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The availability of sequenced genomes from 12 Drosophila species has enabled the use of comparative genomics for the

systematic discovery of functional elements conserved within this genus. We have developed quantitative metrics for

the evolutionary signatures specific to protein-coding regions and applied them genome-wide, resulting in 1193

candidate new protein-coding exons in the D. melanogaster genome. We have reviewed these predictions by manual

curation and validated a subset by directed cDNA screening and sequencing, revealing both new genes and new

alternative splice forms of known genes. We also used these evolutionary signatures to evaluate existing gene

annotations, resulting in the validation of 87% of genes lacking descriptive names and identifying 414 poorly

conserved genes that are likely to be spurious predictions, noncoding, or species-specific genes. Furthermore, our

methods suggest a variety of refinements to hundreds of existing gene models, such as modifications to translation

start codons and exon splice boundaries. Finally, we performed directed genome-wide searches for unusual

protein-coding structures, discovering 149 possible examples of stop codon readthrough, 125 new candidate ORFs of

polycistronic mRNAs, and several candidate translational frameshifts. These results affect >10% of annotated fly

genes and demonstrate the power of comparative genomics to enhance our understanding of genome organization,

even in a model organism as intensively studied as Drosophila melanogaster.

[Supplemental material is available online at www.genome.org. Additional supplemental materials are available online

at http://compbio.mit.edu/fly/genes/. Full-length cDNA sequence data from this study have been submitted to

GenBank under accession nos. BT029554–BT029635, BT029637–BT029727, BT029940–BT029957, BT030133–

BT030144, BT030416–BT030421, and BT030448–BT030452. RT-PCR amplicon and primer sequence data have been

submitted to GenBank under accession nos. ES439769–ES439782.]

The compilation of a complete and accurate catalog of all pro-

tein-coding genes is a critical step in fully understanding the

functional elements in any genome. In Drosophila melanogaster, a

century of classical genetics, large-scale EST and cDNA sequenc-

ing (Rubin et al. 2000; Stapleton et al. 2002b; http://

www.fruitfly.org/EST), and manual curation (Adams et al. 2000;

Misra et al. 2002) have led to a gene catalog of very high quality,

containing 13,733 euchromatic protein-coding genes (as of Fly-

Base annotation Release 4.3, the benchmark release for the initial

comparative analysis of the 12 sequenced species; see Methods).

While all FlyBase genes are assigned a unique numerical identi-

fier (CGid), their level of supporting evidence varies widely. We

distinguish the following classes: 4711 genes have a phenotype

or molecular function reported in the literature and have been

assigned a descriptive name (“named genes”); of these, 893 have

at least 50 literature citations (“well-studied genes”). The remain-

ing 9022 genes lack a descriptive name (“CGid-only genes”); of

these, 4373 have been assigned a putative molecular function on

the basis of homology with known protein domains or genes in

other species (“GO-annotated genes”), while the remaining 4649

gene annotations are essentially uncharacterized (“uncharacter-

ized genes”). Most of the CGid-only genes are supported by

cDNA sequence data or protein sequence similarity, but a small

number are based primarily on de novo predictions.

It is unclear how close to completion the current gene set

may be, or what fraction of the current annotations may be in-

accurate. On one hand, numerous genes and alternative splice

forms may be still missing from the current annotation, and

indeed a pilot study suggests an additional 700 genes may lie

amidst 10,000 existing de novo and microarray-based predictions

(Yandell et al. 2005). On the other hand, existing gene models

might be incomplete or contain inaccuracies, and some, espe-

cially those based solely on de novo predictions, may be com-

pletely spurious. Even some genes supported by cDNA and EST
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evidence or mutation phenotypes could in fact represent RNA-

coding genes without any protein-coding function.

Comparative genomic analysis is a powerful approach to the

discovery of protein-coding genes. Comparative data have been

used to significantly revise the established annotations of the

yeast Saccharomyces cerevisiae genome (Cliften et al. 2003; Kellis

et al. 2003), but the greater complexity of gene structures and

other genomic features in large eukaryotic genomes presents

many additional challenges. Initial efforts in vertebrates (Thomas

et al. 2003) as well as flies (Bergman et al. 2002; Richards et al.

2005) suggest that comparative genomics can similarly lead to

substantial improvements in the gene annotations of these spe-

cies, and the incorporation of comparative data into de novo

gene prediction systems has led to great improvements in their

accuracy (Brent 2005). However, current de novo gene predictors

still cannot be solely relied upon for complete annotation of

complex eukaryotic genomes. Moreover, they are of limited use

for revisiting existing annotations, since disagreements between

predicted gene structures and gene annotations can be due to

errors in the predictions at least as often as errors in the annota-

tions. Thus, new methods are necessary in order to discover new

genes and exons with high predictive value and to revisit existing

annotations using comparative data in complex eukaryotes.

In this study, we use whole-genome alignments of 12 Dro-

sophila genomes to systematically review the protein-coding gene

annotations of D. melanogaster. By studying the conservation

properties of known genes, we identify recurrent patterns of evo-

lutionary change that are hallmarks of purifying selection oper-

ating upon protein-coding sequences. We use these evolutionary

signatures to examine the entire genome and identify conserved

protein-coding regions with high accuracy. These signatures con-

firm the protein-coding function of the vast majority of hypo-

thetical genes and identify more than a thousand new exons. In

contrast, these signatures strongly reject several hundred genes,

most of which are likely to be spurious predictions or noncoding

genes. We also used these signatures to refine the annotation and

boundaries of existing genes, including translation initiation

sites, splice sites, and functional reading frame of translation.

Finally, our methods identify candidates for a variety of excep-

tional gene structures such as translational readthrough, dicis-

tronic genes, and conserved reading frameshifts in the middle of

protein-coding exons. We evaluated many of these proposed

changes through manual curation and directed sequencing ef-

forts. Overall, we used comparative data to propose revisions for

>10% of D. melanogaster protein-coding gene models. While

many extensions and future directions remain, this work is a

substantial step toward achieving the best possible gene annota-

tions for D. melanogaster. It also serves as a model for similar

efforts to improve the annotation of other important target ge-

nomes, including the human.

Evolutionary signatures for protein-coding gene identification

Protein-coding DNA sequences evolve under distinctive evolu-

tionary constraints since selective forces at the nucleotide level

reflect constraints operating on the encoded protein. Thus, mu-

tations to the DNA that preserve properties of the amino acid

translation (e.g., synonymous substitutions) tend to be tolerated,

while mutations that disrupt the translation (e.g., frame-shifting

insertions or deletions or nonsense mutations) tend to be ex-

cluded by natural selection. In DNA sequence alignments of

closely related species, these constraints manifest themselves as

“evolutionary signatures”, recurrent patterns of evolutionary

change that we can use to uniquely identify protein-coding se-

quences (Fig. 1).

