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Current methods for screening Enterohemorrhagic Escherichia coli (EHEC) O157 and

non-O157 in beef enrichments typically rely on the molecular detection of stx, eae, and

serogroup-specific wzx or wzy gene fragments. As these genetic markers can also be

found in some non-EHEC strains, a number of “false positive” results are obtained. Here,

we explore the suitability of five novel molecular markers, espK, espV, ureD, Z2098, and

CRISPRO26:H11 as candidates for a more accurate screening of EHEC strains of greater

clinical significance in industrialized countries. Of the 1739 beef enrichments tested, 180

were positive for both stx and eae genes. Ninety (50%) of these tested negative for

espK, espV, ureD, and Z2098, but 12 out of these negative samples were positive for

the CRISPRO26:H11 gene marker specific for a newly emerging virulent EHEC O26:H11

French clone. We show that screening for stx, eae, espK, and espV, in association with

the CRISPRO26:H11 marker is a better approach to narrow down the EHEC screening step

in beef enrichments. The number of potentially positive samples was reduced by 48.88%

by means of this alternative strategy compared to the European and American reference

methods, thus substantially improving the discriminatory power of EHEC screening

systems. This approach is in line with the EFSA (European Food Safety Authority) opinion

on pathogenic STEC published in 2013.
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INTRODUCTION

Shiga toxin-producing Escherichia coli (STEC) are important zoonotic pathogens comprising more
than 400 serotypes (Beutin and Fach, 2014). A fraction of these serotypes are able to cause
bloody diarrhea and may progress to hemolytic uremic syndrome (HUS). This subset of STECs
is termed Enterohemorrhagic E. coli (EHEC) (Beutin and Fach, 2014). STEC O157:H7 has been
the first pathogenic E. coli whose presence in foodstuffs was regulated. Today, non-O157 STEC
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infections have increased greatly, sometimes accounting for up
to 70% of notified STEC infections (Brooks et al., 2005; Johnson
et al., 2006; Gould et al., 2013; EFSA, 2014). Consequently,
regulations in the US and in the EU have evolved to include some
non-O157 STEC serogroups together with serotype O157:H7.

Successful implementation of these regulations in the food
industry across the world requires effective detection methods
that are both specific and sensitive. Detection of non-O157
STEC in foods is particularly challenging because these bacteria
lack phenotypic characteristics that distinguish them invariably
from the large number of non-STEC flora that share the same
habitat. Additionally, they may be present in very low numbers,
with a heterogeneous distribution in the food matrices. The
environment of the food matrix may also trigger stress responses
from the STEC strains and induce latent physiological states that
further complicate detection (Wang et al., 2013).

In the absence of a clear definition of virulent STEC strains,
the ISO/CEN 13136:2012 Technical Specification (ISO, 2012)
and US MLG5B.05 (USDA-FSIS, 2014) use a stepwise approach,
comprising an initial screening step for virulence genes (Shiga
toxin genes, stx, and intimin gene, eae), followed by testing of O-
serogroup specific gene markers. Because the stx and eae genes
can be independently present in a number of non-pathogenic
strains of E. coli and other Enterobacteriaceae, the first screening
step generates numerous signals from samples that do not
necessarily contain a true EHEC strain. These stx/eae positive
enrichments must then be subjected to a second screening
targeting the O-group gene markers. As testing is completed
on enrichment broths that contain a mixture of different cells,
the different target gene signals (i.e., stx, eae, and the O-group
markers) may arise from different individual non-pathogenic
strains. Lastly it is necessary to perform an isolation step to
confirm the presence of the different markers in a single isolate
by PCR.

We have previously shown that combining the detection of
espK with either espV, ureD, or Z2098 is a highly sensitive
and specific approach for identifying the top seven clinically
important EHEC serotypes in industrialized countries (Delannoy
et al., 2013a). These markers were shown to be preferentially
associated with E. coli strains carrying stx and eae genes, known
as typical EHEC, and could be used in conjunction with stx/eae
screening to better identify samples that may be more likely to
contain a true EHEC.

Recently, a new clone of STEC O26:H11 harboring stx2a and
strongly associated with HUS has emerged (Bielaszewska et al.,
2013). Characterization of O26:H11 stx2 circulating in France
(Delannoy et al., 2015a,b) demonstrated that some stx2a or stx2d
positive strains do not have any of the espK, espV, ureD, or
Z2098markers. Hence, such clones would evade a first detection
step solely based on stx/eae and a combination of those genetic
markers. Therefore, we identified a CRISPR (Clustered Regularly
Interspaced Short Palindromic Repeats) sequence specific for this
O26:H11 EHEC French clone (Delannoy et al., 2015a). Detection
of this CRISPR sequence would advantageously be combined
with stx and eae in the first screening step to identify this
new O26:H11 clone. Furthermore, we have previously developed
CRISPR-based real-time PCR assays able to detect the top

seven EHEC serotypes and the German O104:H4 STEC clone
responsible for a very large European STEC outbreak in 2011
(Delannoy et al., 2012a,b; Miko et al., 2013). These CRISPR PCR
assays proved highly sensitive and specific when tested on a large
collection of E. coli strains comprising various E. coli pathogroups
(Delannoy et al., 2012a,b). Such CRISPR markers may substitute
O group testing in a more targeted second step.

