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Abstract. It is generally believed that the human visual system is bi-
ased towards the recognition of shapes rather than textures. This as-
sumption has led to a growing body of work aiming to align deep models’
decision-making processes with the fundamental properties of human vi-
sion. The reliance on shape features is primarily expected to improve the
robustness of these models under covariate shift. In this paper, we revisit
the significance of shape-biases for the classification of skin lesion images.
Our analysis shows that different skin lesion datasets exhibit varying bi-
ases towards individual image features. Interestingly, despite deep fea-
ture extractors being inclined towards learning entangled features for
skin lesion classification, individual features can still be decoded from
this entangled representation. This indicates that these features are still
represented in the learnt embedding spaces of the models, but not used
for classification. In addition, the spectral analysis of different datasets
shows that in contrast to common visual recognition, dermoscopic skin
lesion classification, by nature, is reliant on complex feature combina-
tions beyond shape-bias. As a natural consequence, shifting away from
the prevalent desire of shape-biasing models can even improve skin lesion
classifiers in some cases.

Keywords: Dermatology · Digital Dermatoscopy · Skin Lesion Analysis
· Spectral Analysis · Robustness · Deep Learning

1 Introduction

For over a decade now, Deep Neural Networks (DNNs) outperformed conven-
tional techniques in various research areas including language translation [26],
image classification [17] and image synthesis [11]. Although new state-of-the-art
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performances are being reported continuously for areas like Melanoma detec-
tion [28,12], an unconstrained application of Deep Learning (DL) in real-world,
high-stakes medical decision-making is still considered questionable due to a lack
of robustness and intelligibility. Several works have revealed weak spots of the
current technology like the presence of adversarial examples [27], the influence
of distribution shifts [22] and the bias-variance tradeoff [10].

Geirhos et al. [9] disproved the widespread shape hypothesis, which states
that Convolutional Neural Networks (CNNs) hierarchically combine lower-lever
features into higher-level features for generating the final predictions. Instead
the authors propose the texture hypothesis, stating that an inherent texture-
bias in the dataset can lead to a lack of robustness in CNNs. Similarly, other
works [32] have reported a higher importance of texture-like high-frequency in-
put features, which aligns with the vulnerability to high-frequency adversarial
attacks [30]. Through expensive modification of the training dataset, exchang-
ing the dataset’s texture-bias to a shape-bias, the authors of [9] achieve improved
classification robustness. Along similar lines, recent works [5,31] exploit the idea
that the phase spectrum of a Fourier-transformed image mainly encodes semantic
information resembling edges and outlines used by humans for object identifica-
tion. The authors propose different data augmentation strategies for improved
robustness, inducing explicit focus on the phase spectra of images, shifting the
networks’ focus towards shape information. The common idea in these works
is the explicit alignment of a network’s non-functional requirements with those
used in analytical, human decision-making (i.e. focusing on shape more than on
texture).

Despite recent efforts towards suppressing high-frequency texture features
in DL, Ilyas et al. [13] argue that datasets can contain robust features which
are indeed imperceptible to humans. This alternative perspective is particularly
interesting when dealing with complex medical problems which are yet to be
fully understood by human experts and cannot be easily solved through intu-
ition. One of such high-stakes use-cases of DL in medicine is the classification of
Melanoma, which is mainly driven by non-analytic clinical reasoning (i.e. pattern
analysis [16]).

The statistical relevance of shapes, textures and colors in dermoscopic images
for Melanoma detection has been extensively investigated in different studies.
Marques et al. [19] reported that color and texture features individually have a
high relevance for skin lesion classification, but their combination is even more
informative. In other works [24,2] the superior role of color features is reported.
Ruela et al. [23] investigate the importance of shape features, concluding that,
although shape is relevant for classification, the use of texture and color descrip-
tors is more effective. Beyond texture, shape, and color, other studies indicate
a high relevance of spectral features for predictive performance [3,18]. However,
the influence of individual features, as well as the effect of the shape-bias on
DL-based skin lesion classifiers has not yet been explored.

In this paper, we revisit the shape-bias and it’s effect on the analysis of der-
moscopic images using DL-based models. To that end, we explore the relevance
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of individual image features known to be relevant in dermoscopy (i.e. Texture,
Shape, and Color). A spectral analysis on different datasets is performed to in-
vestigate the distribution of relevant image features in the spectral domain, and
to revisit the effectiveness of robustness methods enforcing explicit shape-bias
on deep feature extractors. Lastly, a new variant of the Amplitude-Phase Re-
combination [5] robustness method is introduced, which is more aligned with the
complex needs of dermoscopic skin lesion analysis. We argue that the current
trend of focusing network robustness in Deep Learning purely on the shape-bias
is to narrow-minded, and that medical imaging tasks (like dermoscopy) in par-
ticular, have radically different requirements when it comes to non-functional
properties of their decision-making.