We applied two independent quantitative metrics that use

evidence from multiple informant sequences to distinguish re-

gions under protein-coding selection. The first metric observes

reading frame conservation (RFC) and quantifies the strong ten-

dency of insertions or deletions (indels) within coding regions to

preserve the reading frame of translation. We have previously

applied RFC in yeast species (Kellis et al. 2003). The second met-

ric observes codon substitution frequencies (CSF) and identifies

the distinctive biases in the frequency of codon substitutions in

protein-coding regions, constrained by the selective preference

for synonymous substitutions and amino acid substitutions pre-

serving biochemical properties (Fig. 1). The CSF metric is similar

in theme to the well-known Ka/Ks ratio and dN/dS rate (Yang and

Bielawski 2000; Nekrutenko et al. 2002), but it is more suitable

for genome-wide gene identification strategies with many infor-

mant genomes.

In contrast to methodologies that focus primarily on high

sequence conservation to identify candidate genes, the RFC and

CSF metrics focus on distinctive patterns of divergence in pro-

tein-coding genes, specific to their unique selective pressures.

Therefore, functional RNA-level or DNA-level elements (such as

RNA genes and structures, developmental enhancers, or other

regulatory regions), which often exhibit high nucleotide conser-

vation (Fig. 2), are very unlikely to show high RFC or CSF scores,

enabling these metrics to distinguish coding and noncoding re-

gions with higher accuracy. For example, when used to discrimi-

nate between exons of well-studied genes and random noncod-

ing regions with the same length distribution, the CSF metric

alone accepts 94% of coding exons while rejecting >99% of the

control regions (Supplemental Table 1). This discriminatory

power allowed us to systematically review the D. melanogaster

genome annotation for protein-coding genes. We present de-

tailed benchmarks of these and several other metrics elsewhere

(M.F. Lin, A. Deoras, M. Rasmussen, and M. Kellis, in prep.).

Results

Benchmarking the RFC and CSF evolutionary signatures

Our first goal was to evaluate how well our approach worked on

test data sets of well-annotated genes. For this purpose, we used

the classes of “named” and “well-studied” genes defined earlier.

We scored every gene model covered by whole-genome sequence

alignments according to the RFC and CSF metrics. By studying

the score distributions for known genes and noncoding control

regions, we chose RFC and CSF cutoffs above which a given gene

annotation is nearly certain to represent protein-coding se-

quence, and used these as a test to determine whether the com-

parative evidence confirms that a candidate gene is indeed pro-

tein-coding (although this test does not verify that the annotated

gene structure is correct in every detail).

We first scored the 893 well-studied genes. Our test accepts

882 (99%) of these gene models. Only 11 of these genes did not

pass our thresholds. Two of these (y and bw) are well-conserved

genes that failed due to previously known strain-specific disrupt-

ing mutations in the sequenced strain of D. melanogaster. The

remainder may represent fast-evolving genes or genes recently

evolved from previously noncoding regions. We also applied the

same test to the remaining 3818 named genes with <50 citations

Lin et al.

1824 Genome Research
www.genome.org

http://genome.cshlp.org/
http://www.cshlpress.com


and found that it accepts 97% (3684). Overall, the comparative

evidence confirms that 4566 of 4711 “named” genes (97%) show

the evolutionary signatures of protein-coding genes. We also

evaluated 15,564 noncoding regions �300 nt in length, ran-

domly chosen throughout the genome, and found that virtually

none passed the same thresholds (Table 1; Supplemental Meth-

ods). Together, these results illustrate the high sensitivity and

specificity of our approach.

Evolutionary confirmation of uncharacterized genes

We then turned our attention to the 9022 CGid-only genes in the

Release 4.3 annotation set, which lack a descriptive gene name

(including 4373 GO-annotated genes and 4649 uncharacterized

genes). The evidence for these gene models varies widely and

may include de novo gene model prediction, long open reading

frames (ORFs), cDNA sequences, mRNA expression evidence, or

homology with genes in other species. Since our evolutionary

signatures are specific to protein-coding function, they can pro-

vide a powerful additional line of evidence indicating that these

genes encode proteins, based on their alignments across Dro-

sophila genomes.

Our test accepts 7879 of the 9022 CGid-only genes (87%),

confirming that the vast majority of these annotations show the

evolutionary signatures of protein-coding genes, and are there-

fore very likely to encode proteins. (Again, passing our test does

not imply that all details of these gene structures are correctly

annotated; we also note that it is possible that ancestral genes

that have been very recently deactivated in D. melanogaster, have

not yet acquired many disrupting mutations, and are still anno-

tated as genes may pass our test.) The fraction of accepted CGid-

only genes was only slightly higher for the “GO-annotated” sub-

set than for uncharacterized (89% vs. 86%). It is not surprising

that the proportion of accepted models for CGid-only genes

(87%) is lower than for the named genes (97%): Some uncharac-

terized genes may be erroneous or spurious annotations (we con-

sider this possibility further below), while others are likely to be

under less stringent selective pressure than most named genes,

many of which are conserved across very large evolutionary dis-

tances (Bergman et al. 2002).

New genes and exons

We next used evolutionary signatures to identify conserved pro-

tein-coding sequences missing from the current annotation. This

requires not only a way to evaluate the protein-coding potential

of a given region, but also a method to discover new coding

Figure 1. Evolutionary signatures for protein-coding gene identifica-
tion. (A) Within coding regions, triplet substitutions are biased toward
conservative codon substitutions (Codon Substitution Frequencies, CSF).
Additionally, indels in coding regions are strongly biased to be a multiple
of three in length (reading frame conservation; RFC). (B) The color of
each codon substitution between the D. melanogaster sequence and an
informant sequence corresponds to a log-odds score of observing that
substitution in a coding region versus a noncoding region. (C) Quantita-
tive metrics of RFC and CSF distinguish coding and noncoding regions.
Shown in blue are 5567 coding exons of well-studied genes and in or-
ange are 22,019 regions chosen uniformly at random from the noncod-
ing part of the genome, with the same length distribution as the exons.
The CSF score is length-normalized and the discrete RFC score is dithered
by adding random noise uniformly from (�0.5,0.5) for the purposes of
visualization.
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intervals and to define their precise boundaries, in the absence of

any existing annotation. To this end, we integrated our metrics

of protein-coding evolutionary signatures into a probabilistic al-

gorithm that determines an optimal segmentation of the genome

into protein-coding and noncoding regions, based on synteni-

cally anchored genome-wide sequence alignments of the 12 Dro-

sophila species (see Methods). Our algorithm predicted 1193 new

protein-coding exons not overlapping any coding exons in Fly-

Base Release 4.3. The large majority of these (68%) are in euchro-

matic intergenic and intronic regions: 515 (43%) are outside any

annotated transcripts, and 316 (26%) are within an intron of an

existing gene (248 transcribed from the same strand and 68 from

the complementary strand). An additional 269 predicted exons

(23%) overlap annotated untranslated regions of existing tran-

scripts (243 from the same strand as the overlapping transcript

and 26 from the complementary strand). The remaining pre-

dicted exons include 21 that overlap existing noncoding anno-

tations, 33 that overlap protein-coding exons on the opposite

strand, and 39 that overlap multiple Release 4.3 genes or are

located in heterochromatin and cannot be easily categorized as

intronic or intergenic. We manually examined most of these pre-

dictions, and also validated a subset through directed cDNA se-

quencing.