Different approaches have been tested to refine the detection
systems for EHEC. Some involve detection of ecf1, a plasmid gene
highly associated with E. coli strains that are positive for stx, eae,
and ehxA (Livezey et al., 2015); while others involve detection of
specific eae-subtypes (Bugarel et al., 2010). The top seven EHEC
serotypes are exclusively associated with certain eae-subtypes
(Oswald et al., 2000; Bugarel et al., 2010; Madic et al., 2010).
Indeed, O157:H7 andO145:H28 serotypes are associated with the
eae-gamma subtype; O26:H11 are associated with the eae-beta
subtype; O103:H2, O121:H19, and O45:H2 are associated with
the eae-epsilon subtype; andO111:H8 are associated with the eae-
theta subtype. Real-time PCR targeting these eae-subtypes were
previously developed and tested in raw milk cheese (Madic et al.,
2011) and cattle feces (Bibbal et al., 2014). These could also be
used as targets in a more targeted second step.

We attempted to develop an alternative real-time PCR-based
approach to improve the detection of the clinically important
EHEC by reducing the number of potential positive samples that
require further confirmation of the O-antigen markers. We also
aimed at reducing the number of samples for which isolation
is attempted, as the isolation step is laborious, time-consuming,
and not always successful (Wang et al., 2013). The objective of
this project was to evaluate the discriminatory power of these
various genetic markers to predict the presence of the top seven
EHEC serogroups compared to that of the strategy proposed by
the ISO/CEN TS13136:2012 (ISO, 2012) and MLG5B.05 (USDA-
FSIS, 2014).

MATERIALS AND METHODS

E. coli Control Strains
E. coli control strains used for this study (Table 1) comprised a
panel of ATCC E. coli strains (n = 42) and E. coli reference
strains derived from the BfR and Anses collections (n = 13). The
origin and characteristics of the E. coli strains fromBfR andAnses
have been previously described (Delannoy et al., 2012a, 2013a).
Cultivation of bacteria and preparation of DNA was performed
as previously described (Delannoy et al., 2012a, 2013a).

Beef Samples, Enrichment, and DNA
Extraction
A set of 1739 beef samples composed of ground beef and carcasses
were collected from routine screening using the GeneDisc array
(Pall GeneDisc, Bruz, France) at the Veterinary Departmental
Laboratory of Touraine, France during a 1-year period as well as
in meat production plants. For this study, sampling was biased
to get greater numbers of DNA samples positive for stx alone
(n = 306), positive for stx and eae (n = 180), positive for
eae alone (n = 200), and negative for both stx and eae (n =
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TABLE 1 | PCR-screening of the genetic markers in STEC isolates used as reference.

Strain Code Serotype stx1 stx2 eae eae-beta eae-gamma eae-epsilon eae-theta espK espV Z2098 ureD CRISPRO26:H11

