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Revisiting the recent European 
droughts from a long-term 
perspective
Martin Hanel  1, Oldřich Rakovec  2,1, Yannis Markonis1, Petr Máca1, Luis Samaniego  2,  

Jan Kyselý1,3 & Rohini Kumar  2

Early 21st-century droughts in Europe have been broadly regarded as exceptionally severe, 
substantially affecting a wide range of socio-economic sectors. These extreme events were linked 
mainly to increases in temperature and record-breaking heatwaves that have been influencing Europe 
since 2000, in combination with a lack of precipitation during the summer months. Drought propagated 
through all respective compartments of the hydrological cycle, involving low runoff and prolonged 
soil moisture deficits. What if these recent droughts are not as extreme as previously thought? Using 
reconstructed droughts over the last 250 years, we show that although the 2003 and 2015 droughts 
may be regarded as the most extreme droughts driven by precipitation deficits during the vegetation 
period, their spatial extent and severity at a long-term European scale are less uncommon. This 
conclusion is evident in our concurrent investigation of three major drought types – meteorological 

(precipitation), agricultural (soil moisture) and hydrological (grid-scale runoff) droughts. Additionally, 
unprecedented drying trends for soil moisture and corresponding increases in the frequency of 

agricultural droughts are also observed, reflecting the recurring periods of high temperatures. Since 
intense and extended meteorological droughts may reemerge in the future, our study highlights 
concerns regarding the impacts of such extreme events when combined with persistent decrease in 
European soil moisture.

Since the beginning of the 21st century, Europe has experienced a series of extreme hot and dry summers (2003, 
2010, 2013 and 2015)1–3. Over parts of Central Europe, mean summer temperature in 2003, was up to �ve stand-
ard deviations higher than the long-term mean4, and the 2015 summer was the hottest since 1950 across a large 
part of eastern and southwestern Europe3. In addition, recent non-summer periods have also been extreme, for 
example, air temperatures over Europe during the autumn of 2006 and winter of 2007 were ranked as the warmest 
in the last 500 years5. �e implications of these extreme weather conditions were felt in the sectors of agriculture6, 
hydrology and water resources7, human health8 and ecosystem services9, among others.

During recent years, (palaeo-) climatic reconstructions of hydroclimatic variables have been introduced 
to describe stream�ow10,11, �oods12, average13 and extreme14 rainfall and drought characteristics15. Except for 
regional studies16,17, drought reconstructions o�en focus on characterization of meteorological droughts, i.e., a 
lack of precipitation, possibly combined with increased potential evapotranspiration. However, the impacts of 
hydrological drought (below-normal river discharge) are more heterogeneous in space and time than those of 
meteorological drought. �is is due to signi�cant links to hydrological preconditions, which are thus crucial for 
understanding and assessing the development of hydrological drought propagating from meteorological drought, 
as well as for assessing its impacts on water resources2. �e same importance also applies to agricultural drought 
(soil moisture de�cit) or groundwater drought (groundwater de�cit) and its development from meteorological 
conditions18.

�e majority of studies on recent hydrological droughts evaluate the drought properties in the context of 
records starting in the second half of the 20th century1–3. �ere are indications, though, that the main drivers 
of hydrological drought (precipitation and soil moisture de�cits and high evapotranspiration19, with the latter 
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linked to high temperature) had already reached recent levels in the more distant past. For instance, the highest 
daily temperatures in parts of Central Europe in 1540 were likely warmer than in 200320. �e spatial extents of 
the reconstructed meteorological droughts15 in 1616, 1893 and 1921 exceed or are at least comparable to those of 
the recent events. Further, documentary evidence indicates severe large-scale European droughts, e.g., in 189321 
and 192122. By extending our time window into the past, we can thus more accurately assess the range of hydro-
climatic variability23, and understand the extremity of recent drought events.

In the present paper, we use reconstructed climate �elds of precipitation and temperature for the period 1766–
2015 (provided by Casty et al.24) as input into a state-of-the-art hydrological model (mHM25,26) to quantify the 
extremity of recent drought events in a long-term European perspective. We provide concurrent investigation of 
droughts from meteorological (precipitation de�cit), agricultural (soil moisture de�cit), and hydrological (run-
o� de�cit) perspectives. We contrast drought characteristics (i.e., severity, duration, and areal extent) of recent 
against historical large-scale droughts that were not available for assessments presented so far.

