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Revisiting the physics of Fano resonances for nanoparticle oligomers
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We present a robust approach for interpreting the physics of Fano resonances in planar oligomer structures of

both metallic and dielectric nanoparticles. We reveal a key mechanism for Fano resonances by demonstrating

that such resonances can be generated purely from the interference of nonorthogonal collective eigenmodes,

which are clearly identified based on the coupled-dipole approximation. We prove analytically a general theorem

to identify the number of collective eigenmodes that can be excited in ring-type nanoparticle oligomers and

further demonstrate that no dark-mode excitation is necessary for the existence of Fano resonances in symmetric

oligomers. As a consequence, we unify the understanding of Fano resonances for both plasmonic and all-dielectric

oligomers.
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I. INTRODUCTION

Recently, a lot of attention has been paid to the physics

of Fano resonances [1] in nanoscale oligomer structures com-

posed of plasmonic nanoparticles. The current understanding

of Fano resonances in these symmetric oligomers relies on an

interference of super- and subradiant collective modes, such

as those created from the interaction between a symmetric

ring of nanoparticles and a single central nanoparticle [2–4].

With very few exceptions [5,6], this interference is described

for specific plasmonic oligomers, where a directly excited

superradiant mode interferes destructively with an indirectly

excited “dark mode” (or trapped mode). By dark mode we

refer to any mode that cannot couple directly with an incident

plane wave. More formally, when given an oligomer’s sym-

metry group, if the irreducible representation of a particular

mode is mutually exclusive to the irreducible (or reducible)

representation of the incident field, then that mode cannot be

excited by the incident field, and it is defined as dark [7].

However, we use a common extension to this definition and

also consider dark modes as being modes whose projection

onto the incident field is zero. Thus, such dark modes cannot

couple directly to the incident field, although they may

transform according to the same irreducible representation

as the incident field. The current understanding is that the

latter form of dark modes can still be excited in symmetric

oligomers through the coupling to a bright plasmonic mode

via near-field hybridization [3,8–19]. While the concept of

dark modes inducing Fano resonances in oligomer structures

has been discussed in many studies [20–23], the associated

definition of the system’s modes is deduced from molecular

analogues that do not fully resemble the electromagnetic

coupling in oligomer systems. For this reason, such modes

do not represent the real eigenmodes of the oligomer system.

This observation has led to the necessary distinction between

bare (approximate) and dressed (real) modes in the existing

literature when regarding plasmon hybridization from the

perspective of quantum optics [5,14,24,25].
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Recently, it was predicted that Fano resonances should also

occur in all-dielectric symmetric oligomers [26] despite the

absence of the necessary hybridization of modes required to

excite dark modes. As such, this development calls for the

study of different mechanisms that also lead to Fano-type

interference and resonances.

By revisiting the mechanisms that underpin the general

optical properties of oligomer structures, in this paper we

present a general symmetry theory for analyzing their electric

and magnetic responses. We show that generic oligomer struc-

tures can be characterized entirely in terms of distinct electric

and magnetic collective eigenmodes. In this approach, we are

able to unify both plasmonic and all-dielectric oligomers. We

are then able to build upon work by Frimmer et al. [5] to

show conclusively that Fano resonances created in symmetric

oligomers can be explained entirely in terms of interference

of these eigenmodes. Importantly, this theory does not rely

on the hybridization of modes, and any mode can only be

reliably excited if it couples with an incident field. Therefore,

only bright eigenmodes will be excited except in accidental

cases. To demonstrate this finding, we revisit experimental

results that demonstrated Fano resonances in gold heptamers

and show that they occur purely due to the interference of

the system’s bright eigenmodes and do not involve dark-mode

interference, with which they were previously attributed.

We are further able to address the types of oligomer

systems that can support Fano resonances on the basis that

two or more nondegenerate eigenmodes must be excited to

permit an interference. We prove that the response of any

symmetric ring-type oligomer consisting of arbitrarily many

nanoparticles will be described by precisely two nondegener-
ate eigenmodes. Subsequently, we are able to conclude and

numerically demonstrate that ring-type oligomers can support

Fano resonances as well. This idea seems to contradict current

understanding of the origin of Fano resonances in oligomers,

where it is typically shown that the removal of a central particle

should destroy the resonance [20,27]. The common practice

of adding a central particle to an oligomer system is then

reevaluated as simply increasing the number of (excitable)

nondegenerate eigenmodes in the nanoparticle system.
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To amplify the full implications of this eigenmode theory

we also consider all-dielectric oligomers where the individual

constituent particles have nontrivial electric and magnetic

responses [28–32]. We provide formal and rigorous definitions

of the distinct electric and magnetic eigenmodes present in

these systems. As such, we are able to precisely define and

justify the existence of purely magnetic Fano resonances in

terms of the physics discussed in this paper. Subsequently,

there is immediate relevance of this theory to the emerging

field of all-dielectric nanophotonics as it provides an explicit

theoretical framework for analyzing both electric and magnetic

responses in oligomers. However, it is also worth acknowledg-

ing that the generality of our approach makes it important to

broader fields, including molecular optics and antenna design.