SP_O26-E

ATCC-2129 TW07865 O145:H28 − + + − + − − + + + + −

ATCC-2192 99–3311 O145 + + + − + − − + + + + −

ATCC-2194 2001–3022 O145 − + + − + − − + + + + −

ATCC-2195 2002–3034 O145 + − + − + − − + + + + −

ATCC-2206 2000–3413 O145 − + + − + − − + + + + −

ATCC-2208 2003–3054 O145 − + + − + − − + + + + −

ATCC-2181 00–3412 O26:H11 + − + + − − − + + + + −

ATCC-2183 2011–3139 O26:H11 + − + + − − − + + + + −

ATCC-2186 99–3294 O26:H11 + − + + − − − + + + + −

ATCC-2188 99–3301 O26:H11 + − + + − − − + + + + −

ATCC-2196 2003–3014 O26:H11 + + + + − − − + − + + −

ATCC-2204 2001–3234 O26:H11 + − + + − − − + + + + −

ATCC-2205 2003–3023 O26:H11 + − + + − − − + + + + −

ATCC-2442 ATCC-2442 O26 + − + + − − − + − + + −

CB14699 CB14699 O26:H11 − + + + − − − − − − − +

ATCC-2187 99–3300 O121:H19 − + + − − + − + + + + −

ATCC-2203 2000–3370 O121:H19 − + + − − + − + + + + −

ATCC-2219 2002–3211 O121:H19 − + + − − + − + + + + −

ATCC-2220 10C–3041 O121:H19 − + + − − + − + + + + −

ATCC-2221 09C–3857 O121:H19 + + + − − + − + + + + −

ATCC-43890 CDC–C984 O157:H7 + − + − + − − − + + + −

ATCC-43895 EDL933 O157:H7 + + + − + − − + + + + −

ATCC-179 CDC1997–3215 O111:H8 + + + − − − + + + + + −

ATCC-181 CDC1999–3249 O111:H8 + + + − − − + + + + + −

ATCC-184 CDC2000–3025 O111:H8 + − + − − − + + + + + −

ATCC-2180 00–3237 O111:H8 + + + − − − + + + + + −

ATCC-2201 2002–3092 O111:H8 + − + − − − + + + + + −

ATCC-2182 2001–3010 O111 + − + − − − + + + + + −

ATCC-2209 2001–3357 O111 + + + − − − + + + + + −

ATCC-2440 ATCC-2440 O111 + + + − − − + + + + + −

ATCC-2441 ATCC-2441 O111 + − + − − − + + + + + −

ATCC-2202 99–3075 O45:H2 + − + − − + − + − + + −

ATCC-2185 99–3291 O45:H2 + − + − − + − + − + + −

ATCC-2189 99–3303 O45:H2 + − + − − + − + − + + −

ATCC-2191 98–3167 O45:H2 + − + − − + − + − + + −

ATCC-2193 2000–3039 O45:H2 + − + − − + − + − + + −

ATCC-2198 98–3215 O45:H2 + − + − − + − + − + + −

ATCC-2200 2001–3225 O103:H11 + − + + − − − + + + + −

ATCC-2215 2006–3008 O103:H11 + − + − − + − + + + + −

ATCC-2207 2001–3304 O103:H2 + − + − − + − + + + + −

ATCC-2210 2003–3112 O103:H2 + − + − − + − + + + + −

PMK5 PMK5 O103:H2 + − + − − + − + + + − −

CB12062 CB12062 O103:H2 + − + − − + − + + + − −

CB12092 CB12092 O103:H2 + − + − − + − + + + − −

CB11097 CB11097 O103:H25 − + + − − − + + + + + −

ATCC-2213 2005–3546 O103:H25 + − + − − − + + + + + −

ATCC-2199 2000–3281 O103:H25 + − + − − − + + + + + −

CB11784 ECA34 O5 + − + + − − − + − + + −

CB12339 CB12339 O5 + − + + − − − + − + + −

CB13683 5906 O55:H7 − + + − + − − + + − − −

(Continued)
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TABLE 1 | Continued

Strain Code Serotype stx1 stx2 eae eae-beta eae-gamma eae-epsilon eae-theta espK espV Z2098 ureD CRISPRO26:H11

SP_O26-E

7123A 7123A O55:H7 − + + − + − − + + − − −

CB7035 CB7035 O118:H16 + + + + − − − + − + + −

CB8255 CB8255 O118:H16 + − + + − − − + − + + −

CB9915 CB9915 O123:H11 − + + + − − − + − − + −

CB10528 CB10528 O172:H25 − + + − − − − + + − − −

1053). This sampling scheme does not represent the prevalence
of STEC and EHEC in French beef. All samples were incubated
in buffered peptone water (BioMerieux, Marcy l’étolie, France)
for 18–24 h at 37◦C. After enrichment, DNA was extracted
from 1ml of enriched sample using the InstaGene matrix
(Bio-Rad Laboratories, Marnes-La Coquette, France) following
manufacturer’s instruction and DNA was stored at −20◦C until
use. When samples were found positive for stx, eae, and rfbEO157,
isolation of strains was attempted by local laboratories for
confirmation of EHECO157:H7. Following the recommendation
of the French ministry of agriculture the appropriate sanitary
measures were taken in positive cases of EHEC O157:H7.
Unfortunately, because this study was performed several months
after the samples were collected, the original samples were not
conserved to attempt isolation from presumptive positives with
the alternate methods described in this study.

High-Throughput Real-Time PCR
A LightCycler R© 1536 (Roche, Meylan, France) was used to
perform high throughput real-time PCR amplifications as
described previously (Delannoy et al., 2012a), except that 1µl of
sample DNAwas used in each reaction for a final reaction volume
of 2µl. The thermal profile was modified as follows: 95◦C for
1min, followed by 45 cycles of 95◦C for 0 s, and 58◦C for 30 s.
All ramp rates were set to 2◦C/s. E. coli gene targets used for the
real-time PCR amplification and all primers and probes that have
previously been described are reported in Table 2. An inhibition
control (IC) was performed on each sample to check for potential
inhibition of the PCR reaction due to intrinsic characteristics of
the sample. The IC is a recombinant pBluescript IISK+ plasmid
containing the dsb gene from Ehrlichia canis (Michelet et al.,
2014). The plasmid was added to each sample at a concentration
of approximately 0.3 pg/µl. Primers and probe specific for the
E. canis dsb gene were used to detect the IC (Michelet et al., 2014).