Manual curation incorporates most predicted exons into gene annotations

Of the 1193 predicted new exons, 928 were manually reviewed

by FlyBase annotators and assessed relative to existing annota-

tions, other gene predictions, cDNA/EST data, and protein se-

quence similarity evidence according to FlyBase Gene Model An-

notation Guidelines (see Supplemental Methods). We excluded

from manual review 265 predictions overlapping existing un-

translated regions (UTRs), existing noncoding genes, or annota-

tions independently created by FlyBase subsequent to Release 4.3

(our benchmark for this study).

Of the 928 assessed exons, 562 (61%) were incorporated into

existing genes, leading to the revision of 438 gene models. The

new exons most often led to the creation of alternative tran-

scripts and, less frequently, to the modification of the intron/

exon structure of an existing transcript isoform. Many of these

changes (58%) were supported by additional evidence such as

previously unincorporated BDGP cDNA sequences and/or se-

quence similarity to known proteins. Some revisions were com-

plex, including 65 merges of two or more Release 4.3 gene mod-

els, 10 splits of Release 4.3 gene models, and four new dicistronic

transcript models.

An additional 192 (21%) curated exons were incorporated in

Figure 2. New protein-coding exons predicted by evolutionary signatures, examined by manual curation, and validated by cDNA sequencing. (A) The
“Evolutionary Signatures” track shows the posterior probability of a protein-coding state in a probabilistic model integrating the RFC and CSF metrics.
The “Conservation” track shows the analogous quantity from a model measuring nucleotide conservation only (Siepel et al. 2005). Note the high
protein-coding scores of known exons despite lower nucleotide conservation (a,d), the low protein-coding scores of conserved noncoding regions (c,e),
and the prediction of a novel exon within an intron of CG4495 (b), subsequently validated (see Fig. 3). Rendered by the UCSC Genome Browser (Kent
et al. 2002). (B) Distribution of 1193 new exon predictions throughout the genome. (C) Newly predicted exons were examined by manual curation,
81% leading to new and modified FlyBase gene annotations. Additionally, curation of genes rejected by evolutionary signatures led to the recognition
of hundreds of spurious annotations. (D) A sample of predicted new exons was tested by cDNA sequencing with inverse PCR. Surprisingly, 44% of the
validated predictions in “intronic” regions revealed a transcript independent of the surrounding gene, and 40% of the validated predictions in
“intergenic” regions were part of existing genes. See Fig. 3 for examples.
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142 newly created gene models. Of these, 39% were supported by

EST/cDNA and/or protein sequence similarity. Twenty-four of

the new gene models (12%) lie within an intron of another gene

on the same strand.

The remaining 174 curated exons (19%) were not incorpo-

rated into any gene models. Most of these are either small exon

predictions, with a median length of 21 amino acids, or encode

low-complexity sequence. Typically, these were unsupported by

experimental data that would indicate inclusion in a gene model.

These 174 exon predictions should be viewed as unresolved with

regard to their validity, since future data may provide such ex-

perimental support.

Directed cDNA sequencing confirms predicted exons, reveals new genes

and splice forms

In parallel to our manual curation efforts, we tested a subset of

predictions by directed cDNA sequencing. To identify the most

appropriate candidates for sequencing, we filtered the 1193 novel

protein-coding exon predictions. We eliminated exon predic-

tions of several types: those that map to certain known genes

with incomplete annotations in FlyBase Release 4.3 (including

heterochromatic genes and Dscam), to BDGP cDNA clones not

yet represented in current FlyBase annotations, or to 5� or 3�

UTRs. Additionally, we excluded any predicted exons that were

deemed to be experimentally problematic because of small size or

genomically repeated sequences (see Methods). Of the 434 re-

maining candidates for experimental validation, a sampling of

184, uniformly distributed throughout the genome, was selected.

These included 126 within intergenic regions and 58 within in-

trons of existing genes. We tested each of these 184 predictions

by attempting to isolate and sequence a full-length cDNA tran-

script clone using self-ligation of inverse PCR products (Hoskins

et al. 2005; Wan et al. 2006).

Of the 126 tested predictions within intergenic regions, we

obtained a full-length cDNA for 88 exons (70%). The resulting

cDNAs provide evidence for 50 new genes, including 10 single-

exon genes and 40 multi-exon genes (which incorporate 43 pre-

dicted exons, and additional flanking exons that were not pre-

dicted by our algorithm). In addition, these cDNAs provided evi-

dence for the modification of 39 existing Release 4.3

annotations: 11 new 5� extensions or splice variants, 13 new 3�

extensions or splice variants (14 exons), two dicistronic tran-

scripts (three exons), six transcripts merging multiple Release 4.3

gene models, and one internal splice variant.

Of the 58 tested predictions within introns of existing an-

notations, we obtained a full-length cDNA for 32 (55%). Only 18

of these represent new internal splice variants of the surrounding

gene while the remaining 14 appeared independent of the sur-

rounding gene. These 14 include eight alternative splice forms of

previously annotated genes (five 5� exons and two 3� exons), two

new single-exon genes, two new multi-exon genes, and two gene

merges. Most surprising were data supporting an apparent ex-

ample of overlapping coding sequence on opposite strands (Fig.

3D).

Overall, the cDNA data validated 120 of the 184 targeted

predictions (65%). The recovered cDNA sequences also indirectly

validated 42 predicted new exons that were not purposely tar-

geted, as they were contained within the transcripts recovered

from the 120 targeted predictions, leading to a total of 162 cDNA-

validated predictions. The recovered cDNAs also captured

additional translated and untranslated exons that were not pre-

dicted by our algorithm (see examples in Fig. 3). Finally, we note

that the remaining 64 targeted predictions for which we did not

obtain a high-quality, full-length cDNA sequence are not neces-

sarily false predictions, since we only screened libraries derived

from certain tissues and developmental stages (Hoskins et al.

2005).

Using TBLASTX, we searched other genomes for homologs

of the new genes we recovered through cDNA sequencing. We

found that many appear to be specific to the Drosophila or insect

lineages (Supplemental Table 2). For example, 37% have a sig-

nificant hit in the mosquito (Anopheles gambiae) or honeybee

(Apis mellifera) genome assemblies, compared to 50% of ran-

domly selected genes of comparable length; similarly, only 12%

have significant hits to worm, yeast, or vertebrates, compared to

32% of random genes. Because gene annotation often relies on

homology with known genes in other species, this might explain

in part why these genes have not previously been identified.