Temporal variability of precipitation, soil moisture and grid-scale runoff
�e mesoscale Hydrological Model (mHM25) simulates water �uxes and states on a 50 km × 50 km grid, which 
(under the set-up used for this study) covers most of Europe (excluding Scandinavia and the British Isles). �e 
analysis presented here considers standardized time series (having zero mean and unit standard deviation in each 
month, see Fig. 1 and Methods section) of reconstructed precipitation24 and mHM simulated soil moisture and 
grid-scale runo�. �e standardization is o�en used in regional/global drought studies27 to allow for comparison 
between regions exhibiting di�erent hydroclimatic regimes. For example, the mean annual precipitation ranges 
from ca 300 mm in south Spain to more than 2000 mm in the Alps and thus, in absolute values, a relatively mild 
precipitation de�cit from one location could correspond to severe drought at another location and vice versa. 
Note that by the term “grid-scale runo� ” we mean the total water (surface, inter�ows and groundwater) that 
is produced at a grid scale before entering into the stream-network. In this way we can consistently compare 
between grid scale precipitation, soil moisture and runo� droughts, which would not be the case for the routed 
stream�ow in rivers.

Drought is de�ned as a sustained and regionally-extensive period of below-average water availability28. In the 
long-term perspective, being it reconstructed series or climate change projection, it is not always clear whether a 
single (stationary) reference period can be considered for identi�cation of below-average conditions since o�en 
the mean as well as other characteristics like variability of the distribution evolve in time. As a result the eco-
systems and society slowly adapt to new hydroclimatic conditions (e.g. by transforming agricultural manage-
ment) and what was considered drought may become normal in drier climate or conversely what was considered 
wet may become normal or drought in wetter climate29. �erefore in a context of long-term reconstruction of 
droughts, the changing temporal variability needs to be taken into account within drought de�nition.

Figure 2 (top panels) shows the temporal evolution of 30-year moving average of the considered hydrocli-
matic variables averaged over the Mediterranean (MED) and Central European (CEU) regions. �ese regions are 

Figure 1. Estimation of Standardized De�cit Index (SDI) for runo�. Upper panel depicts the original time 
series of simulated runo� at a random grid cell in Central Europe for the period 1919–1923. For calculation of 
the SDI the values are �rst standardized by subtracting monthly mean and divided by standard deviation for 
each month separately. For the standardized series (lower panel) the values below zero (dot-dashed grey line) 
correspond to below-average runo� (e.g. the period from May 1920 to March 1922). Drought de�ning threshold 
(dashed red line) is calculated as the 20th percentile of the standardized series using quantile regression on 
time (to allow for non-stationarity, see Methods section). Drought event (orange area) starts when the series 
drops below the threshold and ends when it raises again. �e SDI value is obtained as the cumulative sum of 
deviations from the threshold over the event for �uxes (precipitation, runo�), for system states (soil moisture) 
as the maximum deviation from the thresholds27 (since the state already integrates the �uxes). Figure was 
created in R (ver. 3.2.1, https://www.r-project.org/).
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based on the IPCC Special Report on Extremes19. �e precipitation over a relatively long time span of 250 years 
(1766–2015) slightly increases over the CEU and decreases over the MED regions. �ere has been, however, a 
pronounced reduction in precipitation in the MED region since 1970, which is consistent with the �ndings of pre-
vious observation-based studies19,30. �e dynamics of grid-scale runo� closely follows that of precipitation, while 
a substantial drying trend is observed in soil moisture across both regions since the beginning of the 20th century.

Regardless of the increase in mean precipitation and grid-scale runo� in CEU, the lower quantiles of the 
distribution, which are more relevant to drought, are decreasing for all three variables in both regions. �is is 
illustrated in Fig. 2 (middle panels) for 30-year moving average of the 20th percentile (q20) of the distribution of 
standardized variables. �e strongest decreasing trend is noticed in soil moisture, followed by precipitation and 
runo�, across both the CEU and MED regions (see Supplementary Section 3.1 for more detailed assessment of 
trends).

Drought severity is frequently expressed using a threshold level approach through de�cit index27,29,31. In this 
approach a drought event starts when the value drops below selected threshold (o�en q20) and ends when it rises 
again. De�cit index for an event (sometimes called de�cit volume) is de�ned as a cumulative deviation from the 
threshold for �uxes (precipitation and grid-scale runo�) or a maximum deviation for states (soil moisture). �e 
de�cit index needs to be standardized32 to allow comparison across di�erent climates (as explained above). In 
addition, due to non-stationary climate, the threshold de�ning droughts may vary in time29,33 as also discussed 
above. �e time-varying threshold (quantile regression based q20) is therefore used here for calculation of the 
standardized de�cit and the value is further referred to the Standardized De�cit Index (SDI; see Methods for 
more details) expressing drought severity. Note, that unlike popular Standardized Precipitation Index and similar 
indices, the SDI (or de�cit index in general) does not involve any distribution �tting. In addition, since SDI does 
not relate to a speci�c variable we explicitly distinguish SDI for precipitation, SDI for soil moisture and SDI for 
grid-scale runo� throughout the paper.