RESULTS

Presence of stx1, stx2, eae, espK, espV,
Z2098, and ureD in E. coli Strains
The presence of stx1, stx2, eae, espK, espV, Z2098, and ureD
was tested by PCR in a panel of E. coli strains obtained from
culture collections (Table 1). All E. coli strains used in this
study were positive for the stx and eae genes and therefore can
be considered as typical EHEC strains. Strains were associated
with the following eae variants: eae-beta (O26:H11, O26:HND,

O103:H11, O5, O118:H16, O123:H11), eae-gamma (O145:H28,
O145:HND, O157:H7, O55:H7), eae-epsilon (O121:H19, O45:H2,
O103:H2, O103:H11), and eae-theta (O111:H8, O111:HND,
O103:H25). The eae subtype of strain CB10528 (O172:H25) could
not be determined. Distribution of the genetic markers espK,
espV, Z2098, and ureD in the 55 EHEC strains is shown in
Table 1. Overall, the genetic markers investigated were detected
in most of the EHEC strains examined. With the exception of the
new O26:H11 stx2-positive strain (CB14699) and one strain of
serotype O157:H7 (CDC-C984), all of the strains were positive
for espK. The espV gene was not detected in two E. coli O26:H11
strains (ATCC2196 and CB14699), in O45:H2, O118:H16, O5, or
in O123:H11 isolates. The Z2098 gene marker tested negative in
only a few strains: the new O26:H11 stx2 positive clone (strain
CB14699) and in the O55:H7 strains. The ureD gene was absent
in the new O26:H11 stx2 positive clone (strain CB14699) and
in the O55:H7 strains. It was also absent from a few O103:H2
isolates (strains PMK5, CB12062, CB12092). In summary, all of
the strains were positive for one or more of the genes espK, espV,
Z2098, and ureD, with the exception of the new O26:H11 stx2
positive clone (CB14699).

Screening Beef Enrichments for stx1, stx2,
eae, espK, espV, Z2098, and ureD
A set of 1739 beef samples was screened for the presence of
stx1, stx2, eae, espK, espV, Z2098, and ureD. The stx genes were
detected in 27.95% of the samples (486/1739). The eae gene was
detected in 21.85% of the samples (380/1739). The two genes were
simultaneously present in 10.35% of the samples (180/1739). The
genes espK and/or Z2098 were detected in 7.42% of the samples
(129/1739) (Figure 1A), while espK and/or espV were found in
130 samples (7.48%) (Figure 1B) and espK and/or ureD was
recorded in 145 samples (8.34%) (Figure 1C).

By using the stx and eae genes for screening beef samples,
following the ISO/CEN TS13136 and MLG5B.05 methods, 180
samples (10.35%) were recorded as stx/eae positive and should,
therefore, be subjected to a second screening step for EHEC-
serogroups. Pre-screening of stx/eae positive samples for espK
with either Z2098 (alternate method A), or ureD (alternate
method C), provided a 60% reduction of the number of samples
that should be submitted to a second screening targeting the O-
group gene markers (n = 71). Using the alternate method B
(stx/eae/espK/espV), 80 of the 1739 samples (4.6%) needed to be
submitted to a further screening for serogroup determination,

Frontiers in Microbiology | www.frontiersin.org 4 January 2016 | Volume 7 | Article 1



Delannoy et al. Screening EHEC in Beef Samples

FIGURE 1 | Distribution of the genetic markers stx, eae, espK, espV, and Z2098 among 1739 beef samples. (A) (stx1/stx2, eae, and espK/Z2098) is Method

A, (B) (stx1/stx2, eae, and espK/espV ) is Method B, (C) (stx1/stx2, eae, and espK/ureD) is Method C. stx1/stx2+ for samples giving a positive result for stx1 and/or

stx2, eae+ for samples giving a positive result for eae, espK/Z2098+ for samples giving a positive result for espK and/or Z2098, espK/espV+ for samples giving a

positive result for espK and/or espV, espK/ureD+ for samples giving a positive result for espK and/or ureD.

which represents a reduction by 55% of the number of samples
subjected to a second screening.

Figure 2 shows the comparison of the alternative methods
A–C with the 180 beef samples that tested positive for both
the stx and eae genes. A total of 90 stx and eae positive beef
samples tested negative for espK, espV, Z2098, and ureD (sector
8, Figure 2). However, the inclusion of the CRISPRO26:H11 PCR
revealed 12 espK, espV, Z2098, and ureD negative samples that
were positive for both the new CRISPRO26:H11 clone and eae-
beta, the variant of the intimin gene carried by EHEC O26:H11
(see below).