Section 2 gives a brief introduction into the notions of Texture, Shape, and
Color in dermoscopy and describes image ablations used to isolate these different
features. The datasets used in throughout our work, as well as the general experi-
mentation setting is outlined in section 3. In section 4, the individual importance
of isolated image features is investigated, and their encoding in the DL-based
models’ feature space. A spectral analysis on different datasets is performed in
section 5, followed by an investigation of shape-focused robustness methods. Fi-
nally, the results are discussed in section 6, followed by the concluding remarks.

2 Definition and Isolation of Texture, Shape, and Color
in Skin Lesions

To properly investigate the influence of individual image features, we need to
isolate image features and feature combinations from the input images. We follow
the previous lines of work and concentrate on the Texture, Shape and Color
features as the main components descriptive of skin lesion images. First, the
individual features are briefly defined, based on the relevant literature. Then,
the transformations achieving the different feature isolations are elaborated and
presented.

Texture Marques et al. [19] define textures in skin lesions as conveying ”in-
formation about the differential structures (pigment network, dots, streaks, etc)
present in the lesion”. We therefore argue that textures are solely encoded in
structures such as fine edges, and color contrasts.

Shape Shape descriptors are computed in [23] based on the segmented le-
sion outline. The measures include simple shape descriptors such as the lesion’s
area, compactness, and rectangularity, but also more advanced features such as
symmetry-related features and moment invariants. In this work, we define the
shape of a lesion by the size and area of a lesion’s segmentation, as well as the
regularity and overall shape of it’s outline. For the sake of simplicity, we omit
information regarding the smoothness of a lesion’s transition.
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Fig. 1: Illustration of the different augmentations designed to isolate individual
image features in skin lesion images. The original image is provided on the left.
The first row shows augmentations for isolated images, while the second row
shows combinations of two individual features.

Color In [19], color features are defined as containing ”information about the
color distribution and number of colors in the skin lesion”. Ruela et al. [24] com-
pute different color descriptors based on different color spaces. Most descriptors
contain only information about the quantitative distribution of color in an im-
age, whereas one descriptor also encodes information about the spatial location.
We argue that color information is not only encoded in the absolute color val-
ues, but also in the contrast information of broader surfaces. However, we do
not regard spatial color information for the sake of simplicity.

2.1 Feature Ablations

To isolate the effect of individual features, we design different data augmentation
strategies, each representing one of the seven unique feature combinations. An
illustration of the different transformations is provided in figure 1. The original
images combine all three features and serve as the baseline. An ablation repre-
senting only the Color feature is obtained by randomly scrambling the spatial
ordering of individual image pixels, while preserving the sample’s original color
distribution. A combination of Texture and Shape is achieved by explicitly re-
moving the Color cues. This is done by changing the style of a sample to a
sketch-like image, in order to remove color value and contrast information, while
maintaining the characteristic edges necessary to identify textures and shapes.
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A DL-based segmentation model3 is tuned for the computation of lesion seg-
mentation maps, representing the isolated Shape feature. The Shape feature is
removed from the original image with the help of the segmentations as well.
Therefore, the segmentation map is divided in equally-sized patches to identify
image regions containing information about the lesion’s outline (i.e. containing
both lesion and background pixels). After removing all outline patches, a new
image is assembled by alternatingly sampling random patches from the lesion
and the background, to ensure that no information about the lesion’s absolute
size is retained. A similar procedure is followed to obtain the isolation of the
Texture feature. Instead of scrambling image patches of the original image, the
sketch transformation is used in order to spare color information. A combination
of Shape and Color is obtained by separately scrambling the spatial ordering of
individual image pixels within the lesion region, and the background. Images
with radical domain shifts (through sketch transformation or segmentation) are
shaded with the channel-wise average of the dataset’s color.

3 Datasets and Methodology

3.1 Datasets

ISIC & ISIC-b The International Skin Imaging Collaboration (ISIC) orga-
nized several skin cancer classification challenges over the last decade. The chal-
lenge datasets are hosted on the ISIC’s online archive4, which is the largest
public database of dermoscopic skin images to date. The complete archive con-
sists of over 69.000 clinical and dermoscopic images of different provenance. We
follow Cassidy et al. [4], who propose a duplicate removal strategy for the ISIC
challenge datasets to avoid overlap between training and evaluation sets. For ex-
perimentation, we combine all duplicate-free challenge training sets and generate
new training, validation and testing splits under stratification.