An alternative strategy identifies relatively few additional exons

The completeness of our exon predictions is constrained by the

coverage and quality of whole-genome alignments, the discrimi-

natory power of our evolutionary metrics applied to the 12 ge-

nomes, and limitations of the probabilistic algorithm we used to

integrate them. In fact, our exon prediction algorithm failed to

identify 24% of exons in named genes (of which 37% were not

well aligned; see Supplemental Table 3 for details). In order to

Table 1. Categorization of existing gene annotations according to comparative evidence

Total Confirmed Unclear Rejecteda

Named genes 4711 4566 (96.9%) 105 (2.2%) 40 (0.8%)
Well-studied genes 893 882 (98.8%) 8 (0.9%) 3 (0.3%)
Other named genes 3,818 3684 (96.5%) 97 (2.5%) 37 (1.0%)

CGid-only genes 9022 7879 (87.3%) 729 (8.1%) 414 (4.6%)
GO-annotated 4373 3897 (89.1%) 278 (6.4%) 198 (4.5%)
Uncharacterized 4649 3982 (85.7%) 451 (9.7%) 216 (4.6%)

All genes 13,733 12,445 (90.6%) 834 (6.1%) 454 (3.4%)
Noncoding regions 15,564 3 (0.0%) 131 (0.8%) 15,430 (99.1%)

Each annotated gene in FlyBase Release 4.3 is categorized as “confirmed” if it shows the evolutionary signatures of protein-coding genes, “unclear” if
the gene is not alignable or the comparative evidence is otherwise ambiguous, and “rejected” if the gene is alignable to putatively orthologous sequence
but appears unlikely to represent a genuine protein-coding gene. “Well-studied” genes are referenced by at least 50 publications in the FlyBase-indexed
literature. “Named” genes have been assigned a descriptive symbol by investigators. All remaining genes are “CGid-only.” “Noncoding regions” are
�300 nt regions chosen randomly from the portion of the genome not annotated as protein-coding (see Supplemental Methods).
aA minority of rejected genes are falsely rejected; see text for explanation.
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evaluate how much additional new protein-coding sequence

may have escaped our notice, we undertook an alternative strat-

egy that uses predictions from a variety of gene identifica-

tion systems, representing several basic algorithmic approaches,

and including both de novo and evidence-based strategies. These

included AUGUSTUS (Stanke and Waack 2003), CONTRAST (S.

Gross, C. Do, M. Sirota, and S. Batzoglou, Stanford University,

http://contra.stanford.edu/contrast/), GENSCAN (Burge and

Karlin 1997), NCBI GNOMON, geneid (Parra et al. 2000), Genie

(Reese et al. 2000), and SNAP (Korf 2004).

We selected 193 “consensus” exons

that are predicted by at least five of these

algorithms, do not overlap annotated

exons, transposable elements, or our

predictions, and are at least 100 nt in

length. After manual curation, 98 (51%)

were incorporated into a gene model: 15

were incorporated into gene models that

included exons identified by our algo-

rithm, 63 were incorporated into exist-

ing gene models, and 20 were annotated

as new or reinstated gene models. To test

the validity of this approach, eight of the

affected gene models were selected for

evaluation by RT-PCR. Seven of the eight

newly annotated “consensus” exons

were validated. In several cases, addi-

tional newly annotated exons based on

evolutionary signatures were also vali-

dated. Overall, 852 new exons were an-

notated by manual curation using both

analyses, of which 88% were predicted

by our algorithm based on evolutionary

signatures.

Conclusion: New exons and genes

In summary, we integrated our metrics

of protein-coding evolutionary signa-

tures into a probabilistic algorithm that

predicted 1193 new exons. Of these,

948 were subjected to manual curation

or targeted experimentation, and

787 (83%) were supported by sufficient

data to incorporate them into new or re-

vised gene models, resulting in 150 new

gene models, 70 gene merges, 10 gene

splits of existing annotations, and four

pairs of new dicistronic gene models.

Some of the 161 predictions that were

not supported following manual cura-

tion and targeted cDNA sequencing

are likely to be validated in the future,

e.g., as distant 5� exons of annotated

genes (Manak et al. 2006), when addi-

tional data become available. The 245 re-

maining predictions that were not as-

sessed by either manual curation or ex-

periments, most of which overlap

annotated UTRs or noncoding gene

models, await analysis.

Although the subsets of the pre-

dicted exons that we subjected to cura-

tion and sequencing were not selected entirely at random, nei-

ther were they selected in a way that would strongly bias them

toward the highest-quality predictions. We conclude that our

approach was able to identify new exons with very high predic-

tive value, even when all existing gene annotations were ex-

cluded. Moreover, the results of an alternative strategy based on

a variety of de novo and evidence-based predictions suggest that

relatively few protein-coding exons remain unidentified in the

euchromatin—at least that can be found at a reasonable false

discovery rate using existing computational methods.

Figure 3. Full-length cDNA sequences recovered from exon predictions through inverse PCR. (A)
Alternatively spliced transcripts—Exon Shuffling. The clone, IP17639, validates prediction
congochr2L7183503 and provides evidence for an alternative transcript of the gene CG4495. Analysis
of the embryonic microarray data (Manak et al. 2006) shows this exon is not used in embryogenesis,
suggesting stage-specific splicing. Interestingly, the two alternative exons encode 20 identical amino
acids at the N-terminal side of the exon. (B) 3� CDS extension. The clone, IP17355, validates two
predicted exons, congochr3R23777966 and congochr3R23778197, and provides evidence for an
alternative transcript encoding an additional 126 aa at the C-terminal end of the gene, CG4951. In
addition, the clone contains 185 bp of 3� UTR. (C) New spliced interleaved gene. The clone, IP17336,
validates four predicted exons, congochr3R15461397, congochr3R15461180, congochr3R15461031,
and congochr3R15460742, and provides evidence for four additional exons. (D) Novel spliced over-
lapping gene. The clone, IP17407, validates prediction congochr3L18835687 and extends the CDS by
22 aa at the N terminus and 79 aa at the C terminus. The third coding exon overlaps the coding
sequence of the gene on the opposite strand, Rad9, such that 45 aa on each strand are encoded in the
region of overlap.
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Many poorly conserved gene annotations are dubious

We next asked whether a subset of the CGid-only genes which

failed to be confirmed as protein-coding is in fact spurious. Our

previous analysis confirmed 97% of “named” genes, but only

88% of CGid-only genes; we reasoned that the remaining 1119

(12%) may be fast-evolving, recently gained, improperly aligned,

or simply spurious. Here, we revisit this set to identify potential

spurious annotations that do not correspond to protein-coding

genes.

