

hold on; 

plot(F_FDA,'g'); 

  

%Computing the Simple Projection of Ytrain 

%finding projections for different values of k(after reducing the dimension) 

  

U=eye(644); 

  

    for k=1:40  

        tm=0; 

        fm=0; 

        for m=1:500 
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            U1=U(:,1:k);  %orthogonal matrix 

             

            Y1=U1'*Ytrain; %projected reduced Ytrain data 

            

            idx=randsample(200,1); %randomly selecting image from test data 

set  

            I=Ytest(:,idx); 

            I1=U1'*I;   % projection of I 

            T_index=Index(idx); %index of our desired image in Ytrain data 

            [~,ridx]=classifier(Y1,I1); % index of the recognized image 

            if ridx==T_index 

                tm=tm+1; 

            else 

                fm=fm+1; 

            end  

        end  

        tm; 

        F_Simple(k)=tm/500; 

    end 

    hold on; 

    plot(F_Simple,'b--o'); 

    

    legend('PCA','FDA','SimPro'); 

    xlabel('k'); 

    ylabel('F(k)'); 

    title('Variation of F(k) versus k') 

  T=table(F_PCA',F_FDA',F_Simple'); 

 

function [V,lambda]=lda(X) 

muj=zeros(100,40); 

for i=1:100; 

    for j=1:40 

        muj(i,j)=mean(X(i,(j-1)*5+1:j*5)); 

    end  

end 

  

mu=zeros(100,1); 

for i=1:100 

    mu(i)=mean(muj(i,:)); 

end 

  

SB=zeros(100,100); 

  

SW=zeros(100,100); 

  

for j=1:40 

    SB=SB+(muj(:,j)-mu)*(muj(:,j)-mu)'; 

    for i=1:5 

        SW=SW+(X(:,i)-muj(:,j))*(X(:,i)-muj(:,j))'; 

    end 

end 

  

% finding the generalized eigen vectors and eigenvalues 

[V,D]=eig(SB,SW); 

lambda=diag(D); 

[lambda, SortOrder]=sort(lambda,'descend'); 
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V=V(:,SortOrder); 

 

 

function [minval,index]=classifier(Ytr,Yts)  

    [k,m]=size(Ytr);  

    [l,n]=size(Yts);  

    d=zeros(n,m); 

    for i=1:n 

        for j=1:m 

            d(i,j)=(Yts(:,i)-Ytr(:,j))'*(Yts(:,i)-Ytr(:,j));  

        end 

    end 

    [minval,index]=min(d,[],2); 

end 

 

 

close all; 

clear all; 

  

load TrainImages.mat; 

  

load TestImages.mat; 

X=Ytrain; % consider it 

  

[~,Index]=classifier(Ytrain,Ytest); % get the labels of the testing set 

  

subplot(2,5,1) 

%reshaping the images 

I=reshape(Ytest(:,1),28,23); 

%constructing the images 

figure(1); 

imagesc(I); 

colormap gray; 

axis equal off; 

title ('Test Eigenface-1'); 

  

subplot(2,5,2) 

%reshaping the images 

I=reshape(Ytest(:,11),28,23); 

%constructing the images 

figure(1); 

imagesc(I); 

colormap gray; 

axis equal off; 

title ('Test Eigenface-2'); 

  

subplot(2,5,3) 

%reshaping the images 

I=reshape(Ytest(:,21),28,23); 

%constructing the images 

figure(1); 

imagesc(I); 

colormap gray; 

axis equal off; 

title ('Test Eigenface-3'); 

  



18 
 

subplot(2,5,4) 

%reshaping the images 

I=reshape(Ytest(:,31),28,23); 

%constructing the images 

figure(1); 

imagesc(I); 

colormap gray; 

axis equal off; 

title ('Test Eigenface-4'); 

  

subplot(2,5,5) 

%reshaping the images 

I=reshape(Ytest(:,41),28,23); 

%constructing the images 

figure(1); 

imagesc(I); 

colormap gray; 

axis equal off; 

title ('Test Eigenface-5') 

%%%%%%%%%%%% Ytrain Images %%%%%%%%%%%%%%%%%%%%%%% 

  

subplot(2,5,6) 

%reshaping the images 

I=reshape(Ytrain(:,Index(1)),28,23); 

%constructing the images 

figure(1); 

imagesc(I); 

colormap gray; 

axis equal off; 

title ('Train Eigenface-1'); 

  

subplot(2,5,7) 

%reshaping the images 

I=reshape(Ytrain(:,Index(11)),28,23); 

%constructing the images 

figure(1); 

imagesc(I); 

colormap gray; 

axis equal off; 

title ('Train Eigenface-2'); 

  

subplot(2,5,8) 

%reshaping the images 

I=reshape(Ytrain(:,Index(21)),28,23); 

%constructing the images 

figure(1); 

imagesc(I); 

colormap gray; 

axis equal off; 

title ('Train Eigenface-3'); 

  

subplot(2,5,9) 

%reshaping the images 

I=reshape(Ytrain(:,Index(31)),28,23); 

%constructing the images 

figure(1); 

imagesc(I); 
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colormap gray; 

axis equal off; 

title ('Train Eigenface-4'); 

  

subplot(2,5,10) 

%reshaping the images 

I=reshape(Ytrain(:,Index(41)),28,23); 

%constructing the images 

figure(1); 

imagesc(I); 

colormap gray; 

axis equal off; 

title ('Train Eigenface-5'); 

subplot(3,4,1) 
%reshaping the images 
I=reshape(Ytest(:,6),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('test image'); 

  
subplot(3,4,2) 
%reshaping the images 
I=reshape(Ytrain(:,73),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('PCA'); 

  
subplot(3,4,3) 
%reshaping the images 
I=reshape(Ytrain(:,63),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('FDA'); 

  
subplot(3,4,4) 
%reshaping the images 
I=reshape(Ytrain(:,137),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('SP'); 

  
subplot(3,4,5) 
%reshaping the images 
I=reshape(Ytest(:,6),28,23); 
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%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('test image'); 

  
subplot(3,4,6) 
%reshaping the images 
I=reshape(Ytrain(:,7),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('PCA'); 

  
subplot(3,4,7) 
%reshaping the images 
I=reshape(Ytrain(:,7),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('FDA');  
subplot(3,4,8) 
%reshaping the images 
I=reshape(Ytrain(:,10),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('SP'); 
subplot(3,4,9) 
%reshaping the images 
I=reshape(Ytest(:,6),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('test image'); 

  
subplot(3,4,10) 
%reshaping the images 
I=reshape(Ytrain(:,7),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('PCA');  
subplot(3,4,11) 
%reshaping the images 
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I=reshape(Ytrain(:,7),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('FDA');  
subplot(3,4,12) 
%reshaping the images 
I=reshape(Ytrain(:,10),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('SP'); 

 

End 