�e SDI exhibits substantial heterogeneity across both the CEU and the MED regions (Fig. 2; bottom panels) 
compared to the average and q20, which signi�es the degree of non-linearity in the drought-generating processes. 
In general, we �nd a relatively strong increase in SDI for all variables in the �rst half of the 20th century. A�er 
1950, this increase continues for precipitation in the western part of MED and CEU, for soil moisture in MED 
and western CEU and only partly for grid-scale runo� in MED (Supplementary Fig. S7, Supplementary Table S1).

Spatio-temporal variability of drought over the last 250 years
Figure 3 shows the temporal dynamics of drought areal extent for di�erent exceedance probability levels of 
drought severity (see Supplementary Section 1.4). �e areal extent is estimated as percentage of grid cells rel-
ative to the entire study domain. �e decade of 1945–1955 can be classi�ed as a period with the most extreme 
and long-lasting droughts during the last 250 years that appear in all three compartments of the water cycle. In 
general, our reconstruction of hydrological and soil moisture droughts agrees well with the past documented 
large-scale drought events that occurred in 1858–59, 1921–22, and 1949–50, and covered at least 20% of the study 

Figure 2. Temporal dynamics of 30-year moving average of the mean (top), 20th percentile (q20; middle), and 
standardized de�cit index (SDI; bottom) for the standardized precipitation (le�), mHM-simulated grid-scale 
runo� (middle) and soil moisture (right). Values for the Central Europe (CEU) and Mediterranean (MED) 
regions are shown in blue and red colours, respectively. �e thick lines correspond to areal means, and the 
envelopes span the range between the 5th and 95th percentiles of grid cell values for each region. �e MED region 
is de�ned according to the IPCC Special Report on Extremes19: 30°N–45°N, 10°W–40°E, and the rest of the study 
domain corresponds to the CEU region. Figure was created in R (ver. 3.2.1, https://www.r-project.org/).

https://www.r-project.org/
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domain. �e years 1921 and 1949–50 are found to have spatially extensive dry summers according to the Palmer 
Drought Severity Index (PDSI)34; with the severity of the 1921 drought was such that it led to some of the very 
�rst studies on drought22. �e periods 1857–1858, 1921–22 and 1953–1954 can also be found in palaeoclimatic 
reconstructions of European drought15 and regional reconstructions of Rhine stream�ow35 and Bavarian precip-
itation36. �e literature is not as extensive for the Mediterranean, but there is strong evidence for the 1945 and 
1949 droughts over the Iberian Peninsula37. �e period of 1942–1953 is regarded as one of the driest across the 
whole MED region38.

Ample di�erences in the areal extent of drought are also found depending on the variables used for identi�ca-
tion of drought. �e meteorological droughts exhibit spiky behaviour, inherently related to the erratic temporal 
variability of precipitation, whereas the soil moisture droughts show more persistent behaviour (Fig. 3). �e 
variability of the areal extent of hydrological (grid-scale runo�) drought results from the combination of fast and 
slow �ow components, which signify the modulating e�ects of the terrestrial land (sub)-surface properties in the 
propagation of meteorological droughts to runo� and soil moisture18,31. For example, the meteorological drought 
in 1904 does not propagate into grid-scale runo� and soil moisture directly but with a considerable time lag and 
attenuation. Similarly, the hydrological and soil moisture droughts during 1859 and 1922 are largely a�ected by 
the extreme meteorological droughts occurring in the preceding years of 1858 and 1921, respectively.

Based on the temporal evolution of drought areal extent during 1950–2015, we �nd a signi�cant increasing 
trend for soil moisture droughts and a decreasing trend for meteorological droughts for a number of SDI exceed-
ance probability classes (Fig. 3). �is result highlights the enhancing role of temperature increase on soil moisture 
droughts in recent decades, since it has been demonstrated that the temporal variability of soil moisture is mainly 
driven by climate. When changes in vegetation are small compared to the climatic �uctuations, i.e. during the 
last 30 years, vegetation processes can be considered more as a “regulator” for drying or wetting the soil39. More 
insight regarding the e�ect of temperature on soil moisture droughts can be sought in the well-studied 2012–2014 
California drought, which has been regarded similar to the European 2003 drought in terms of concurrent low 
precipitation and extreme temperature40. What is remarkable with the California drought is that although it is 
found to be the most severe drought of the last millennium in terms of cumulative severity, the corresponding 
precipitation de�cit is not unprecedented41. It is important to note that the latter is identi�ed as the main driver of 
this multi-year drought, due to a persistent atmospheric circulation pattern that blocked oceanic moisture trans-
port42. �erefore, the record high temperatures are considered to have exacerbated the dryness43, even though the 
onset and duration of the drought are also controlled by circulation-related precipitation de�cit44.