Screening Beef Samples for stx1, stx2, eae,
and CRISPRO26:H11
The 180 beef samples that are positive for stx and eae were also
tested by the CRISPRO26:H11 PCR test (SP_O26-E, as described
in Delannoy et al., 2015a), that detects the new EHEC O26:H11
French clone (stx2 and eae positive, espK, espV, Z2098, ureD
negative). Among the 180 samples tested, 20 stx/eae positive
samples were also found to be positive for SP_O26-E and should
therefore be submitted to a further screening for serogroup
determination. Interestingly, most of them (16/20) were found
positive for stx2, 2 samples were positive for stx1 only and 2 had
an unknown stx subtype. Twelve of these 20 were also negative
for espK, espV, Z2098, and ureD (Figure 2, sector 8). Finally,
when combining the use of CRISPRO26:H11 (SP_O26-E PCR test)
with alternate method A, 85 samples should be submitted to
a second screening targeting the O-group gene markers. When
using alternate methods B and C with the CRISPRO26:H11 PCR
test, 92 and 86 samples should be submitted to the second step,
respectively.

Screening Beef Samples for stx1, stx2, eae,
and the Top Seven EHEC Serogroups
As recommended in the ISO/TS 13136 (EU) and MLG5B.05
(US) reference methods, the 180 stx and eae positive samples

were tested for the top seven EHEC serogroups. Among these,
115 samples were positive for at least one of the top seven US
regulated EHEC serogroups and 99 were positive for at least
one of the top five EHEC serogroups screened by the European
ISO/TS 13136 method (data not shown). The most frequently
found serogroup was O103 (n = 71), followed by O26 (n = 45),
O121 (n = 38), O157 (n = 18), O45 (n = 14), O145 (n = 6),
and O111 (n = 1). Interestingly, 30 samples were positive for
2 serogroups, 11 were positive for 3 serogroups, and 7 for more
than 4 serogroups. In final, 41.74% (48/115) of the beef samples
tested positive for more than one O-group marker.

Screening Beef Samples for stx1, stx2, eae,
and the eae Subtypes
The 180 stx and eae positive beef samples were further tested
for the eae subtypes gamma, beta, epsilon and theta, which are
associated with one or more of the top seven EHEC serogroups.
Among these 180 stx and eae positive samples, 135 tested positive
for at least one of the four eae-subtypes: gamma, beta, epsilon
and theta (data not shown). The most frequently detected eae-
subtypes were eae-beta (n=94) and eae-theta (n = 65), followed
by eae-epsilon (n = 15), and eae-gamma (n = 5). Trying to
correlate the eae subtype with the serogroup, we identified 51 beef
samples for which at least one serogroup was associated with the
corresponding related eae-subtype. Among these 51 samples, 6
were positive with multiple serogroups.

Comparison of Alternative Methods A–C
for Screening Beef Samples
We identified 62 samples that were recorded positive with the
three alternative methods A–C (sector 3, Figure 2) and therefore
must be submitted to a second screening targeting the O-group
gene markers. These samples are strongly suspected to contain
typical EHEC and five of these are also suspected to contain
the new CRISPRO26:H11 clone. In addition we found 28 samples
(sectors 1, 2, 4, 5, 6, 7 from Figure 2) that were positive by one or
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FIGURE 2 | Comparison of Methods A–C on 180 beef samples that tested positive for both stx and eae genes. stx+ for samples giving a positive result for

stx1 and/or stx2; eae+ for samples giving a positive result for eae; espK/Z2098+ for samples giving a positive result for espK and/or Z2098; espK/espV+ for samples

giving a positive result for espK and/or espV; espK/ureD+ for samples giving a positive result for espK and/or ureD. Sector ❶ (stx+, eae+, Z2098+), sector ❷ (stx+,

eae+, Z2098+, espV+), sector ❸ (stx+, eae+, espK/Z2098+, espK/espV+, espK/ureD+), sector ❹ (stx+, eae+, Z2098+, ureD+), sector ❺ (stx+, eae+, espV+),

sector ❻ (stx+, eae+, espV+, ureD+), sector ❼ ( stx+, eae+, ureD+) and sector ❽ (stx+, eae+). [n = x] is the number of samples that tested positive by the

CRISPRO26:H11 PCR assay detecting the new O26 clone, N = x is the total number of samples per sector.

two alternative methods only. PCR results obtained for these 28
samples for eae subtypes and top seven O-groups were as follows:
only one sample among the 5 samples of sector 1 (Figure 2) was
positive for the association of O26 and eae-beta, but it tested
negative for the different CRISPRO26:H11 assays targeting EHEC
O26:H11 [SP_O26-C, SP_O26-D, and SP_O26-E, as described in
Delannoy et al., 2012a, 2015a (data not shown)]. The only sample
from sector 4 (Figure 2) and each of the four samples from
sectors 6 and 7 (Figure 2) were found negative by the association
of the top seven serogroups and the corresponding eae-subtypes.
From sector 2 (Figure 2), only one out of three samples was
found positive for the new CRISPRO26:H11 clone (this sample
tested positive by PCR for O26, eae-beta, SP_O26-E; and was
also stx2 positive which is consistent with the new clone). The
two other samples were not suspected as “presumptive positive”
based on the eae-subtypes and top seven EHEC serotypes
determination. In sector 5 (Figure 2), out of eleven samples
three were found “presumptive positive” for EHEC O26 (among
them two were suspected to be positive for the new O26:H11
clone). Finally, “presumptive positive” samples were recorded
in sectors 2, 3, and 5 which lead to consider the alternate
method B as the best one among the other alternate methods
for screening EHEC strains. In order to complete the screening
of EHEC and not to exclude the new virulent O26 clone, the
alternate method B should include the screening of the new
CRISPRO26:H11 assay.