II. EIGENMODE ANALYSIS OF OLIGOMERS

The modes of plasmonic oligomer structures are typically

understood based on their electric dipole moments or surface

charge distributions [14,16,19], and therefore, the analysis of

these modes can be carried out from the perspective of the

coupled-dipole approximation [33–35]. In this approximation,

the incident field |E0〉 can be linked to the induced dipole

moments |p〉 using an interaction matrix M̂:

|E0〉 = M̂|p〉. (1)

Here the use of the bra-ket notation for the incident field and

dipole moments is simply to emphasize that each state is the

concatenation of all the dipole-moment vectors in the given

system. In the following, we derive constraints for a general

oligomer’s basis vectors and then eigenmodes using the group

theory. In this regard, it has previously been shown that the

interaction matrix must transform according to the symmetry

group of the corresponding system’s geometry [36]. The

particular symmetry group of the oligomers we are interested

in is DNh, where N is arbitrary. Therefore, the components

of a normally incident electric field E0,x and E0,y transform

according to the irreducible representation E ≡ E′
1 (E1u) for

odd (even) N [37]. Then we consider the in-plane components

of the electric dipole moments as transforming according to

some reducible representation P . Formally, the number of

nondegenerate eigenmodes interacting with the electric field is

given by the number of times the irreducible representation E

is contained in P [37]. From this, we can deduce the dimension

of the space that spans all responses of the system to such an

incident field, given that each associated eigenmode is doubly

degenerate because E has a rank of 2.

Let’s consider a plane wave that is normally incident on

an oligomer that contains a symmetric ring of N particles, the

particles of which are located at the points

ri = −r sin ϕiex + r cos ϕiey, (2a)

ϕi =
2π

N
(i − 1), i = 1, . . . ,N. (2b)

The basis vectors for the response of this ring can then be

determined by using the projection-operator technique [37,38].

Moreover, we apply all projection operators to some initial

state |e〉 in order to produce different linear combinations of all

the basis vectors associated with the irreducible representation

E and subsequently deduce the dimension of space of the

corresponding responses. Now we note that a dipole moment

at the location of one particular particle is moved through every

location on the ring by symmetric rotations. As such, an initial

state that has a dipole moment at only one location on the

ring must be linearly independent from all its symmetrically

rotated versions. By extrapolation, two such initial states that

occupy the one location and are linearly independent will, in

conjunction with their respective symmetry-rotated versions,

form a basis for a 2N -dimensional space. However, we are

only considering responses that transform according the E

irreducible representation and are thereby neglecting the z

direction; hence, the space of responses cannot have more than

2N dimensions. In other words, any response of the system that

transforms according to E will be spanned by the projections

of these two initial states. To this end we can define the initial

state |e〉 to have only one nonzero dipole moment at the

first particle and then apply the projection operators [39] to

obtain the subsequent polarizations of the other dipoles. For

the symmetry operations g and their matrix representations

D̂(g), the projection operator is defined as

P (E)
µν =

∑

g

D(E)
µν (g)g, (3)

where we neglect normalization. The idea is that the operator

P acting upon any state |p〉 will yield either a zero or a linear

combination of basis vectors that transform according to the

vector representation E. Hence, we can start with the formal

definition of our test state

|e〉 ≡ (e,0, . . . , 0) , e = (ex,ey,0). (4)

Here ex and ey are arbitrary in order to produce two linearly

independent initial states by varying the polarization of the

vector e. All possible basis vectors can then be deduced by

varying the indices µ and ν in P (E)
µν . For the following we also

introduce the notation to extract the ith dipole moment from a

state

[|p〉]i ≡ pi,xex + pi,yey, i = 1, . . . ,N. (5)

We have chosen to neglect the z direction given that there is

no operation in E that transforms an x- or y-polarized dipole

moment onto the z direction. Now, because there is only a

limited set of symmetry operators that will transform the first

particle’s dipole moment onto that of the ith particle, it can be

checked using the full nonlocal definitions [36] of each g that

[Pµν |e〉]i = Pµν,ie, (6a)

Pµν,i = [D̂(Ri)D̂(σv)]µνRiσv + D̂(Ri)µνRi, (6b)

where Ri is a local rotation by the angle ϕi , σv is a local

reflection about the yz plane, and their matrix representations

are

D̂(Ri) =
(

cos ϕi − sin ϕi

sin ϕi cos ϕi

)

, D̂(σv) =
(

−1 0

0 1

)

. (7)

Noticeably, in neglecting the z direction we have not consid-

ered the Riσh (also known as Si) or RiC2 operations; however,

these will be described by exactly the same symmetry opera-

tions and matrix representations as Ri and Riσv , respectively,

for E. For this reason, these extra terms can be neglected by

normalization. In summary, Eq. (6) is just a way to write the
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components of the operated states obtained by acting with Pµν

upon |e〉. However, it allows us to obtain explicit forms for the

matrix Pµν,i ,

P11,i =
(

2 cos2 ϕi 0

2 cos ϕi sin ϕi 0

)

,

(8a)

P12,i =
(

0 2 sin2 ϕi

0 −2 cos ϕi sin ϕi

)

,

P21,i =
(

2 cos ϕi sin ϕi 0

2 sin2 ϕi 0

)

,

(8b)

P22,i =
(

0 −2 cos ϕi sin ϕi

0 2 cos2 ϕi

)

.