While our previous analysis evaluated each candidate gene

over its entire length, here, we searched for any evidence of

protein-coding selection. We allowed for fast-evolving do-

mains or partially incorrect annotations by evaluating over-

lapping windows of 30 amino acids for evidence of protein-

coding evolution. We also allowed for lineage-specific genes by

searching for evolutionary evidence in groups of species at

three different phylogenetic distances from D. melanogaster.

Moreover, we tested three different genome alignment sets, to

allow for potential misalignments (see Methods). Finally, we

note that, if a gene is recently gained and its orthologous region

is simply absent in the informant genomes, our methods make

no statement about its veracity. Instead, we only evaluated re-

gions that do align to putatively orthologous sequences in other

species.

We found that 414 CGid-only genes (4.6% of 9022) are re-

jected even by these very lenient criteria. By comparison, only

three of 893 well-studied genes (0.3%) are rejected and only 40 of

all 4711 named genes (0.8%). If all rejected well-studied genes are

false rejections, we would expect <30 of the 414 rejected CGid-

only genes to be false rejections (95% confidence, binomial dis-

tribution). Based on named genes, we would expect that <91 of

the 414 rejections are false rejections, and that at least 323 of the

414 rejected genes (78%) are indeed spurious. On one hand, this

may be an overestimate, as the named and well-studied genes

may be biased toward deeply conserved functions with vertebrate

orthologs (Bergman et al. 2002). On the other hand, this may be

an underestimate if not all rejected named genes are false rejec-

tions; some could in fact be incorrect annotations. In particular,

we note that a gene can be named on the basis of a mutant

phenotype, which does not necessarily imply that it is protein-

coding.

Several statistics suggest that most of the genes rejected by

our test are likely to be spurious predictions. As a group, they

closely resemble random noncoding regions (Supplemental Fig.

1). The majority consist of relatively short, single-exon ORFs,

many of which are likely to occur by chance across the whole

genome. Their median coding sequence length is 381 nt, consid-

erably shorter than the median length of all genes (1179 nt), and

63% are single-exon.

We manually examined each of the 414 CGid-only genes

that were rejected by our test and all evidence supporting them,

and we concluded that 222 (54%) can be immediately deleted

from the annotations or recategorized as nonprotein-coding

genes. These include 55 genes previously annotated as supported

by cDNA sequences, which in fact turned out to be due to ge-

nomically primed clones. An additional 73 of the rejected genes

(18%) had unclear or conflicting evidence and have been flagged

as being of uncertain quality in the annotation comments, al-

though they were not immediately deleted. Finally, the remain-

ing 119 (29%) are adequately supported by existing evidence and

were kept unchanged in the current database. A subset of these is

likely to be rapidly evolving genes, while others may prove to be

RNA-coding genes with no protein function.

We also manually examined the 40 named genes that were

rejected by our test, and found that six of these should also be

deleted or changed to nonprotein-coding annotations. The re-

maining 34 contain several genes known to be rapidly evolving,

including seven male accessory gland peptides or other male-

specific genes.

Last, we found that transcript evidence for at least some of

the rejected genes may be explained by nonprotein-coding func-

tion. In particular, there is strong evidence that the transcripts for

CG33311 and CG31044 are in fact precursor RNAs of microRNA

genes rather than protein-coding mRNAs (Stark et al. 2007). In

both cases, newly discovered microRNA genes lie within these

transcripts and cluster with neighboring miRNAs of the same

family. More generally, we note that some forms of the evidence

supporting CGid-only genes, such as transcript cDNA sequence

or genomic sequence conservation, do not directly imply trans-

lation to protein and could result from noncoding genes.

We conclude that most of the genes rejected by our test in

fact do not represent genuine protein-coding genes, and the ex-

istence of many of these annotations is due to genomically

primed cDNAs, erroneous de novo gene predictions, and some-

times functional RNA genes. A minority is likely to represent

fast-evolving or species-specific genes that are not under purify-

ing selection over the evolutionary distances we examined. Over-

all, our tests based on evolutionary signatures confirmed 7879 of

9022 CGid-only genes (87%) as clearly under protein-coding se-

lection and rejected 414 (4.6%), most of which are likely to be

spurious annotations (Table 1). We abstained from making a de-

cision based on comparative evidence for the remaining 729

CGid-only genes (8.1%), which either could not be aligned or

were supported by evolutionary signatures weakly or only over a

fraction of their length. These results can help guide directed

experimentation to resolve the function of all genes and tran-

scripts, and also help focus curation efforts on a relatively small

number of problem cases.

Refining existing gene annotations

The deep comparative evidence available within alignments of

the 12 Drosophila genomes enables more fine-grained analysis

than the evaluation of complete genes. We also used our metrics

of protein-coding evolutionary signatures to propose a variety of

detailed adjustments to existing gene annotations, affecting

translation initiation sites, splice boundaries, and reading frame

of translation, and to reveal likely species- or strain-specific dis-

ruptive mutations.

Translation start sites

Systematic annotation of fly genes has typically designated the

longest ORF of each transcript model as the inferred protein

translation, starting at its earliest in-frame ATG. However, trans-

lation may actually start at a downstream ATG. While the current

understanding of the sequence and structural signals that direct

translation initiation is still incomplete, the evolutionary signa-

tures of protein-coding selection can often clearly distinguish the

preferential site of translation initiation. Our analysis revealed

413 transcripts of 359 genes for which the translation start sites

appear to be downstream from the presently annotated AUG,

and allowed us to propose corresponding refinements to the an-

notations. In each case, the previously annotated start AUG is
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not well-conserved, while the newly proposed AUG is conserved,

and the intervening sequence in other species shows an abun-

dance of nonconservative codon substitutions and frequent in-

frame stop codons and frame-shifting

indels. In many cases, the contrast be-

tween the conservation of the regions

immediately upstream and downstream

of our proposed translation start sites is

striking (Fig. 4A). While we cannot rule

out that some of these cases could rep-

resent species- or lineage-specific N-

terminal protein extensions, a majority

of our proposed downstream translation

start sites are also supported by an inde-

pendent analysis of the information

content in their sequence contexts, to

the exclusion of the annotated upstream

site (M. Weir and M. Rice, in prep.).

Reading frame of translation

In addition to locating protein-coding

regions, the comparative information re-

veals the reading frame of translation

under purifying selection, since the sig-

nature of codon substitution frequencies

is specific to the reading frame. This has

allowed us to distinguish between over-

lapping ORFs, and reveal the one under

selection when multiple ORFs of compa-

rable length are all open (Fig. 4B). Such

overlapping ORFs are sometimes found

in short single-exon genes, where the

systematic annotation has typically se-

lected the longest, while it may in fact be

a shorter ORF that is translated. We

found five cases (CG15281, CG13244,

CG7738, CG18358, and CG12656)

where a shorter ORF is clearly under se-

lection, to the exclusion of the anno-

tated ORF. While this is a small number

of cases, we note that this change leads

to a completely different protein trans-

lation.