Extreme drought events
To further identify the most extreme drought events over the past 250 years, Fig. 4 depicts the bivariate relation-
ship between annual areal drought extent and corresponding severity computed over grid cells with SDI values 
greater than one. �e extreme drought events are identi�ed as those events falling outside the 95% quantile enve-
lope of the bivariate distribution (see Methods Section for further details). Overall we �nd the droughts occurred 
in 1858–59, 1921–22 and 1953–54 as the most extreme events. In all three regions (CEU, MED, and entire EU), 
the extremely low precipitation falls outside the 95% quantile envelope only during the �rst year of the drought, 

Figure 3. Time series of area under drought over the whole study domain for precipitation (top), grid-scale 
runo� (middle) and soil moisture (bottom). Colours correspond to SDI exceedance probability - the lower the 
exceedance probability the more severe the drought. White ticks indicate extreme drought events with respect 
to drought severity and areal extent as identi�ed in Fig. 4. Figure was created in R (ver. 3.2.1, https://www.r-
project.org/).

https://www.r-project.org/
https://www.r-project.org/
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while the runo� and soil moisture droughts persist to the next year. �is distinguishing time lag and the atten-
uation of drought events in propagation of precipitation de�cits to grid-scale runo� and soil moisture droughts 
suggest that it usually takes 1–2 years for runo� and soil moisture drought to recover from the precipitation de�cit 
in such large-scale events.

Notably, these drought events a�ect the Mediterranean rather marginally, which suggests a di�erent drought 
regime in the Mediterranean than the rest of Europe. In southern Europe, the most pronounced events include 
the droughts of 1945 and 1949, while there are also a number of other severe, mainly runo�, droughts with more 
con�ned areal extents (probably due to the characteristic spatial heterogeneity of the region). An exception is 
the drought of 1949, which is also evident in the CEU runo�, but this seems to be the only synchronous event 
between the two regions. Finally, the sharp decrease in soil moisture during the last century is also re�ected in the 
increased frequency of soil moisture droughts; the most extreme events beyond the two major droughts (1945 and 
1949) emerge in the last 30 years, namely, 1989, 1990, 2001 and 2012.

To this end, the monthly propagation of drought in the three most extreme cases in CEU is examined. �ese 
cases can all be classi�ed as wet-to-dry season droughts28, i.e., their precipitation SDI starts its monotonic increase 
during the late summer/early autumn of the previous year, with the soil moisture decrease occurring in autumn 
and the response in runo� during winter. Interestingly, excess PET remains rather low in all three cases. On the 
other hand, the initiation of the 21st-century droughts can be found in mid-spring to mid-summer of the same 
year and is synchronous with a strong increase in PET. �is result is in good agreement with a recent study on the 
hydroclimatic changes across Central Europe45, which claims that the onset of recent droughts in this region is 
more likely to be related to the temperature increase than to any major decrease in precipitation.

Figure 4. Relation between the area under drought and drought severity for precipitation (le�), grid-scale 
runo� (middle) and soil moisture (right) over the Central Europe (top) and Mediterranean (middle) regions 
and all of the study domain (bottom), based on annual values. �e red areas contain 95% of all drought events. 
�e points correspond to the ensemble medians, and the lines span the interquartile range. Values for 2003 and 
2015 are labelled in red. White points indicate droughts initiated in the vegetation period. Vertical (horizontal) 
thick grey line indicates maximum areal extent (severity) within the 95% envelope (red area). Error bars 
represent the composite uncertainty for the soil moisture and grid-scale runo� drought characteristics due to 
temporal disaggregation of meteorological forcings and model parameterization. Figure was created in R (ver. 
3.2.1, https://www.r-project.org/).