Evaluating Eq. (6) then yields only four nonzero combina-

tions:

P11,iex =
(

2 cos2 ϕi

2 cos ϕi sin ϕi

)

,

(9a)

P21,iex =
(

2 cos ϕi sin ϕi

2 sin2 ϕi

)

,

P12,iey =
(

2 sin2 ϕi

−2 cos ϕi sin ϕi

)

,

(9b)

P22,iey =
(

−2 cos ϕi sin ϕi

2 cos2 ϕi

)

.

In this sense, we have shown that these four basis vectors

span all responses of the system that transform according

to the irreducible representation E. For later reference, it

is also worth noting that this approach will also hold for a

magnetic incident field and the associated responses, where

E ≡ E′′
1 (E1g) for even (odd) N . This would be done by simply

substituting in a negative version of σv (and σh) and following

the exact same argument as has just been presented here. In

any case, we have the freedom to create a more intuitive set

of basis vectors from linear combinations of the basis vectors

presented in Eq. (8) [40]:

p
(1x)
i =

1

2
√

N
(P11,iex + P12,iey) =

ex√
N

, (10a)

p
(1y)

i =
1

2
√

N
(P21,iex + P22,iey) =

ey√
N

, (10b)

p
(2x)
i =

1

2
√

N
(P11,iex − P12,iey)

=
1

√
N

[cos 2ϕiex + sin 2ϕiey], (10c)

p
(2y)

i =
1

2
√

N
(P21,iex − P22,iey)

=
1

√
N

[sin 2ϕiex − cos 2ϕiey]. (10d)

It is then relatively straightforward to see that mode 1x only

couples with the x-polarized wave and, similarly, mode 1y

only couples with the y-polarized wave, and modes 2x, 2y do

not couple with the incident field at all; in that sense we can

identify them as dark modes.

At this point we would like to acknowledge that we have

proven an important result: any response from a symmetric

ring of particles that transforms according to E (e.g., those

excited by a normal-incidence plane wave) will be spanned

by explicitly four linearly independent basis vectors. In

regard to eigenmodes, this means that any such response

will be described by no more than two doubly degenerate

eigenmodes, irrespective of how many particles the ring

contains. This is a generalization of previous results obtained

for particular values of N [12]. Moreover, what we have shown

here is that oligomers made of multiple rings contain two

doubly degenerate eigenmodes per ring. This agrees with the

existing studies of mechanical vibrations of the molecules.

For instance, the benzene molecule has two D6h rings made

of carbon and hydrogen atoms and four (doubly degenerate)

in-plane vibration modes in total [41]. We can also consider the

effect of a single central particle, the response of which will be

described by a single dipole moment vector at the origin. Such

an electric dipole moment must always transform according to

E (when neglecting the z direction once again), and therefore,

the space of the associated responses will increase by two,

which adds one more doubly degenerate eigenmode. So for

a given polarization of the incident wave, the number of

modes that can be excited in oligomers consisting of one

ring without (with) a central particle is restricted to only

two (three) modes. This is, counterintuitively, not dependent

on the number of particles in the ring that make up the

nanoparticle system. We stress here that the approach up to

now has not identified the eigenmodes of the system. What

is presented in Eq. (10) was obtained based solely on the

symmetry considerations and served to provide basis vectors

for the response. Equation (10) is, in fact, a generalization

of the existing understanding of modes in oligomers, and

it shows that mode hybridization is required to excite the

dark modes (2x and 2y). The opposing argument as to why

these deduced dark modes actually cannot exist in the real

system of eigenmodes is then somewhat subtle. The key is

that the symmetry approach produces orthogonal modes by

definition, whereas the interaction matrix [see Eq. (21) in the

next section], which describes the coupling between the dipole

moments of each particle, is non-Hermitian [42]. As such,

the eigenmodes of the system are not orthogonal except in

accidental cases. This means that the space spanned by the dark

basis vectors (2x and 2y) can be spanned by nonorthogonal

bright vectors in the real eigenmode system. In this sense the

projection operator approach has forced orthogonality onto

the space of the system’s responses and found dark basis

vectors by necessity. Moreover, an orthogonal basis which

includes the incident-field vectors (1x and 1y) requires that

the remaining basis vectors be orthogonal to the incident field.

Admittedly, this does not explicitly rule out the existence of

dark eigenmodes, which transform according to E, as we

discuss in the following section.

III. EXAMPLES OF NANOPARTICLE OLIGOMERS

In what follows, we present numerical simulations of the

excitation of electric and magnetic eigenmodes in different

plasmonic and all-dielectric oligomer structures to demon-

strate the application of our theory. Calculations are performed
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numerically using the coupled electric and magnetic dipole

approximation [33], where each constituent particle in an

oligomer is modeled as a single electric and magnetic dipole.

A full description of this model, including the definition of

the electric and magnetic eigenmodes, is provided in the next

section. Here we focus on the implications of the arguments

provided in the previous section. To first illustrate the argu-

ments on the number of eigenmodes that transform according

to E in a ring-type oligomer, we consider the simplest

system that meets the associated symmetry requirements: a

trimer with D3h symmetry. In Fig. 1, we show the extinction

spectra of plasmonic (silver) and dielectric (silicon) trimers

with their associated decomposition into both electric and

magnetic eigenmodes (the definitions of electric and magnetic

eigenmodes are provided in the following section). In doing

this decomposition, we notice that the magnetic modes have a

negligible role in the plasmonic trimer, whereas both electric

and magnetic eigenmodes are excited in the dielectric trimer.