Adjustments to existing exons

We searched for potentially erroneous

splice sites by identifying gene models in

which a splice junction appears to coin-

cide with a shift of the reading frame

under selection (Supplemental Fig. 3).

We found such events in 210 transcripts

of 174 genes. While alternative splicing

can use exons in different reading

frames, we can at least say in these cases

that selection appears to strongly favor

one translation of the exon over the al-

ternatives. We conclude that the alterna-

tives should, therefore, be considered

suspect, at least in the absence of tran-

script sequence data clearly indicating

their use.

We also identified many existing exons that appear to be

incompletely annotated, as the evolutionary signatures of pro-

tein-coding selection extend beyond their present splice bound-

Figure 4. Examples of adjustments to existing annotations based on evolutionary signatures. (A)
Translation start adjustment. The annotated coding sequence begins at the indicated ATG, but the
informant species show frameshifts, nonsense mutations, and nonconservative substitutions in the
immediately downstream region. Strikingly, however, coding signatures begin at a slightly down-
stream ATG. (B) Incorrect reading frame annotated. The transcript model contains two overlapping
reading frames, the slightly longer of which is annotated as the coding sequence; but the evolutionary
signatures clearly show that the other is the frame under selection. (C) Nonsense mutation in (the
sequenced strain of) D. melanogaster.
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aries, including 912 by at least 30 nt and 600 by at least 45 nt (see

Supplemental materials). This may indicate either an alternative

splice site or a simple mistaken annotation. When we considered

the position of the likely corrected (or alternative) splice site, we

found that the “extensions” of at least 30 nt are enriched for

lengths divisible by three (P < 2.2 � 10�16, �
2 test), suggesting

that many may be alternatively spliced.

Recent nonsense and frameshift mutations

Finally, we used comparative information to identify several re-

cent disrupting mutations in the sequenced strain of D. melano-

gaster (Celniker et al. 2002), which may have accumulated such

characters during many years in laboratory culture. We identified

two genes (CG9812 and CG33282) in which an in-frame stop

codon is aligned to a sense codon and followed by additional

well-conserved protein-coding sequence in all aligned informant

species. These appear to be recent nonsense mutations (Fig. 4C).

An additional case, CG14638, may be a pseudogene.

We also identified locations in the D. melanogaster genome

where protein-coding evolutionary selection abruptly shifts from

one reading frame to another. In five cases, these coincide with a

short frame-shifting indel, specific to the sequence of D. melano-

gaster, and absent from all of the other genomes. One of these

(within sdk) was due to a previously known erroneous genomic

sequence on chromosome arm 3L in D. melanogaster, while an-

other (within CG33294, currently known as CR33294) may be a

pseudogene. The remaining three cases (within Ugt86Dd, Dscam,

and CG34143) are apparently recent frameshift mutations.

Identifying unusual protein-coding structures

The power of evolutionary signatures to distinguish regions un-

der protein-coding selection has allowed us to recognize a variety

of unusual phenomena that have not been amenable to system-

atic discovery, including stop codon readthrough, polycistronic

transcripts, and translational frameshifts. We present here the

results of this computational analysis, reflecting the best infer-

ence from the comparative data available to us. However, the

underlying biological mechanisms remain unclear in most cases,

and follow-up investigation will be required to explain these ob-

served phenomena.

Stop codon readthrough

Just as evolutionary signatures can often distinguish the prefer-

ential site of translation initiation, they can also accurately iden-

tify the true site of translation termination. For the vast majority

of genes, the comparative data show that protein-coding selec-

tion degrades exactly at the stop codon or shortly upstream. For

149 genes, however, evolutionary signatures strongly suggest

that translation continues well past a deeply conserved, in-frame

stop codon (Fig. 5A), indicating that these “extensions” of the

corresponding proteins, which range in length from 15 to hun-

dreds of amino acids, are under selection for their protein-coding

function.

Translational readthrough of stop codons can occur through

several mechanisms, among which our approach does not dis-

tinguish. However, it does not appear that many of these genes

represent new selenoproteins, because many (37%) of the puta-

tively readthrough stop codons are not UGA and we were unable

to identify convincing examples of the related SECIS elements

according to previously established criteria (Kryukov et al. 1999;

Castellano et al. 2001). We found the set of putative readthrough

genes to be enriched for nervous system expression patterns, ac-

cording to in situ hybridization data (Tomancak et al. 2002; hy-

pergeometric P < 4.2 � 10�5). For this reason, we speculate a

possible role for A → I RNA editing by ADAR, which is most ac-

tive in the nervous system (Bass 2002) and is known to mediate

stop codon readthrough in a viral gene (Luo et al. 1990; Casey

and Gerin 1995) and in a D. melanogaster neuropeptide receptor

(Fig. 1 of Stapleton et al. 2002a). Still, other mechanisms may be

responsible, and it is also possible that precisely positioned alter-

native splicing could lead to the observed signatures without

direct readthrough. Overall, our results suggest that translational

readthrough is not a rare phenomenon in Drosophila and provide

candidate genes for further investigation.

Polycistronic messenger RNAs

Polycistronic messenger RNAs are single processed transcripts

containing several nonoverlapping ORFs, each of which is indi-

vidually translated (Andrews et al. 1996; Brogna and Ashburner

1997; Misra et al. 2002). We searched for complete (start-to-stop)

ORFs that show clear signs of protein-coding selection and are

fully contained within the untranslated region of an existing

transcript model (Fig. 5B). This strategy rediscovered 85 of 115

annotated euchromatic dicistronic transcripts (73%) and predicts

an additional 135 putative ORFs in 123 genes. We note that

many of the ORFs of the previously annotated dicistronic tran-

scripts are also found in single ORF mRNAs. This may also be the

case for the genes we have identified. Our results provide a much

richer set of candidate genes for further investigation, potentially

doubling the number of genes with an annotated dicistronic

transcript in the D. melanogaster genome.

“Programmed” translational frameshifts

Programmed translational frameshifts are common in viral ge-

nomes (Farabaugh 1996), and there is one known example in D.

melanogaster (Ivanov et al. 1998). We found four locations in fly

transcripts where protein-coding selection abruptly shifts from

one reading frame to another, that are not readily explained as an

incorrect transcript model or a species- or lineage-specific muta-

tion. In these cases, the comparative evidence appears to indicate

that a conserved translational frameshift occurs (Fig. 5C). One

such case has a striking association with a highly conserved RNA

structure (Supplemental Fig. 2), which we speculate might be

involved in regulating its usage (Giedroc et al. 2000). We cannot,

however, rule out mechanisms other than translational frame-

shifting, including alternative splicing, and further experimental

study is required.