The complete ISIC dataset has annotations for eight classes, i.e. Actinic Ker-
atosis (AK), Basal Cell Carcinoma (BCC), Benign Keratosis (BKL), Dermatofi-
broma (DF), Melanoma (MEL), Nevus (NV), Squamous Cell Carcinoma (SCC)
and Vascular Lesions (VASC). We generate a multi-class variant of the dataset
(henceforth referred to as ISIC ) comprising of 23.868 training, 2.653 validation
and 2.947 testing samples. In addition, a binary variant consisting of only NV
and MEL samples (henceforth referred to as ISIC-b) is generated comprising of
10.543 training, 4.519 validation and 6.456 testing samples.

D7P & D7P-b The seven-point checklist criteria dataset (D7P) proposed
in [14] consists of clinical and dermoscopic images of 1.011 skin lesions. Each
image is annotated with regards to its diagnostic class, several dermoscopic cri-
teria as well as further clinical data. In this work, we only consider the subset of

3BA-Transfomer architecture proposed by Wang et al. [29], trained on ISIC2016-
2018 challenge datasets.

4https://www.isic-archive.com/
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dermoscopic images along with the respective annotations of dermoscopic crite-
ria and final diagnosis. We follow the original work, categorizing the fine-grained
annotations into BCC, NV, MEL, Sebbhoreic Keratosis (SK) as well as a mis-
cellaneous (MISC) classes. Again, we generate a stratified binary variant of only
NV and MEL samples (henceforth referred to as D7P-b) comprising of 371 train-
ing, 183 validation and 273 testing samples. For concept detection experiments,
we follow the same splitting procedure for each dermoscopic concept.

3.2 Experimental Setup

If not mentioned otherwise, all experiments are conducted with a ResNet50,
pre-trained on ImageNet. Training is conducted using softmax cross-entropy loss
and AdamW optimizer. The learning rate and weight decay are determined by
hyperparameter tuning on the baseline setting. A plateau learning rate scheduler
is used in conjunction with an early stopping scheme to ensure convergence of
the models. Each training and respective evaluation is run 10 times with varying
random seeds to ensure significance of the reported results.5

4 Deep Feature Extractors for Dermoscopy Can Encode
Disentangled Features

In this section, we perform an extensive study on the influence of individual
features for the DL-based classification of dermoscopic skin lesions. We show that
even within the dermoscopy domain, biases are dataset-dependent. Moreover, we
show that although feature extractors are inclined towards learning entangled
features, last-layer retraining can recover at least some features successfully.

4.1 Different Dermoscopic Skin Lesion Datasets have Different
Biases

In a first experiment, we train separate classifiers on the individual ablations
introduced in section 2. By training and testing on a specific ablation, we want
to quantify the CNN-based feature extractor’s capability to leverage individual,
interpretable features from the images. We consider both binary and multiclass
skin lesion datasets to account for possible effects of varying task complexity.

Figure 2 shows the macro averaged F1-scores on the test set of the respective
ablations. When providing only single features in isolation, we observe that both
binary and multiclass datasets based on D7P, show a stronger bias towards
Shape, whereas the ISIC datasets are more sensitive with respect to Texture. This
is indicated by the lower decrease in F1-scores when training on the respective
isolated feature. It can also be observed that Color is the most important of all
three features, resulting in the lowest performance decline.

5Reproducible code available on GitHub https://github.com/adriano-lucieri/shape-
bias-in-dermoscopy
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Fig. 2: Macro averaged F1-scores from models trained and tested on individual
Texture, Shape and Color feature ablations. The first bar of each group represents
the reference F1-score achieved by models trained on unaltered data, followed
by the three feature isolation and feature removal ablations.

Training on a pair of two individual features can be considered as the re-
moval of the absent feature, and therefore serves as an inverted indicator for
feature importance. The previous observations are also confirmed by the results
of removing Texture and Shape, except for ISIC-b which is influenced almost
equally. Surprisingly, removing the Color did not indicate similar relevance as
indicated by the isolation experiment. A reason for this behaviour could be that
the combination of Shape and Texture information forms stronger higher-level
features as compared to combinations including Color.