In both cases, there are only two eigenmodes ever excited

by the incident field for the electric and magnetic cases,

which is in full agreement with our theory. The reason why

two, rather than four, eigenmodes are important for both

electric and magnetic responses is that the polarization of the

nondegenerate eigenmodes is defined to match the polarization

of the incident field, and hence, we only excite one eigenmode

in each doubly degenerate eigenspace.

We start with a silver trimer, supporting a not-so-

pronounced Fano resonance at the intersection of the two

electric eigenmodes. In other words, the Fano resonance

occurring at the point where two eigenmodes have equal

magnitude suggests that the interference of eigenmodes plays

an important role, especially given the electric dipole moment

profiles in Fig. 1(c) show that these eigenmodes are out of

phase with each other. Similarly, for the silicon trimer, there

exists a well-pronounced Fano line shape, but this time at the

equivalent intersection of two magnetic eigenmodes. Notice-

ably, the increase of the magnetic response also corresponds

to a reduction in the overall electric response, which is due to

the coupling between electric and magnetic dipoles. Further

intricacies of the dielectric system are apparent in that there is

also a (smaller) secondary interference line shape occurring at

the peak of the subradiant electric eigenmode, which interferes

with the superradiant electric eigenmode. That is to say, there

appears to be both electric and magnetic Fano-like interference

occurring in one trimer.

Additionally, it is also worth noting that there exists an

apparent relationship between the location of the single-

particle resonance and the location of the Fano resonance.

This is at least intuitive given that the subradiant modes

(modes ii and iv) in Figs. 1(c) and 1(f) have a comparatively

low projection onto the incident field, and subsequently, their

excitation is significantly dependent on interparticle coupling.

As such, the single-particle resonance represents a wavelength

where the field radiating from each individual particle as a

direct response to the incident field is maximized, and it is

therefore not surprising to see more significant excitation of

the subradiant modes.

To demonstrate that the number of nondegenerate eigen-

modes that can be excited by a normal-incidence plane wave is

fixed independently of the number of particles in the given ring,
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FIG. 1. (Color online) Numerical extinction spectra and associ-

ated eigenmode decompositions for (a)–(c) a silver nanosphere trimer

and (d)–(f) a silicon nanosphere trimer as interparticle spacings are

varied. Calculations are performed using the coupled electric and

magnetic dipole approximation. (b) and (e) The response of the

trimers with 20-nm interparticle gaps is decomposed into electric and

magnetic eigenmodes, where it can clearly be seen that the additional

excitation of magnetic eigenmodes is non-negligible for the silicon

trimer. (c) and (f) The real component of each eigenmode’s dipole

moment profiles is also shown for electric and magnetic cases. In

the extinction spectra for (a) silver trimers and (d) silicon trimers, a

Fano line shape occurs at the intersection of electric and magnetic

eigenmodes, respectively. Noticeably, this also corresponds to the

single-particle resonance. The silver nanospheres have a diameter

of 80 nm, and the silicon nanospheres have a diameter of 200 nm.

Dispersion data are from Palik [43].

in Fig. 2 we also consider a silver nanosphere octamer. Here

we do not include magnetic eigenmodes given the magnetic

response is negligible, as was the case with the silver trimer

in Fig. 1. For the octamer it can be seen that the number

of nondegenerate electric eigenmodes does remain fixed at

precisely two despite the additional particles.

Similar to the trimer, we observe Fano resonances in the

extinction spectra of the octamer exactly at the intersection
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FIG. 2. (Color online) Numerical simulation results for a silver

nanosphere octamer under plane-wave excitation showing the de-

composition, in terms of the excitation of electric eigenmodes, of

(a) the extinction spectrum and (b) the total excitation of dipole

moments. The curves in the extinction decomposition correspond

to the terms in Eq. (12c). (c) Also shown are the real components

of each eigenmode’s electric dipole moment profile. Despite the

larger number of particles, there remain only two nondegenerate

eigenmodes in full agreement with the predictions of the theory

provided in this section. Additionally, much like the plasmonic

trimer case in Fig. 1, the intersection of the two electric eigenmodes

corresponds to a Fano resonance, and the contribution of the mode

interference to the extinction can explicitly be seen in (a) to lead

to the creation of this Fano resonance. The diameter of the silver

nanospheres is 60 nm, and consecutive nanospheres are touching

in the octamer. Silver dispersion data are from Palik [43], and the

calculation of extinction spectra and eigenmodes is performed using

the coupled electric and magnetic dipole approximation.

of two eigenmodes. However, to fully justify the claim

that the Fano resonance results from the interference of

these eigenmodes, the extinction cross section in Fig. 2(a)

is decomposed into the components that come from each

mode and also the component coming from the interference

between them. This interference term is a consequence of

the eigenmodes not being orthogonal, a point which we can

illustrate by considering an incident field written in terms of

our two nondegenerate eigenmodes,

|E0〉 = a1|ν1〉 + a2|ν2〉 (11a)

⇒ |p〉 = a1λ1|ν1〉 + a2λ2|ν2〉. (11b)