https://www.r-project.org/
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It becomes apparent that the recent 2003 and 2015 droughts are not such extreme events from a continental 
perspective. Our �ndings suggest that they exhibit considerably lower severity and areal extent with respect to 
the multi-year 1858–59, 1921–22 and 1953–54 droughts in all of the investigated variables. In fact, for runo� (soil 
moisture) there are 49 (110) past drought events with larger severity and 50 (25) events with larger area compared 
to recent events. Similar to the California case, the recent droughts are linked to low precipitation caused by 
blocking atmospheric circulation patterns combined with record-breaking temperature conditions1,3. However, 
when examined from a 250-year perspective, the precipitation de�cit over the entire study domain is found to 
be not large - according to mean annual precipitation de�cit volume, it ranked 23rd and 73rd for 2003 and 2015, 
respectively. In both years, the decrease in precipitation occurred solely during spring and summer. In 2003, pre-
cipitation returned to normal conditions during the succeeding autumn, while the severity of the 2015 drought 
was possibly limited due to the wet preceding winter over large part of Europe2,7. �erefore, the annual statistical 
properties of the droughts considered here might mask their extremity occurring at �ner time scales and with 
respect to di�erent drought-generating processes. Indeed, when only droughts initiated during the vegetation 
period are considered, the 2003 and 2015 events are the most intense events in the 250-year of reconstructed 
dataset with respect to severity and spatial extent of runo� drought (see white dots in Fig. 4). �is observation 
reveals that recent seasonal droughts are generated by di�erent physical processes compared to their historical 
long-term counterparts.

Runo� droughts in 2003 and 2015 are especially pronounced in CEU, but they count among the most severe 
vegetation-period droughts also in the MED region. Similarly, the spatial extent of the area a�ected by agricul-
tural drought is considerable (60% of the CEU area and 35% of the MED area) and rather atypical for this drought 
type, with more severe and extended droughts only in 1917 and 2011 in MED (Fig. 4). Figure 4 also shows the 
error bars representing the composite uncertainty for the modelled soil moisture and grid-scale runo� drought 
characteristics due to temporal disaggregation of meteorological forcings and model parameterization (see 
Methods Section for more details). �e majority of the events outside the 95% envelope, and especially the most 
extreme ones, are clearly distinguishable regardless of the uncertainty. �e uncertainty was further decomposed 
into parametric and forcing parts. For runo� drought area (severity) the parametric uncertainty is on average 3.5 
(3.6) times higher for runo� and 2.2 (2.3) for soil moisture than the forcing uncertainty. In absolute values, the 
mean of the drought area (severity) due to the parametric uncertainty ranges between 22 ± 8.5% (±0.28) for run-
o� and ±3.9% (±0.12) for soil moisture drought area (severity). �ese �ndings suggest that the disaggregation 
e�ect in the reconstructed climate input is negligible and that also the model parameterization introduces only a 
small uncertainty in the modelled results.

Similarly to the discussion of the temporal domain and drought type, the fact that the recent drought events 
from the continental perspective are not as extreme as previously perceived can be misleading regarding their 
severity or rarity at �ner spatial scales. �erefore, a comparison of selected widespread extreme drought events 
with the 2003 and 2015 droughts is performed (Fig. 5, see also Supplementary Figs S9 and S10). Although locally 
(e.g., in southern France and Germany, Switzerland, Austria and the Czech Republic) the SDI for grid-scale runo� 
in 2003 and 2015 reaches extreme levels (i.e., the exceedance probability is low), the droughts of 1858, 1921 and 
the multi-year drought series around 1950 appear to be the more intense, covering a large part of Europe and 
reaching high severity levels. �is di�erence in severity becomes even more apparent if the SDI annual values 
per grid cell are examined for each drought event. For instance, during 1921, 50% of the grid cells present runo� 
SDI twice as large as average (i.e., SDI > 2), and 20% more than four times the average (SDI > 4; mainly in France, 
Germany and eastern Ukraine). In 2003 and 2015, there are less than 10% of grid cells with SDI larger than 2 and 
almost no grid cells with SDI > 4, respectively (see Supplementary Fig. S11). While similar di�erences are found 
in the distribution of precipitation SDI (the area with high SDI values is considerably larger in 1921 than in 2003 
or 2015), the distribution of soil moisture SDI for recent droughts approaches that of 1921 more closely. �is 
raises concerns about the consequences of extreme meteorological droughts in combination with soil moisture 
de�cits enhanced by a warmer climate.

Finally, the spatial patterns of our simulations are also in good agreement with most of the major drought 
events presented in the international database of text-based reports46. �ese events include the soil moisture 
droughts in the western Mediterranean and Central Europe during 2004–2008 and 2011–12, the severe 1989–
1990 meteorological/hydrological drought over the Mediterranean and southern France and the 1975–1976 
drought covering France, Germany and Eastern Europe. �e exact geographical characteristics of these events can 
be seen in detail at https://shiny.fzp.czu.cz/KVHEM/drought/. In most cases, the patterns of precipitation and soil 
moisture droughts are markedly di�erent from those of runo�, highlighting the importance of di�erent drought 
drivers and drought propagation. It must be noted, however, that in recent events runo� droughts are at particular 
locations more severe (have lower SDI exceedance probabilities) than meteorological/soil moisture droughts, 
although the latter have broader spatial extent (compare Fig. 5 to Supplementary Figs S9 and S10). In addition, 
the droughts over the Mediterranean seldom a�ect the whole area (an exception is the extensive drought event of 
1945), following the east-west climate dipole that has been detected as the dominant component of hydroclimatic 
variability in the Mediterranean47.