4.2 Dermoscopic Skin Lesion Classifiers Learn Entangled Features

The previous results showed that for some datasets, decent classification perfor-
mances can be achieved even if only one or two features are present in the data.
We now investigate the ability of trained classifiers to transfer their features
in ablated scenarios. Therefore, the performance of each classifier trained in the
previous experiment is measured across all ablations, as well as the original data.

Figure 3 shows a comparison of the results obtained when evaluating the
models trained on the original input data on the test sets of all individual ab-
lations (blue bars), with the inverse case, where different models trained on
individual ablations are evaluated only on the original test set (orange bars).
The data clearly shows that the baseline classifier is unable to properly transfer
it’s learned features to the classification of ablated data, representing isolated
input features. However, the increased scores of the ablation-trained classifiers
on the original data indicates the validity of the features even on unablated
data. Hence, we conjecture that the baseline models are not capable of making
decisions purely based on the remaining features, but are instead overrelying on
an entangled representation of different features.
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Fig. 3: Comparison of macro averaged F1-scores from models trained and tested
on different data ablations. Blue bars show results of models trained on original
images, and tested on different ablations. Orange bars show results of models
trained on individual ablations, and tested on original images. T, S, C refer to
Texture, Shape and Color features, respectively.

Fig. 4: Comparison of macro averaged F1-scores from models tested on different
feature ablations. Blue bars show results of a baseline model trained on original
images, and tested on all ablations. Orange bars show results of the same mod-
els after Deep Feature Reweighting. Green bars show results of models trained
and tested on ablations. T, S, C refer to Texture, Shape and Color features,
respectively.

4.3 Feature Extractors are only partially Feature Biased

Inspired by Deep Feature Reweighting (DFR) proposed in [15], we explore the
level of entanglement in the skin lesion classifiers’ feature spaces. We again utilise
the models trained on the original images from section 4.1 but retrain the fully
connected classification layers using the respective feature-ablated training and
test sets. In figure 4, the macro averaged F1-scores of baseline models with naive
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transfer, and DFR is compared to the accuracies of the models trained end-to-
end on the ablated data.

It can be seen that in some cases (e.g. Color, Shape + Color and partially
Texture + Color as well as Texture + Shape for ISIC-b) DFR is able to achieve
classification performances near the ideal values represented by the results of
models trained and tested on ablations. For models trained on different skin
lesion datasets, the successfully recovered features vary significantly. In contrast
to D7P and D7P-b models, where only Color could be recovered, models trained
on ISIC-b were able to recover all individual features to a sufficient degree. A
similar observation can be made when inspecting the results of multiclass ISIC
trained models. Another striking observation is that combinations of two features
resulted in higher DFR performance across all datasets. The results indicate
that the feature extractor is always inclined towards learning entangled features.
However, the fact that individual features are additionally encoded, particularly
in more complex and feature-rich datasets, confirms the results reported in [15].
This also suggests that an abundance of mostly redundant features in a dataset
allows networks to learn alternative, isolated representations.

5 Dermoscopy Relies on Complex Feature Combinations
in Spectral Domain

In this section, we investigate the difference between feature entanglement in
skin lesion classification tasks and common visual recognition. For comparability,
we consider the distinction of features in the spectral domain, which has been
commonly examined in previous studies [32,5,31]. We show that, compared to
conventional visual recognition tasks, dermoscopy is more reliant on features
across both amplitude and phase spectra. To contrast the spread of dermoscopic
features to those used in common visual recognition tasks, we utilize two subsets
of ImageNet [6], namely Imagenette and Imagewoof 6.

5.1 Dermoscopy Features are Spread over Phase and Amplitude

First, we implement phase- and amplitude-randomization augmentations which
are applied to train, validation and test images alike. Phase-randomization (i.e.
Amplitude-Only) is applied by replacing the phase spectrum of an image, with
the phase spectrum of a randomly sampled image of Gaussian noise in Fourier do-
main. The same procedure is followed analogously for Amplitude-randomization
(i.e. Phase-Only).

Table 1 shows the test results of models trained in the Amplitude- and Phase-
Only settings in comparison to the baseline classification accuracies over five
different datasets. It can be observed that Amplitude-Only always leads to com-
paratively high deterioration of accuracy for all datasets. However, Phase-Only
results in comparable accuracy drops over all skin lesion datasets, even caus-
ing a higher relative performance decrease for D7P-b. Both visual recognition

6https://github.com/fastai/imagenette
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Table 1: Resulting testing accuracies from retraining ResNet50 with different
spectral randomizations. For both spectral randomizations, the performance de-
crease with respect to the baseline training is provided in a separate row.