Here the coefficients of each eigenmode in the induced dipole

moment solution (i.e., the aiλi terms) are the eigenmode

amplitudes that are plotted in Figs. 1 and 2; they represent

the magnitude of excitation for each eigenmode. However, the

extinction cross section [35] is proportional to

σe ∝ Im{〈E0|p〉}, (12a)

〈E0|p〉 = (a∗
1〈ν1| + a∗

2〈ν2|)(a1λ1|ν1〉 + a2λ2|ν2〉) (12b)

= |a1|2λ1|ν1|2 + |a2|2λ2|ν2|2
︸ ︷︷ ︸

direct terms

+ a∗
1a2λ2〈ν1|ν2〉 + a∗

2a1λ1〈ν2|ν1〉
︸ ︷︷ ︸

interference terms

. (12c)

In this expression, the “direct terms” correspond to the

contribution of each eigenmode to the extinction without

accounting for the interplay between eigenmodes (the “in-

terference terms”). It is precisely the direct terms for each

eigenmode and the sum of interference terms seen in Eq. (12c)

that are presented in Fig. 2(a) for the silver nanosphere octamer.

It is important to note that each of the direct terms can produce

only a positive contribution to the extinction as the direct terms

represent the extinction in the case where the incident field has

been structured to consist of only the one given eigenmode.

Indeed, if this were not the case, the energy conservation

law would be violated. However, as seen in Fig. 2(a), the

interference terms can lead to a negative contribution to

extinction. Such a negative contribution has been observed

previously [5]; however, it is important that it is the interference

alone that can produce a negative extinction component. In

other words, no eigenmode can feed energy into the incident

field. It is also worth noting that if we were to have an

orthogonal basis of eigenmodes, the interference terms would

all go to zero, as is the case with analogous inner products

in quantum mechanics and other Hermitian spaces. In this

sense, we can conclude that the Fano line shape is not a result

of energy coupling into a nonradiative dark mode, but rather

the interference between the two eigenmodes. Additionally, a

further effect of a nonorthogonal basis of eigenmodes is that

the decomposition of the incident field into eigenmodes has to

be solved through a set of coupled equations. Specifically, if

we were to consider the decomposition of some incident field

in terms of eigenmodes

|E0〉 =
∑

i

ai |νi〉, (13)

such a decomposition, {ai}, would then have to be solved

through a set of equations such as

〈νj |E0〉 =
∑

i

ai〈νj |νi〉 ∀ j = 1, . . . ,N. (14)

In this way, it is worth noting that even if the eigenmodes are

themselves decoupled, their excitations are coupled. In regard

to the possibility of dark eigenmodes, Eq. (14) means that

an eigenmode can be excited even if it has a zero projection

onto the incident field (i.e., if it is dark). In this case we can

actually use the derived basis vectors in Eq. (10) to get an

explicit expression for the dark eigenmode of the arbitrary

system. Moreover, because an arbitrary eigenmode of a ring-

type oligomer can be written as a linear combination of the

set of orthogonal basis vectors provided in Eq. (10), a dark

eigenmode having a zero projection onto both 1x and 1y (i.e.,

being also the x- and y-polarized incident field) ensures that

it is expressible entirely in terms of the remaining two basis
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vectors: 2x and 2y. Then, given that such an eigenmode is

doubly degenerate because it transforms according to E, we

know it must have a two-dimensional eigenspace and that

there will subsequently be two orthogonal eigenmodes that

span this dark eigenspace. In other words, if there is a dark

eigenmode, then the basis vectors 2x and 2y from Eq. (10) will

span precisely the associated dark eigenspace, and therefore

these two basis vectors will be the dark eigenmodes of a ring-

type oligomer. However, it is nonetheless worth noting that

the existence of dark modes that transform according to E is

not guaranteed in any oligomer, and it is unlikely that they

would be frequency independent as 2x and 2y are. Thus, dark

eigenmodes would be isolated much like the pure superradiant

eigenmodes (i.e., making the incident field an eigenmode),

which are the other basis vectors presented in Eq. (10). In this

regard, all numerically calculated eigenmodes in this paper are

explicitly bright at all calculated frequencies.

To demonstrate the applicability of this eigenmode theory

to experiment, we reconsider the gold heptamer made by

Hentschel et al. [20] in Fig. 3. This investigation observed a
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electric

FIG. 3. (Color online) (a) Numerically simulated extinction

spectra of a gold nanosphere heptamer with varying interparticle

gaps, (b) the associated decomposition of the heptamer’s response into

three nondegenerate eigenmodes for the 30*nm gap case, and (c) the

real components of each eigenmode’s dipole moment profiles at the

Fano resonance frequency. In (b) the decomposition of the heptamer’s

response into eigenmodes (solid lines) shows that the Fano resonance

is being created when one subradiant eigenmode (ii) experiences a

narrow resonance over a broad resonance of the superradiant mode

(i). Further each of these eigenmodes has a nonzero projection

onto the incident field, and they are therefore bright. All gold

nanospheres have a diameter of 150 nm, and the gold dispersion

data come from Palik [43]. The calculation of extinction spectra and

eigenmodes is performed using the coupled electric and magnetic

dipole approximation.