Although the recent European droughts are found to be the most extreme droughts initiated in the vegetation 
period (in the 250-year reconstructed dataset), they are much milder and more limited in both space and time 
with respect to their large-scale predecessors. For instance, compared to 2003 and 2015 events, the area a�ected 
by the most extreme hydrological droughts and drought severity was larger by 40% and 55%, respectively. �e 
severity is larger even by 70% for the soil moisture drought. �e reason that the recent droughts were not devel-
oped to a similar extent or severity lies in the wet preconditions and/or the rapid increase in precipitation that 
terminated them2. �is interpretation could also be in good correspondence with the positive trend in precipi-
tation observed in mid to high latitudes over Europe since the beginning of the previous century48; and with the 
study of Kwon et al.49 showing that a multi-decadal wetting trend can make recent droughts appear quite extreme, 

https://shiny.fzp.czu.cz/KVHEM/drought/
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while such droughts could have been common in the previous centuries. Nevertheless, the California drought has 
already taught us that in changing hydroclimatic conditions, the prolonged periods of precipitation de�cits, even 
when not reaching the most extreme levels, can lead to large-scale severe droughts. Further analysis of drought 
impacts under conditions such as large precipitation de�cit and/or higher temperature, remains a challenge for 
future research, and the combination of climate reconstructions with an ensemble of hydrological models could 
help us to understand and describe what might occur in a warmer climate.

Our study relies on the reconstructed climate �elds of precipitation and temperature. In the reconstruction 
study50 the estimated uncertainty due to reconstruction is highest in winter (up to 20 mm/season) and lowest in 
summer (up to 7 mm/season). Validation of gridded data against point observation is always challenging due to 
scale mismatch. However, we performed a validation of modelled river �ows and partly also groundwater levels 
against available observations (see Supplementary Material for more details). Especially at the standardized scales - 
relevant to droughts - the mHM simulated runo� and groundwater levels correspond quite well to observed values.  
In addition, this also holds for the SDI estimates calculated from simulated and observed runo� time series.

�is study has primarily evaluated the impact of climate conditions on drought development. �erefore, other 
aspects such as time-varying model parameterization (e.g. due to vegetation changes) were not fully addressed, 
mainly due to lack of reliable available data. Nevertheless, some recent studies51,52 suggest that the e�ects of land 
use changes on runo� are much less important compared to that of the climate variability; e.g. Li et al.53 reports 
this di�erence to be close to one order of magnitude for large catchments.

Additionally, the hydrological drought is o�en considerably modulated by groundwater. In the present study 
we did not tackle the surface-groundwater interactions in depth, partly due to simpli�cation of groundwater 
dynamics within mHM and relatively coarse spatial resolution (see Methods Section for more detail). �e inde-
pendent veri�cation of simulated groundwater anomalies, however, revealed good correspondence with obser-
vations (Supplementary Fig. S4) and therefore we do not expect that groundwater representation in mHM would 
lead to considerable bias in hydrological drought characteristics. More detailed assessment of groundwater and 
vegetation controls on drought remain challenging topics for future research.

Methods
Reconstructed climate fields. �e assessment of drought characteristics during the last 250 years is 
performed across a large part of Europe (excluding Scandinavia and the British Isles) at a spatial resolution of 
0.5° × 0.5° and a monthly time step. We employ gridded �elds of land surface precipitation and air temperature 
for the period 1766–1900 (already available from Casty et al.24), which were reconstructed by up-scaling the 

Figure 5. Exceedance probability of large-scale extreme grid-scale runo� drought events identi�ed in Fig. 4 
together with those for 2003 and 2015. Note that low exceedance probability corresponds to large drought 
severity. Figure was created in R (ver. 3.2.1, https://www.r-project.org/).

https://www.r-project.org/
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available station data using principal component regression24,50 on the CRU TS dataset54. In line with previ-
ous studies24,50 the CRU TS dataset54 was used for the period 1901–2015. We derived the monthly estimates of 
potential evapotranspiration considering monthly mean temperature and the approximations for extraterrestrial 
solar radiation55. We refer to this dataset (monthly time series of land surface precipitation, air temperature and 
potential evapotranspiration for the period 1766–2015 on a 0.5° × 0.5° grid) herea�er as the reconstructed climate 
�elds/data.