Dataset D7P-b D7P ISIC-b ISIC Imagenette Imagewoof

Baseline 82.01 69.13 88.45 85.93 97.77 92.53
Amplitude-Only 69.71 36.53 78.42 52.94 50.28 26.86

∆ Baseline -15.00 -47.16 -11.34 -38.39 -48.57 -70.97
Phase-Only 67.66 45.45 80.78 69.29 91.98 81.53

∆ Baseline -17.50 -34.25 -08.67 -19.36 -05.92 -11.89

datasets instead show a significantly higher decrease in accuracy when providing
only amplitude information, as compared to the Phase-Only setting.

The results indicate that skin lesion datasets rely heavily on both amplitude-
and phase-spectra, therefore potentially considering a more complex composition
and variety of features beyond simple shape information. In contrast, both Im-
ageNet subsets show a significant bias towards the phase spectra of the images.
The higher drop in accuracy when training Imagewoof Phase-Only indicates
that a combination of phase and color is extremely important to achieve high
performance in some classes, although phase being mostly sufficient. Interest-
ingly, an inspection of the confusion matrices reveals that in the Phase-Only
setting, networks tend to most often confuse Beagles with English Foxhounds,
which share many features in their physique. A similar observation was made
for the Amplitude-Only setting, where Rhodesian Ridgebacks and Dingos where
confused most often, sharing a similar fur color.

5.2 Focusing on Amplitude can Improve Performance

Amplitude-Phase Recombination (APR) has been proposed in [5] as a method
to increase the robustness of DL classifiers by focusing the feature extraction
on the phase-spectrum of images. Fx is the spatial Discrete Fourier Transform
(DFT) of an image x over each individual channel. This frequency representation
can be decomposed into an amplitude component (Ax) and a phase component
(Px) as follows:

Fx = Ax ⊗ ei·Px , (1)

Amplitude-Phase Recombination for pair samples (APR-P) [5] augments a given
input image xj by replacing its amplitude spectrum Axj

with the spectrum of
another randomly selected image from the batch (Axk

).

xj,aug = iDFT (Axk ⊗ e
i·Pxj ), (2)

Instead, we propose two new variations of APR-P, namely Amplitude-Focused
APR-P (AF-APR-P) and Mixed APR-P (Mix-APR-P). AF-APR-P swaps the
phase spectrum of images as follows:

xj,aug = iDFT (Axj ⊗ e
i·Pxk ), (3)
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Table 2: Average test results of random retraining with different variants of
APR augmentation. Statistical significance of average accuracy to the baseline
training is indicated by asterisks.

Dataset D7P-b ISIC-b D7P ISIC Imagenette Imagewoof

Baseline 82.01 88.45 69.13 85.93 97.77 92.53
APR-P 80.4* 88.62 66.05* 82.79 96.52 91.47
AF-APR-P 82.42 89.23** 67.43 84.18 97.06** 91.91***
MIX-APR-P 81.5 89.16 68.62 84.22 97.3** 91.68

***p < 0.01, **p < 0.05, *p < 0.1

Therefore, the ground truth label corresponding to the original image’s ampli-
tude spectrum is preserved. Mix-APR-P randomly selects the spectral compo-
nent from which to assign the respective label, forcing the network to extract
both phase and amplitude features.

Table 2 shows the test performance of models trained with different varia-
tions of APR-P augmentation. AF-APR-P outperformed the other variations
in the case of binary skin lesion classification, although statistical significance
is only achieved in case of ISIC-b. When classifying skin lesions in multiple dis-
ease classes, neither augmentation showed any benefit. However, it can be seen
that APR-P decreased the average test accuracy in all skin classification tasks.
For both visual recognition datasets, neither APR augmentation improved the
results. As expected, AF-APR-P and Mix-APR-P even led to a significant de-
crease in most cases.

6 Discussion

We have shown there exist different, dataset-dependend biases with respect to
Texture, Shape and Color features in dermoscopy. D7P datasets seem to be
more biased towards Shape as compared to Texture. One possible explanation
for this finding is the significant difference in training size between ISIC and
D7P (×28 for binary and ×53 for multiclass) allows the ISIC -trained models
to pick up more nuanced features including fine-grained textures. This effect
requires further investigation and is of special importance for the robustness
and explainability of skin lesion classifiers in clinical use.