Fano resonance experimentally and associated it with coupling

into a dark mode. However, based on our analysis, one can

explicitly see that such Fano resonances are described by the

inference of two bright eigenmodes. Moreover, Fig. 3(b) shows

the eigenmode decomposition of the system’s response (solid

line) and also the projections of each eigenmode onto the

incident electric field (dashed line), which are all nonzero.

This is not the same as the previously supported explanation

in a number of papers, which attributed the Fano resonance to

the coupling of a bright mode with a dark mode. It is worth

noting that the bright modes from our simulation appear to

have dipole moment profiles that qualitatively match those of

the modes and dark modes proposed by Fan et al. [16] for

a similar gold ring heptamer structure. The key point of our

analysis applied to this structure is therefore not that the mode

profiles are largely different, but rather that the true modes are

bright instead of dark. However, we can conclude that the Fano

resonance in this system is explicitly due to the interference

between bright modes only, and it does not involve any dark

mode.

IV. DIELECTRIC OLIGOMERS

The electric dipole response is known to be the dominant

contribution to the optical properties of a single spherical

particle as its size is made arbitrarily small, the so-called

Rayleigh approximation. This is the principle on which the

coupled electric dipole approximation is based [35]. However,

for high-refractive-index dielectric materials such a situation

can change. In particular, when the wavelength inside a

particle matches its diameter, a magnetic dipole mode can

be also excited due to resonant excitation of the circulating

displacement current. In this way it is possible for the

magnetic dipole response of a dielectric particle to be on

the same order of magnitude as the electric dipole response

[33]. Importantly, provided the particle also remains small

compared to the wavelength, it will also be substantially larger

than its electric quadrupole response, which is otherwise the

next dominant order of multipole after the electric dipole

response in plasmonic materials [44]. Therefore, in such a

regime, it is necessary to take into account the magnetic dipole

responses for high-refractive-index dielectric materials, and

subsequently, an all-dielectric oligomer requires full treatment

of both electric and magnetic dipole moments to characterize

its behavior. In the following, we show that the electric and

magnetic responses of symmetric oligomers can be considered

independently, with distinct electric and magnetic eigenmodes

as opposed to combined electromagnetic eigenmodes.

To begin, the general expressions for the electric and

magnetic dipole moments of the ith particle in an oligomer

can be defined using the coupled electric and magnetic dipole

equations [33],

pi = αE,iε0E0(ri) + αE,iε0k
2

⎛

⎝

N
∑

i �=j

1

ε0

Ĝ0(ri,rj )pj

−
√

µ0

ε0

∇ × Ĝ0(ri,rj )mj

⎞

⎠ , (15a)
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mi = αH,iH0(ri) + αH,ik
2

⎛

⎝

N
∑

i �=j

Ĝ0(ri,rj )mj

+
1

√
ε0µ0

∇ × Ĝ0(ri,rj )pj

⎞

⎠ , (15b)

where pi (mi) is the electric (magnetic) dipole moment of

the ith particle, Ĝ0(ri,rj ) is the free-space dyadic Green’s

function between the ith and j th particles, αE,i (αH,i) is the

electric (magnetic) polarizability of the ith particle, and k is the

wave number of light. The free-space dyadic Green’s functions

are defined as

Ĝ0(ri,rj ) = Ĝij = aij Î + bij nji ⊗ nji, (16a)

∇ × Ĝ0(ri,rj ) = ĝij = dij (nji ⊗ nji − Î )
1
2 , (16b)

where Î is the identity matrix, nji is the unit vector pointing

from the j th to ith particle, the nji × Î (3) operator is expressed

explicitly as (nji ⊗ nji − Î (3))
1
2 , and the following scalars have

been defined:

aij =
eikrji

4πrji

(

1 +
i

krji

−
1

k2r2
ji

)

, (17a)

bij =
eikrji

4πrji

(

− 1 −
3i

krji

+
3

k2r2
ji

)

, (17b)

dij =
eikrji

4πrji

(

1 +
i

krji

)

(17c)

for rji = |ri − rj |.
In all simulations presented in this paper the dipole

polarizabilities are calculated for spheres using the Mie theory

dipole scattering coefficients a1, b1:

αE = 6iπa1/k3, (18a)

αH = 6iπb1/k3. (18b)

The coupled-dipole equations in Eq. (15) can then be written

in an equivalent matrix notation:

ε0|E0〉 =
(

α̂−1
E − k2M̂G

)

|p〉 +
√

ε0µ0k
2M̂g|m〉, (19a)

|H0〉 =
(

α̂−1
H − k2M̂G

)

|m〉 −
k2

√
ε0µ0

M̂g|p〉, (19b)

where α̂E (α̂H ) is a diagonal matrix containing the electric

(magnetic) polarizabilities of each particle and M̂G or M̂g

contains the appropriate collection of dyadic Green’s functions

to act between the dipoles,

M̂G =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0̂ Ĝ12 · · · Ĝ1N

Ĝ12 0̂
...

...
. . .

Ĝ1N · · · 0̂

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (20a)

M̂g =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0̂ −ĝ12 · · · −ĝ1N

ĝ12 0̂
...

...
. . .