Model setup and experiment design. We use the grid-based, spatially explicit mesoscale Hydrological 
Model (mHM)25,26 to reconstruct monthly �elds of grid-scaled runo� and root-zone soil moisture over the 
European domain since 1766. �e numerical approximations and conceptualizations employed in the mHM are 
similar to well-known hydrological models such as the HBV56 or VIC models57, accounting for canopy intercep-
tion, snow accumulation and melting, soil moisture dynamics, in�ltration and surface runo�, evapotranspiration, 
subsurface storage and discharge generation, deep percolation and base �ow, and �ood routing. A non-linear 
separation scheme based on the HBV model56 is implemented to partition incoming net rainfall into soil moisture 
and in/ex-�ltration in root-zone soil layers. �e evapotranspiration from di�erent soil layers is modelled based 
on available soil moisture stress and the fraction of vegetation roots in each soil layer. mHM considers fast and 
slow �ow components for the grid-scale total runo� production. �e fast �ow component is represented through 
a combination of a threshold based quick inter�ow part and a relatively (slower) quasi-permanent inter�ow part 
with di�erent recession constants. �e slow �ow component in mHM, which re�ects the groundwater contribu-
tion to runo�, is modelled as an out�ow of a linear reservoir with varying recession constants depending on the 
spatial heterogeneity of the underlying aquifer properties. �e total runo� generated at every grid cell is routed 
to its neighbouring downstream cell using the Muskingum routing algorithm. �e model uses the novel mul-
tiscale parameter regionalization scheme to account for sub-grid variability of landscape attributes and model 
parameters that allows the seamless prediction of water �uxes and states across a range of spatial scales and 
locations25,26,58. To date, the mHM has been previously in depth parameterized and successfully evaluated against 
multiple datasets (including evaporation, changes in the terrestrial water storage anomaly, soil moisture) at mul-
tiple spatial resolutions and over a large number of river basins world-wide25,26,58–64. In addition, a multi-model 
investigation conducted recently showed a better skill of mHM in capturing the dynamics of river �ow across 
Europe compared to more complex models like Noah-MP and PCRGLOB-WB65,66. Detailed model evaluation is 
further presented in Supplementary Section 1 and corresponding Figs S1–S4. More details on model conceptual-
isation and applications of mHM may be found at http://www.ufz.de/mhm.

To enable the mHM runs at a daily time scale, we disaggregate the monthly reconstructed climate �elds using 
a non-parametric k-Nearest Neighbour resampling approach67,68; i.e., the monthly values (sums of precipitation 
or averages of temperature) are distributed over the individual days in the same way as in the analogue month. 
�e analogues for monthly reconstructed climate �elds are searched in the E-OBS69 dataset (v14.0, 1950–2016), 
which is aggregated to a monthly time scale. �e similarity between the aggregated E-OBS and reconstructed 
months is quanti�ed considering spatial correlation of monthly total precipitation and mean air temperature. 
For each month of the climate reconstruction, the analogue E-OBS month is randomly selected from the most 
similar months with probability of selection proportional to the similarity between months. �e procedure can 
be summarised formally as follows:

 1. Aggregate E-OBS precipitation and temperature from daily to monthly time scale and denote this Em[y, m],  
with y the year from 1950 to 2016 and m = 1, …, 12 the month.

 2. Select reconstructed precipitation and air temperature for month m in year y and denote this Rm[y, m].
 3. To evaluate the similarity between Rm[y, m] and E-OBS records, calculate average spatial correlation 

between Rm[y, m] and Em[Y, M], with Y = 1950, …, 2016 and M = m − 1, m, m + 1, i.e., the analogues can 
be selected from any E-OBS year but have to come from the closest months to m. Since we have 67 years of 
E-OBS data, we have 3 × 67 = 201 candidates for disaggregation.

 4. Rank the individual year-month combinations of Em[Y, M] according to the mean correlation, with the 
rank k = 1 for the largest correlation (i.e., the nearest neighbour).

 5. Select 15 nearest neighbours of Rm[y, m] from Em[Y, M], i.e., those year-months with the largest correla-
tion (k = 1, …, 15)

 6. From the 15 nearest neighbours sample one neighbour with probability of selecting neighbour k equal to

k i

1 1

1/ (1)i 1
15
∑ =

denote ys and ms the year and month corresponding to the sampled neighbour.
 7. Distribute monthly precipitation total and monthly air temperature of Rm[y, m] into days in the same way 

as observed for Em[ys, ms].
 8. Repeat the steps 2–7 for each year and month of the reconstructed climate data.
 9. Repeat the whole procedure several times if needed.