DISCUSSION

A STEC seropathotype classification has been based upon the
serotype association with human epidemics, bloody diarrhea, and
HUS, and has been developed as a tool to assess the clinical
and public health risks associated with non-O157 EHEC and
STEC strains (Karmali et al., 2003). This approach has been
of considerable value in defining pathogenic STEC serotypes of
importance in cases of human infection (EFSA, 2007; Coombes
et al., 2011); however it does not resolve the underlying problem
with strains that have not yet been fully serotyped. Furthermore,
classification based solely on the presence of seropathotype is
inadequate with illnesses linked to STEC serotypes other than
O157:H7 that are on the rise worldwide, indicating that some of
these organisms may be emerging pathogens. In 2013, the Panel
on Biological Hazards (BIOHAZ) of the European Food Safety
Authority (EFSA) published a Scientific Opinion on “VTEC-
seropathotype and scientific criteria regarding pathogenicity
assessment” (EFSA, 2013). This document has focused attention
on the applicability of the Karmali seropathotype concept. The
document does not provide a scientific definition of a pathogenic
STEC but states that the seropathotype classification of Karmali
et al. (2003) does not define pathogenic STEC nor does it provide
an exhaustive list of pathogenic serotypes. It is not possible to
fully define human pathogenic STEC or identify factors for STEC
that absolutely predict the potential to cause human disease, but
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TABLE 2 | Primer and probe sequences used in this study.