ĝ1N · · · 0̂

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (20b)

Given the matrix equations seen in Eq. (19), it is apparent

that there is flexibility in whether the incident field is written as

a function of electric and magnetic dipole moments or whether

the electric or magnetic dipole moments are written as a

function of the incident electric and magnetic fields. Moreover,

by rearranging, we can write Eq. (19) in the following alternate

form:

|p〉 = ε0M̂ee

(

|E0〉 −
√

µ0

ε0

M̂eh|H0〉
)

, (21a)

|m〉 = M̂hh

(

|H0〉 +
√

ε0

µ0

M̂he|E0〉
)

, (21b)

where the M̂ matrices have been defined as

M̂ee =
[

α̂−1
E − k2M̂G + k4M̂g

(

α̂−1
H − k2M̂G

)−1
M̂g

]−1
,

(22a)

M̂hh =
[

α̂−1
H − k2M̂G + k4M̂g

(

α̂−1
E − k2M̂G

)−1
M̂g

]−1
,

(22b)

M̂eh = k2M̂g

(

α̂−1
H − k2M̂G

)−1
, (22c)

M̂he = k2M̂g

(

α̂−1
E − k2M̂G

)−1
. (22d)

Here the matrices M̂ee and M̂hh describe the response of the

system to applied forcings, whereas M̂eh and M̂he describe

the component of bianisotropic forcing on the electric and

magnetic dipoles that comes from the magnetic and electric

fields, respectively (both M̂eh and M̂he are singular). The

obvious change in using the form of the coupled-dipole

equations in Eq. (21) is that the electric and magnetic dipole

moments can be calculated separately from each other. That

is to say, rather than using one rank 6N matrix to describe

the electromagnetic system [42], we are able to instead use

the two rank 3N matrices (M̂ee and M̂hh) to describe how the

system responds electrically and magnetically. The reason this

particular formulation is important is because the electric and

magnetic forcings are distinct from each other, and hence,

each forcing transforms according to a single irreducible

representation (when considering a normal-incidence plane

wave). This therefore makes the electromagnetic dipole system

directly subject to the eigenmode arguments provided in the

previous section. It is important to note that no additional

approximations have been made in writing the dipole equations

in the manner of Eq. (21); this formulation still represents the

full electromagnetic dipole system.

Now, for the specific case of oligomers with DNh symmetry,

we are able to restrict the observed effect of the bianisotropic

forcings. This is specifically because, under normal plane-

wave excitation, the incident field is acting uniformly on all

dipoles in planar systems, and therefore, it is only the sum of

dipole moments in the complete oligomer, the “total dipole

moment,” that affects the extinction cross section. Moreover,

the extinction cross section can be written as

σe =
k

ε0|E0|2
Im

{

∑

i

E0
†pi + H0

†mi

}

(23a)

=
k

ε0|E0|2
Im

{

E0
†

(

∑

i

pi

)

+ H0
†

(

∑

i

mi

)}

. (23b)
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In a physical sense this means that only the total dipole

moment of such a structure can couple directly to an arbitrarily

polarized incident field. So, by using Eq. (21), the total dipole

moments can be written as a function of the electric and

magnetic incident-field vectors
∑

i

pi = ε0M̂eeE0(r0) −
√

ε0µ0 M̂ehH0(r0), (24a)

∑

i

mi = M̂hhH0(r0) +
√

ε0

µ0

M̂heE0(r0), (24b)

where we have defined the 3 × 3 matrices M̂ as

M̂ee,hh,eh,he =
∑

3×3 blocks

M̂ee,hh,eh,he. (25)

However, in a structure with DNh symmetry, the Ĝij and

ĝij matrices react oppositely (even or odd) when applying

the in-plane reflection symmetry operation σh to the position

vectors. Specifically, the following relation holds:

Ĝij = σ̂hĜij σ̂
†
h , (26a)

ĝij = −σ̂hĝij σ̂h
†, (26b)

where σ̂h is defined as the local reflection operation that acts

on a position vector

σ̂h =

⎛

⎝

1 0 0

0 1 0

0 0 −1

⎞

⎠ . (27)

However, given DNh contains a CN symmetry subgroup, it has

previously been shown [36] that we will have forms for the

summed M̂ matrices that always commute with σ̂h:

M̂ ∝

⎛

⎝

a c 0

−c a 0

0 0 b

⎞

⎠ a,b,c ∈ C. (28)

For this reason, applying the reflection symmetry operation

to position vectors in Eq. (25) in the manner described

by Eq. (26) will require that both the aggregate electric to

magnetic coupling matrices (M̂eh and M̂he) be equal to their

own negative. In other words, these matrices must be zero,

and subsequently, the bianisotropic forcing will have no effect

on the total dipole moments or extinction cross section. This

can be understood from the perspective that DNh symmetry

is not chiral, which is typically the catalyst that leads to such

bianisotropy. So, for a planar oligomer with DNh symmetry, the

dipole moments of the full electromagnetic system [Eq. (24)]

will reduce to
∑

i

pi = ε0M̂eeE0(r0), (29a)

∑

i

mi = M̂hhH0(r0). (29b)

As such, when considering far-field measures such as extinc-

tion [Eq. (23)], we are able to use the following modified dipole

equations with no loss of generality or accuracy:

|p〉 = ε0M̂ee|E0〉, (30a)

|m〉 = M̂hh|H0〉. (30b)
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FIG. 4. (Color online) Numerical extinction spectra for the

(a) surrounding hexamer (no central particle) and (b) silicon

nanosphere heptamer. The eigenmode decomposition of the electric

and magnetic responses is shown for the (c) hexamer and (d) heptamer

along with (e) and (f) the associated electric and magnetic dipole

profiles at 700 nm (real components). Multiple Fano resonances can

be seen to occur as a result of sharp resonances of eigenmodes and

intersections of resonant eigenmodes. The central nanosphere has a

diameter of 180 nm, and the nanospheres in the surrounding hexamer

have diameters of 150 nm separated by gaps of 20 nm. The hexamer

and heptamer extinction spectra have been shifted upwards for clarity.