Discussion

A revised fly gene catalog

The availability of whole-genome alignments of the 12 Dro-

sophila genomes allowed us to measure evolutionary signatures

unique to protein-coding regions. In conjunction with manual

curation and large-scale sequencing experimentation, these sig-

natures enabled us to systematically revisit the fly genome an-

notation, with proposed changes affecting >10% of all genes. (1)

We identified 1193 new exons with high predictive value, most

of which were integrated into FlyBase gene annotations and

many of which were validated by cDNA sequencing experiments,

revealing many surprising new gene models and alternative
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splice forms. (2) In addition to discovering new genes, we used

evolutionary signatures to revisit existing gene annotations. This

led to confirmation that 87% of CGid-named annotations show

evolutionary signatures of protein-coding genes and, conversely,

to the identification of 3%–4% of CGid-only annotations that are

likely to be spurious predictions or noncoding genes. (3) At a

finer-grain level, evolutionary signatures allowed us to propose

detailed refinements to hundreds of existing annotations, adjust-

ing the translation start codon, correcting splice boundaries, re-

solving the functional reading frame in short single-exon tran-

scripts, and identifying strain-specific disrupting mutations. (4)

Lastly, the power of evolutionary signatures enabled us to recog-

nize unusual gene structures, which challenge the current as-

sumptions of gene annotation efforts: We found abundant evi-

Figure 5. Unusual protein-coding structures identified by evolutionary signatures. (A) A well-conserved 30-aa ORF immediately following the stop
codon in the gene Caki suggests translational readthrough. Note the perfect conservation of the putative readthrough stop codon, the “wobble” of the
downstream stop codon, and the precipitous loss of conservation following the downstream stop codon, typical of a true translation stop. (B) A
well-conserved ORF within the annotated 3� UTR of CG4468 suggests a dicistronic transcript structure. Note the region of poor conservation that extends
precisely from the upstream stop codon to the downstream start codon, suggesting separate translation of the two ORFs. (C) An abrupt change in the
reading frame upon which selection appears to act within an exon of CG14047 is suggestive of a “programmed” translational frameshift (see also
Supplemental Fig. 2).
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dence of stop codon readthrough, polycistronic transcripts, and

several candidates for conserved translational frameshifts.

Challenges for computational prediction of complete gene

models

The comparative metrics we used in this study allowed us to

distinguish individual protein-coding regions with high predic-

tive value. To tie these exons into complete gene models, we

relied on manual curation and large-scale cDNA sequencing ex-

periments directed by our predictions. This allowed us to avoid

simplifying assumptions about gene structures typically imposed

by de novo gene structure predictors (Brent 2005).

Our results revealed important insights relevant to full gene

model prediction. We obtained full-length cDNA clones for 162

of our predicted new exons, many of which fell into surprising

gene models, reinforcing the difficulty of de novo gene model

prediction. For example, when new exons were discovered

within introns of existing genes on the same strand, the simplest

expectation would be that they form alternatively spliced tran-

scripts of the surrounding gene. In contrast to this expectation,

however, only 56% were alternative transcripts, and the remain-

ing 44% linked to other genes or formed independent transcrip-

tion units. Such nested and interdigitated genes, as well as mu-

tually exclusive exons within single genes, are refractory to most

de novo gene structure predictors.

A further challenge to computational gene structure predic-

tion is presented by exceptional biological phenomena, such as

stop codon readthrough, polycistronic transcripts, and transla-

tional frameshifts. These are generally assumed to be rare and

eukaryotic gene predictors are not built to recognize them. How-

ever, 115 dicistronic genes are currently annotated in FlyBase,

and our results suggest that the true number may be substantially

larger. Similarly, while only one functional translational frame-

shift has been described in Drosophila (Ivanov et al. 1998), our

results revealed several new candidates. Most intriguing are the

149 genes we identified as potential targets of stop codon

readthrough, which suggest that this phenomenon might be dra-

matically more common than currently understood (with only

three known selenoproteins [Martin-Romero et al. 2001] and a

few other cases [Xue and Cooley 1993; Bergstrom et al. 1995;

Steneberg et al. 1998]). Although these phenomena may still be

considered rare among ∼14,000 genes, they represent some of the

most intriguing examples of biological versatility, and a com-

plete catalog of protein-coding genes cannot ignore them.

The next major advances in de novo gene prediction meth-

ods are likely to come from continued advances in our under-

standing of the sequence signals governing transcription, splic-

ing, and translation regulation, as well as the advent of more

flexible algorithmic frameworks that are well-suited to take ad-

vantage of such unconventional signals (Lafferty et al. 2001;

Gross et al. 2006; Bernal et al. 2007). Still, the complex and non-

canonical gene structures described above present challenges

that appear difficult to overcome even for this next generation of

eukaryotic gene structure predictors.

Applying the evolutionary signature approach to other target

genomes

We believe that the work described in this report clearly demon-

strates the power and practicality of our approach to improve the

gene annotations of important genomes by complementing ex-

isting methodologies, including de novo gene structure predic-

tion, large-scale cDNA sequencing, and manual curation. Our

methods are directly applicable to other genome annotation

projects that have this infrastructure in place, including the hu-

man (Harrow et al. 2006).

More generally, the preexisting, high-quality annotations

for D. melanogaster allowed us to demonstrate the high sensitivity

and specificity of the RFC and CSF tests based on evolutionary

signatures. Since these signatures are universal consequences of

natural selection and the genetic code, our results suggest that

they can provide a strong foundation for the identification of

protein-coding genes within any group of closely related species,

even when cDNA library sequences are not immediately available

or when no genomes with high-quality annotations exist in

closely related taxa. Furthermore, it may also be possible to de-

fine specific evolutionary signatures—beyond mere sequence

conservation—for other classes of functional elements, which

suggests a general approach for the identification of functional

elements in any genome. The derivation of reliable gene models

for protein-coding genes remains a challenge, especially given

the abundance of complex gene structures in metazoan genomes.

It is also inherently difficult for comparative genomic methods to

identify very fast-evolving, species-specific genes, which are cen-

trally important to the study of evolution, speciation, and im-

munity. Thus, the complete genome annotation of any species

will continue to be most effectively pursued through the con-

certed efforts of computational predictions, manual curation,

and large-scale cDNA sequencing.

Methods

Genome alignments

We used several different sets of multiple sequence alignments of

the 12 Drosophila genomes in this study. Two were based on a

synteny map generated by Mercator (C. Dewey [University of

Wisconsin, Madison] and L. Pachter [University of California at

Berkeley]), with sequence alignments generated by MAVID (Bray

and Pachter 2004) and Pecan (B. Paten and E. Birney, European

Bioinformatics Institute, Cambridge, UK). Additionally, we used

a MULTIZ (Blanchette et al. 2004) alignment of the 12 Drosophila

genomes and three other insect genomes, excluding the non-

Drosophila species. We used the Mercator/MAVID synteny-

anchored alignments for predicting new exons and all three

alignment sets for evaluating existing gene models (taking the

highest-scoring version of the gene from the three alignments in

order to have some robustness against alignment errors; see

Supplemental Methods for details).