Primer or probea Sequence 5′
→ 3′b

stx1_Fc TTTGTYACTGTSACAGCWGAAGCYTTACG

stx1_Rc CCCCAGTTCARWGTRAGRTCMACRTC

stx1_Pc CTGGATGATCTCAGTGGGCGTTCTTATGTAA

stx2_Fc TTTGTYACTGTSACAGCWGAAGCYTTACG

stx2_Rc CCCCAGTTCARWGTRAGRTCMACRTC

stx2_Pc TCGTCAGGCACTGTCTGAAACTGCTCC

eae_Fd CATTGATCAGGATTTTTCTGGTGATA

eae_Rd CTCATGCGGAAATAGCCGTTA

eae_Pd ATAGTCTCGCCAGTATTCGCCACCAATACC

eae-beta_Fd GGTGATAATCAGAGTGCGACATACA

eae-beta_Rd GGCATCAAAATACGTAACTCGAGTAT

eae-beta_Pd CCACAGCAATTACAATACTACCCGGTGCA

eae-gamma_Fd GACTGTTAGTGCGACAGTCAGTGA

eae-gamma_Rd TTGTTGTCAATTTTCAGTTCATCAAA

eae-gamma_Pd TGACCTCAGTCGCTTTAACCTCAGCC

eae-epsilon_Fd ATACCCAAATTGTGAAAACGGATA

eae-epsilon_Rd CACTAACAACAGCATTACCTGCAA

eae-epsilon_Pd CCAGATGTCAGTTTTACCGTAGCCCTACCA

eae-theta_Fd TGTTAAAGCACCTGAGGTTACATTTT

eae-theta_Rd TCACCAGTAACGTTCTTACCAAGAA

eae-theta_Pd TCAACCTTGTTGTCAATTTTCAGTCCATCA

espK_Fe GCAGRCATCAAAAGCGAAATCACACC

espK_Re TCGTTTGGTAACTGTGGCAGATACTC

espK_Pe ATTCAGATAGAAGAAGCGCGGGCCAG

espV_Fe TCAGGTTCCTCGTCTGATGCCGC

espV_Re CTGGTTCAGGCCTGGAGCAGTCC

espV_Pe CTTGCAACACGTTACGCTGCCGAGTATT

Z2098_Ff CTGAAAAGAGCCAGAACGTGC

Z2098_Rf TGCCTAAGATCATTACCCGGAC

Z2098_Pf TAACTGCTATACCTCCGCGCCG

ureD_Fe GCAATAATTGACTCTGATTGCC

ureD_Re GCTGCTGCGGTAAAATTTACT

ureD_Pe TACGCTGATCACCATGCCTGGTGC

SP_O26-E_Fg AAACCGATCTCCTCATCCTC

SP_O26-E_Rh ATCAACATGCAGCGCGAACG

SP_O26-E_Pg CCAGCTACCGACAGTAGTGTGTTCC

rfbEO157-F
c TTTCACACTTATTGGATGGTCTCAA

rfbEO157-R
c CGATGAGTTTATCTGCAAGGTGAT

rfbEO157-P
c AGGACCGCAGAGGAAAGAGAGGAATTAAGG

wzxO26-F
c CGCGACGGCAGAGAAAATT

wzxO26-R
c AGCAGGCTTTTATATTCTCCAACTTT

wzxO26-P
c CCCCGTTAAATCAATACTATTTCACGAGGTTGA

wzxO103-F
i CAAGGTGATTACGAAAATGCATGT

wzxO103-R
i GAAAAAAGCACCCCCGTACTTAT

wzxO103-Pi CATAGCCTGTTGTTTTAT

wbdlO111-F
c CGAGGCAACACATTATATAGTGCTTT

wbdlO111-R
c TTTTTGAATAGTTATGAACATCTTGTTTAGC

wbdlO111-P
c TTGAATCTCCCAGATGATCAACATCGTGAA

wzxO121-F
j TGGTCTCTTAGACTTAGGGC

wzxO121-R
j TTAGCAATTTTCTGTAGTCCAGC

wzxO121-P
j TCCAACAATTGGTCGTGAAACAGCTCG

(Continued)

TABLE 2 | Continued

Primer or probea Sequence 5′
→ 3′b

wzxO45-F
j TACGTCTGGCTGCAGGG

wzxO45-R
j ACTTGCAGCAAAAAATCCCC

wzxO45-P
j TTCGTTGCGTTGTGCATGGTGGC

wzyO145-F
k ATATTGGGCTGCCACTGATGGGAT

wzyO145-R
k TATGGCGTACAATGCACCGCAAAC

wzyO145-P
k AGCAGTGGTTCGCGCACAGCATGGT

aF, forward primer; R, reverse primer; P, probe.
bAll probes were labeled with 6-HEX or 6-FAM and BHQ1 (Black Hole Quencher).
cOligonucleotide described by Perelle et al. (2004).
dOligonucleotide described by Nielsen and Andersen (2003).
eOligonucleotide described by Delannoy et al. (2013a).
fOligonucleotide described by Delannoy et al. (2013b).
gOligonucleotide described by Delannoy et al. (2012a).
hOligonucleotide described by Delannoy et al. (2015a).
iOligonucleotide described by Perelle et al. (2005).
jOligonucleotide described by Bugarel et al. (2010).
kOligonucleotide described by Fratamico et al. (2009).

strains positive for Shiga-toxin (in particular the stx2 genes) and
eae (intimin production) genes are associated with a higher risk
of more severe illness than other virulence factor combinations
(EFSA, 2013). Severe disease, and particularly HUS, is linked to
certain serotypes and strains and this link must be the result of
particular genetic factors or combinations of factors that have to
be determined. A new molecular classification scheme has been
proposed by the EFSA Panel on Biological Hazards (BIOHAZ)
that relies more on virulence factors than seropathotypes. It is
proposed that STEC serogroups O157, O26, O103, O145, O111,
and O104 in combination with stx and eae or stx and both
aaiC (secreted protein of EAEC) and aggR (plasmid-encoded
regulator) genes should be considered as presenting a potentially
higher risk for bloody diarrhea and HUS, such strains are
categorized in group I (EFSA, 2013). For any other serogroups in
combination with the same genes, the potential risk is regarded as
high for diarrhea, but currently unknown for HUS, such strains
are categorized in group II. The inclusion of aaiC and aggR
genes in the proposed molecular approach is due to the O104:H4
outbreak, which was caused by a highly virulent strain (Frank
et al., 2011). This appears to be an exceptional event (Prager
et al., 2014) and future surveillance will provide data that may
be used to review the inclusion of these virulence factors but a
recent study showed that French cattle are not a reservoir of the
highly virulent enteroaggregative Shiga toxin-producing E. coli of
serotype O104:H4 (Auvray et al., 2012).