Silicon dispersion data are from Palik [43].

In this way we can use the two matrices, M̂ee and M̂hh, to define

and calculate separate electric and magnetic eigenmodes rather

than combined electromagnetic eigenmodes. For all simula-

tions presented in this paper, we calculate the eigenmodes

numerically from specifically these two matrix definitions.

To demonstrate how Fano resonances can occur in all-

dielectric oligomers we will now consider the silicon heptamer

seen in Fig. 4. Here there are three magnetic eigenmodes and

three electric eigenmodes that interfere with each other to

produce multiple Fano resonances and other sharp features.

053819-8



REVISITING THE PHYSICS OF FANO RESONANCES FOR . . . PHYSICAL REVIEW A 88, 053819 (2013)

First, in regard to the analysis of all-dielectric oligomer

Fano resonances [26], we can see that the resonance of the

central particle corresponds to the largest Fano resonance.

This relationship can be reconciled with the eigenmode

decomposition presented here given the dominance of the

central particle in the eigenmode denoted by vi in Fig. 4(f).

However, as seen in Fig. 4(d), there are also two other Fano

resonances resulting from the sharp resonances of eigenmodes

iii (electric) and v (magnetic), which do not correspond to the

central particle resonance. When removing the central particle,

only one of these Fano resonances remains with only a slight

frequency shift and broadening, as seen in Fig. 4(a). This can

be expected given that the interfering (magnetic) eigenmode

profiles look similar in both heptamer and hexamer cases

when neglecting the central particle. That is to say, this Fano

resonance comes primarily from the ring-type oligomer in

both cases. Fano resonances in ring-type oligomers have been

demonstrated earlier in this paper, so here we will instead

highlight the more subtle effect that adding or removing the

central particle has on this one resonance. Specifically, the shift

and narrowing of this particular Fano resonance, from adding

the central particle, can be seen to be a result of a narrower

excitation of the corresponding eigenmode, but it is also worth

noting that the mode itself becomes more subradiant in the

heptamer case given the central particle oscillates out of phase

with the surrounding hexamer. In this sense the resonance in

the heptamer closer resembles a “definition Fano resonance”

where a narrow subradiant resonance interferes with a broad

superradiant mode. This subradiance and increased similarity

to textbook Fano resonance conditions correspondingly results

in the Fano resonance occurring at the peak of the subradiant

mode in the heptamer rather than the intersection between

modes in the hexamer. As such, we are able to differentiate

interference between two resonant eigenmodes and these

definition Fano resonances, although, noticeably, both lead

to similar line shapes and sharp features in extinction, so the

necessity for such a distinction is not particularly obvious.

However, the resulting resonance observed in extinction is

not always simple given systems such as the heptamer can

have more than two interfering eigenmodes. For instance, we

observe that a definition Fano resonance is occurring from

the interference of super- and subradiant electric eigenmodes

(i and iii, respectively) in Fig. 4(b), but the Fano line shape

becomes skewed by the third electric eigenmode. Understand-

ably, a more thorough analysis can be done on this system.

However, what we have aimed to demonstrate here is that the

approach presented in this paper offers a richer framework to

understand the variety of electromagnetic responses and their

interactions in all-dielectric oligomers.

V. CONCLUSIONS

We have rigorously shown that there exists a common

physical mechanism leading to Fano resonances in both

plasmonic and all-dielectric symmetric oligomers. The ob-

served Fano line shapes are attributed to the fact that the

eigenmodes of oligomers are not orthogonal and therefore

that they can interfere with each other. We have also proved

a key theorem to demonstrate that there exists a fixed number

of eigenmodes that can be excited by a plane wave under

normal incidence in a symmetric oligomer and that this

number is independent of the number of nanoparticles in the

oligomer. As such, we have shown that Fano resonances can

be realized in completely symmetric oligomers excited by

normal-incidence plane waves without involving additional

complexity in the system. The presented approach has been

directed at addressing the need for an analytical background

in the rapidly growing field of all-dielectric systems and

oligomers. In addition, we have also demonstrated that Fano

resonances do not require the excitation of dark modes. The

mechanism presented here therefore also has an impact on

the current surging interest in the study of the far-field effects

of dark modes [45–47] because it facilitates similar effects

through a simpler mechanism. Finally, it is also worth noting

that the approach presented in this paper is sufficiently general

to be applicable to broader fields, such as molecular optics,

antenna design, and other applications that are able to utilize

dipole-dipole interactions.

Note added. Recently, a related study has been published

by Forestiere et al. [48]. The authors employed a very

different approach, but they came to the same conclusion that

Fano resonances in plasmonic oligomers are induced by the

interference of collective eigenmodes without requiring the

excitation of dark modes.
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