Using this approach, we construct a 10-member ensemble of daily climate forcings for 1766–2015. In addition, 
10 good sets of mHM parameters62 are used for hydrologic simulations for every forcing set, which yields 100 
ensemble simulations in total.

Note that the procedure described above provides daily climate �elds which are, a�er aggregation to monthly 
time scale, identical to the original reconstructed climate �elds. In other words, the sampling introduces only 
the within-month variability and retains the monthly variability from the original (reconstructed) data. �us the 

http://www.ufz.de/mhm
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possible errors/biases introduced by disaggregation will in�uence our analysis (which is done on monthly scale) 
only to the extent to which monthly grid-scale runo� and soil moisture are in�uenced by distribution of monthly 
precipitation and air temperature into individual days. It has been shown that within-month variability of pre-
cipitation and temperature in�uences to some extent distribution of runo� at monthly time scale70. For instance 
in our ensemble, the variation of monthly runo� due to within-month variability is on average around 3%, while 
for soil moisture this variation is less than 1%, which is acceptable. �e uncertainty of drought severity and area 
under drought due to within-month variability is discussed for the most extreme drought events together with 
Fig. 4 and in general does not in�uence substantially our conclusions.

Standardized deficit index (SDI). To analyse the drought characteristics, a de�cit index, which meas-
ures a cumulative deviation below a pre-selected threshold (for �uxes, i.e. precipitation and grid-scale runo�) or 
maximum deviation below this threshold (for states, i.e. soil moisture)27,71, is considered. �e cumulation of the 
deviations below a threshold transforms the �ux (runo�) into state (volume of lacking water or its dimensionless 
indicator in the case of standardized data) which can be then easily compared to soil moisture de�cit. �e runo�/
soil moisture data for each grid cell are standardized prior to the calculation of the de�cit index by subtracting the 
mean and dividing by the standard deviation for each calendar month separately. Standardization facilitates the 
comparison across space and time, prevents large di�erences between climate types32 and removes seasonality. A 
low percentile of runo� (soil moisture) is usually considered as a threshold de�ning drought. To account for the 
changes in the distribution of runo� (soil moisture, precipitation) over the period 1766–2015 (see the Temporal 
variability of precipitation, soil moisture and grid-scale runo� section in the main text), the 20th percentile esti-
mated by a linear quantile regression72 (conditional on time) is taken as a threshold for de�ning drought events 
at each grid cell. �is value is in line with the de�nition of drought as the deviation from (temporarily evolving) 
normal conditions31, considers adaptation to changing conditions73 and has been used in previous studies29,33.

We analyse time series of the maximum annual de�cit index scaled by the average annual maximum de�cit 
index at a grid cell (denoted herea�er as the Standardized De�cit Index; SDI). �e value of SDI is sometimes 
referred to as drought severity throughout the paper. �e SDI is estimated separately for each grid cell and varia-
ble under consideration (i.e., precipitation, runo�, soil moisture).

Identification of extreme drought events. At each 0.5° grid cell, the drought events identi�ed over the 
last 250 years are ranked from the highest to lowest severity, and the exceedance probability (p) is calculated as 
p = (r − 0.3)/(N + 0.4)74, with r the rank and N the total number of drought events for a given grid cell. For each 
year, the area under drought is calculated for di�erent exceedance probability classes following the US Drought 
Monitor (http://droughtmonitor.unl.edu).

To identify the most extreme events, we calculate for each event the area with SDI > 1, i.e., with SDI larger 
than average. Using a two-dimensional kernel density estimation, we derive the envelope covering 95% of the 
observed drought events with respect to average drought severity and areal extent for each variable (precipitation, 
runo�, soil moisture) and region (Central Europe – CEU, Mediterranean – MED and the whole study domain – 
EUR). Furthermore, for this analysis, we exclude events with smaller severity or areal extent than any event inside 
the 95% envelope. �e remainder represents the extreme drought events.

Data availability. Reconstructed precipitation and temperature, which were used to drive the mHM model 
are available at �p://�p.ncdc.noaa.gov/pub/data/paleo/historical/europe/casty2007/. �e HadCRU TS product 
is available through http://catalogue.ceda.ac.uk/uuid/edf8febfdaad48abb2cbaf7d7e846a86. �e SDI values pre-
sented in this paper can be found at http://shiny.fzp.czu.cz/KVHEM/drought/.
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