Following the EFSA opinion, several laboratories have
attempted to develop detection and identification methods for
strains of groups I and II, and although substantial progress has
been made, a practical method of pathogenic STEC detection
has yet to be validated. Molecular methods for screening EHEC
O157 and non-O157 in beef products rely currently on the
molecular detection of stx, eae, and the top five or top seven
EHEC serogroups in mixed bacterial enrichments as described in
the ISO/TS 13136 (EU) and MLG5B.05 (US) reference methods
(ISO, 2012; USDA-FSIS, 2014), followed by attempted isolation
of the correct strain. These approaches bear the disadvantage that
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food samples that carry mixtures of stx-negative E. coli carrying
eae genes together with eae-negative STEC falsely indicate the
presence of EHEC when analyzed for the genes mentioned above
(Beutin et al., 2009; Fratamico and Bagi, 2012; Wasilenko et al.,
2014). Hence, screening food enrichment broths for stx and
eae genes may cause needless disruption and costs for food
producers when the risk of low-virulence STEC is overestimated.
The erroneous identification of cucumbers as the source in the
outbreak in Germany in 2011 cost European fruit and vegetable
producers approximately e 812 million (Commission of the
European Communities., 2011). Thus, new DNA targets that
unambiguously identify typical EHEC strains (stx-positive and
eae-positive E. coli strains) in complex samples are a desirable
goal. This new panel of genes might include novel genetic
markers recently identified as highly associated to pathogenic
STEC strains (Delannoy et al., 2013a,b). Thus, the associations
of espK with either espV, ureD, or Z2098 were found to be the
best combinations for more specific and sensitive detection of
the top seven EHEC strains, allowing detection of 99.3–100%
of these strains. In addition, detection of 93.7% of the typical
EHEC strains belonging to other serotypes than the top seven
offered the possibility for identifying new emerging typical EHEC
strains (Delannoy et al., 2013a,b). Conversely, these different
combinations of genetic markers were very rarely associated with
STEC (1.6–3.6%) and with non-pathogenic E. coli (1.1–3.4%).
The objective of the present study was to refine the EHEC
screening systems for testing beef samples via the incorporation
of these additional gene targets espK, espV, ureD, and Z2098
in the detection scheme. In addition to these four targets, we
included a CRISPRO26:H11 target in the detection scheme that
has been designed for detecting a new clone of STEC O26:H11
harboring stx2 only and strongly associated with HUS in France
(Delannoy et al., 2015a,b). This new EHEC O26:H11 French
clone is positive for eae (eae-beta subtype) but does not contain
any of the above markers espK, espV, ureD, or Z2098. The
fact that the new French clone is missing espK, espV, ureD,
and Z2098 does not mean that these genes are not required
EHEC virulence factors. We have previously demonstrated that
they are significantly associated with EHEC strains and not the
other pathotypes. It does suggest however that the new French
clone may harbor a different set of virulence genes (just like
atypical EHEC lack eae), which can be investigated through
additional genomic studies. In the meantime, although CRISPR
sequences are not virulence factors per se, we have demonstrated
that certain specific spacers are associated with EHEC strains
from the top7 serotypes and thus can provide specific and
sensitive detection of the top 7 EHEC strains (Delannoy et al.,
2012a,b).

To validate the pertinence of this new approach we screened
1739 beef samples and collected 180 samples that tested positive
for both stx and eae, and must be subjected to a second
screening step for serogroup determination according to the
ISO/TS 13136 (EU) and MLG5B.05 (US) reference methods
(ISO, 2012; USDA-FSIS, 2014). Among these 180 samples, 135
tested positive for at least one of the four eae-subtypes gamma,

beta, epsilon and theta, which are related to typical EHEC and

in particular to those of the top seven serogroups (Bugarel
et al., 2010). Introduction of the eae-subtypes in the screening
step provided a reduction by 25% of the number of stx/eae
positive samples that should be subjected to a further screening
for serogroup determination. A more significant refinement
of the first EHEC screening step was achieved by including
espK, espV, ureD, Z2098, and CRISPRO26:H11 target genes in
the detection scheme. Thus, a reduction by 52.78–52.22% of
the number of samples subjected to a further screening for
serogroup determination was obtained by using respectively
the alternate method A (stx/eae/espK/Z2098) or method C
(stx/eae/espK/ureD) in combination with the CRISPRO26:H11

PCR assay detecting the new O26 clone. A reduction by 48.88%
of the number of “presumptive positive” samples was obtained
using the alternate method B (stx/eae/espK/espV) in association
with the CRISPRO26:H11 PCR assay. Given the additional
information on the association of the top seven serogroups and
the eae-subtypes, we determined the last approach, i.e., method B
(stx/eae/espK/espV) in association with the CRISPRO26:H11 PCR
assay, as the best approach to narrow down the EHEC screening
step in beef samples. Using such an approach, 92 samples must
be subjected to a further screening for serogroup determination
vs. 180 with the conventional stx/eae approach used in the
ISO/TS 13136 (EU) and MLG5B.05 (US) reference methods
(ISO, 2012; USDA-FSIS, 2014). This constitutes a significant
reduction (almost 50%) of the number of samples subjected to a
second screening targeting the O-group gene markers. Moreover,
this approach is in line with the EFSA opinion that has identified
STEC strains of groups I and II as presenting the potential
higher risk for diarrhea and HUS (EFSA, 2013). Identification of
additional gene markers, i.e., espK, espV, and CRISPRO26:H11 to
better distinguish typical EHEC from other E. coli pathogroups
would substantially enhance the power of EHEC test systems
providing a significant reduction of “presumptive positive” in
beef samples. Such a new approach would provide to the
agroindustry a novel method for tracking EHEC in food samples.
This work should be considered with interest to draw up the
outline of a future standard that will follow the recommendations
of EFSA.
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