The results in section 4.3 show differences between the feature entanglement
of binary and multiclass classification tasks and indicated that a partial or even
full encoding of disentangled features is possible depending on the complexity
of the target task. However, it has also been shown that the end-to-end trained
classifier does not necessarily use these features independently, potentially suf-
fering a loss in robustness. Additional experimentation is required to investigate
potential mechanisms leading to disentangled classification layers from end-to-
end training. One possible way would be the explicit data augmentation with the
different feature isolations proposed in section 2. Another interesting direction
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would be the application of contrastive losses from self-supervised learning to
achieve a better alignment of different feature-isolated ablations.

Section 5.1 revealed that features relevant for dermoscopic classification are
spread across different components in the spectral domain, whereas visual recog-
nition classifiers are deliberately biased towards only the phase component in
order to increase robustness. A reason for this phenomenon might lie in the
relevance of Texture, Shape and Color in skin lesion classification. The phase
spectrum is known to encode mainly edges, which often correspond to coarse
structures as outlines, but also fine-grained structures resembling textures. On
the other hand, color is mainly encoded in the amplitude spectrum, as it con-
tains information about the magnitude of specific frequency components in the
respective color channels.

These findings indicated that common methods for increased robustness,
which reinforce the shape-bias are not necessarily suitable for skin lesion classifi-
cation. However, skin lesion classification has been shown to significantly benefit
from our proposed Amplitude-Focused APR augmentation. Multiclass skin le-
sion classification seem to not benefit, or even suffer from the Fourier-domain
augmentation. A reason for this behaviour might be the increasing relevance of
Texture and Shape features in multiclass settings, as reported in section 4.3. The
intuition behind the Mix-APR-P augmentation was that a random exposure to
phase- or amplitude-randomized samples might implicitly force the network to
learn individual features. Yet, this assumption has been disproved.

Overall, the findings of this work indicate an inherent complexity of the der-
moscopic skin lesion classification task. Indeed, the process of clinical reasoning
has already been shown to be fundamentally different from other human deci-
sion such as visual recognition, based mostly on analytical reasoning. Norman
et al. [21] describe the process of clinical reasoning as an iterative approach,
combining non-analytical with analytical operations to varying degrees, depend-
ing upon personal style preferences, experience, and awareness of the diagnostic
task [7]. Commonly applied diagnostic procedures in dermoscopy are manual
algorithms like the ABCD rule [25], the Menzies method [20], the seven-point
checklist [1] as well as the method of pattern analysis [16]. Methods like the
seven-point checklist and pattern analysis are based on the identification of com-
plex dermoscopic features such as Blue-Whitish-Veil or Pigment Networks. The
successful application of pattern analysis requires years of extensive training.
Evidence suggest, that clinical reasoning in dermoscopy puts more emphasis on
the non-analytical, unconscious description of overall patterns as compared to
analytical processes [8,33].

This suggests that dermoscopic skin lesion classification and other medical
imaging tasks pose particularly interesting challenges upon the whole computer
vision community. Due to the inherent complexity of the task, special efforts are
required from the community working on explainable Artificial Intelligence, in
order to properly disentangle features and align explanations with the human
clinical reasoning processes.
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7 Conclusion

In this paper, we revisit the utility of developing shape-biased models for recog-
nition beyond natural images. Particularly, we consider the domain of dermo-
scopic skin lesion classification. Through a range of different experiments, we
have shown that deep features learnt for the classification of skin lesions are
inherently entangled due to the complexity of the underlying task. At the same
time, our analysis reveals that feature disentanglement can be achieved even on
networks trained without constraints, and found that an increasing task complex-
ity as well as a higher number of training samples leads deep feature extractors
to learn a more diverse set of redundant and isolated features. Additionally, we
showed that dermoscopic features are spread over different spectral components
in contrast to common visual recognition tasks like Imagenet. This indicates that
the commonly desired shape-bias for improved model robustness does not ap-
ply in dermoscopy, and that the task requires specifically tailored solutions. We
demonstrated a first step towards dermoscopy-specific robustness measures be-
yond shape-bias by introducing Amplitude-Focused Amplitude-Phase Recombi-
nation, showing improved performance on binary skin lesion classification tasks.
More importantly, this work highlights the importance of scrutinizing a given
computer vision task in order to find relevant, and robust requirements for the
decision-making. Dermoscopy is only one out of plenty use-cases with unique
requirements which extend beyond the simple analytical procedures of visual
object recognition. These kind of considerations are particularly important for
pivotal areas such as self-supervised learning, where an adequate requirement
engineering will potentially lead to enormous performance improvements.
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