Reading frame conservation (RFC)

The RFC score was computed as we have previously described

(Kellis et al. 2004). Briefly, given a region of the genome, a pair-

wise score between D. melanogaster in each informant is com-

puted as the percentage of D. melanogaster nucleotides in the

same reading frame in the informant (taking the largest such

percentage out of the three possible reading frames). Each infor-

mant then votes +1, �1, or 0 based on an informant-specific

cutoff on the pairwise RFC score: +1 if the score is above, �1 if

the score is below, or 0 if there was no sequence aligned. These

votes are then summed to obtain an overall score for the region.

Codon substitution frequencies (CSF)

CSF assigns a score to each pairwise codon substitution between

D. melanogaster and an informant equal to the log-likelihood ra-
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tio of observing that substitution in coding sequence versus non-

coding sequence, conditioned on observing a substitution of the

D. melanogaster codon. These log-likelihood ratio scores, shown

in Figure 1B, were computed from codon distance matrices esti-

mated by counting the frequencies of codon substitutions in

alignments of annotated genes and noncoding regions for the

appropriate pair of species, similar to the BLOSUM amino acid

distance matrices estimated from protein alignments (Henikoff

and Henikoff 1992). To obtain a score for a given genomic region,

the scores of all codon substitutions in its alignment were

summed; no score was assigned to gapped or perfectly conserved

codons. With multiple informant sequences, the median of the

scores of all codon substitutions in each codon column was used

as the score of that column, and the score of each column was

summed to score the region (see Supplemental Methods for com-

plete details about CSF).

Thorough benchmarks of the RFC and CSF metrics, as well

as various other discriminative metrics for protein-coding gene

identification, with different alignments and different combina-

tions of informant species, are presented elsewhere (M.F. Lin, A.

Deoras, M. Rasmussen, and M. Kellis, in prep.).

“Confirming” genes

We obtained alignments for every transcript model in FlyBase

annotation Release 4.3 by extracting them from the genome

alignments (see Supplemental Methods). We scored each tran-

script by the CSF and RFC metrics and normalized the scores by

length. Additionally, we scored thousands of disjoint intervals of

at least 300 nt, selected uniformly at random from the noncod-

ing part of the euchromatic genome. To define the test for “con-

firmation,” we chose simple cutoffs on the metrics that exclude

>99.9% of the control regions (see Table 1 and Supplemental

Methods for specific cutoffs used).

“Rejecting” genes

Our test for identifying “rejected” genes was performed by com-

puting the CSF score over every overlapping 30-aa window in

every transcript model for each gene. Additionally, we computed

these scores using all three genome alignment sets and using

three different subsets of the informant species, representing all

12 Drosophila genomes, the subgenus Sophophora, and the mela-

nogaster group. We took the highest scoring 30-amino-acid win-

dow in each gene, out of all its transcripts, all of the alignments,

and all of the phylogenetic clades, as the score for that gene. We

observed the distribution of this score to be bimodal, chose a

cutoff to isolate the lower distribution, and found it to closely

resemble our random controls (Supplemental Fig. 1).

Predicting new exons

We integrated our evolutionary metrics as features into a semi-

Markov conditional random field (SMCRF), a probabilistic model

similar to a generalized hidden Markov model but with more

flexibility to directly incorporate discriminative metrics such as

RFC and CSF (Lafferty et al. 2001; Sarawagi and Cohen 2005). The

SMCRF uses the evolutionary metrics to predict only individual

exons, not complete gene structures, and therefore may be con-

sidered more similar to interval segmentation algorithms that

define the boundaries of high-scoring regions than to full gene

predictors. The other features used by the SMCRF include se-

quence-based splice site discriminators (Yeo and Burge 2004),

start/stop codon indicator functions, and a length distribution

feature; however, it did not contain any explicit coding sequence

composition features (e.g., high-order Markov models), nor did it

use any information about transcript sequence evidence or ho-

mology with known proteins. The SMCRF had seven segment

labels or “states”: one for each codon position (reading frame) on

each strand and one noncoding. The model was trained by maxi-

mum conditional likelihood using a training set of known genes,

and the Viterbi algorithm was used to generate exon predictions

for the whole genome in the Mercator/MAVID alignments (see

Supplemental Methods for further details).

Selection of exon candidates for cDNA isolation

We used self-ligation of inverse PCR products (Hoskins et al.

2005; Wan et al. 2006) to screen four cDNA libraries to obtain

clones that contained the predicted conserved exons using a

modified primer design strategy. Primers were designed for opti-

mal PCR conditions eliminating the requirement for 5� bias in

placement; 172 predicted exons failed the primer design step of

our cDNA screening strategy because they were either too small

or not unique in the genome. Of the 434 remaining candidates

for validation (after exclusion of predictions with existing EST

evidence and other filters; see main text), we selected 184 for

validation by maximizing the genomic separation between tested

predictions. After cloning of the PCR product four sequencing

reads were produced: one from each cDNA end and one from

each PCR primer. The composite sequence was used to evaluate

whether the clone matched the targeted exon. Clones that

matched were selected for complete sequencing.

RT-PCR

We extracted total RNA from the D. melanogaster sequenced

strain at four time points (0–12-h embryos, 12–24-h embryos,

first instar larvae, and adults), using the Micro-to-Midi Total RNA

Purification System (Invitrogen). Processed mRNA was isolated

using Oligotex mini mRNA Kit (Qiagen) and RT-PCR was per-

formed using the OneStep RT-PCR kit (Qiagen) or Invitrogen

Superscript II as reverse transcriptase. Gene-specific primers were

designed using primer3 (http://primer3.sourceforge.net/). Prim-

ers were 20–24 bp in length and were designed to cross intron/

exon boundaries. PCR products were directly sequenced and

aligned to the genome using est2genome (http://emboss.

sourceforge.net). Primer and amplicon sequences were deposited

into GenBank under accession nos. ES439769–ES439782.

Refinements to existing annotations and unusual gene

structures

We performed directed computational searches for these phe-

nomena using RFC and CSF, and used the resulting lists to guide

manual inspection and/or downstream computational analyses,

leading to the choice of final cutoffs and data sets. For example,

to identify likely recent nonsense mutations, we identified high-

scoring regions in FlyBase transcripts downstream from D. mela-

nogaster stop codons that align to sense codons in the other spe-

cies; to identify possible stop codon readthrough genes, we iden-

tified similar cases where the stop codon is conserved across the

informant species. See Supplemental Methods for further details

and the cutoffs used.
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