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ABSTRACT

Reliable yet efficient evaluation of generalisation performance of a proposed ar-
chitecture is crucial to the success of neural architecture search (NAS). Tradi-
tional approaches face a variety of limitations: training each architecture to com-
pletion is prohibitively expensive, early stopping estimates may correlate poorly
with fully trained performance, and model-based estimators require large train-
ing sets. Instead, motivated by recent results linking training speed and gener-
alisation with stochastic gradient descent, we propose to estimate the final test
performance based on the sum of training losses. Our estimator is inspired by
the marginal likelihood, which is used for Bayesian model selection. Our model-
free estimator is simple, efficient, and cheap to implement, and does not require
hyperparameter-tuning or surrogate training before deployment. We demonstrate
empirically that our estimator consistently outperforms other baselines under var-
ious settings and can achieve a rank correlation of 0.95 with final test accuracy on
the NAS-Bench201 dataset within 50 epochs.

1 INTRODUCTION

Reliably estimating the generalisation performance of a proposed architecture is crucial to the suc-
cess of Neural Architecture Search (NAS) but has always been a major bottleneck in NAS algorithms
(Elsken et al., 2018). The traditional approach of training each architecture for a large number of
epochs and evaluating it on validation data (full evaluation) provides a reliable performance mea-
sure, but requires prohibitively high computational resources on the order of thousands of GPU
days (Zoph & Le, 2017; Real et al., 2017; Zoph et al., 2018; Real et al., 2019; Elsken et al., 2018).
This motivates the development of methods for speeding up performance estimation to make NAS
practical for limited computing budgets. A popular simple approach is early-stopping which offers
a low-fidelity approximation of generalisation performance by training for fewer epochs (Li et al.,
2016; Falkner et al., 2018; Li & Talwalkar, 2019). However, if we stop the training early at a small
number of epochs and evaluate the model on validation data, the relative performance ranking may
not correlate well with the performance ranking of the full evaluation (Zela et al., 2018). Another
line of work focuses on learning curve extrapolation (Domhan et al., 2015; Klein et al., 2016b;
Baker et al., 2017), which trains a surrogate model to predict the final generalisation performance
based on the initial learning curve and/or meta-features of the architecture. However, the train-
ing of the surrogate often requires hundreds of fully evaluated architectures to achieve satisfactory
extrapolation performance and the hyper-parameters of the surrogate also need to be optimised. Al-
ternatively, the idea of weight sharing is adopted in one-shot NAS methods to speed up evaluation
(Pham et al., 2018; Liu et al., 2019; Xie et al., 2019b). Despite leading to significant cost-saving,
weight sharing heavily underestimates the true performance of good architectures and is unreliable
in predicting the relative ranking among architectures (Yang et al., 2020; Yu et al., 2020).

In view of the above limitations, we propose a simple model-free method which provides a reliable
yet computationally cheap estimation of the generalisation performance ranking of architectures: the
Sum over Training Losses (SoTL). Our method harnesses the training losses of the commonly-used
SGD optimiser during training, and is motivated by recent empirical and theoretical results linking
training speed and generalisation (Hardt et al., 2016; Lyle et al., 2020). We ground our method in
the Bayesian update setting, where we show that the SoTL estimator computes a lower bound to the
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model evidence, a quantity with sound theoretical justification for model selection (MacKay, 1992).
We show empirically that our estimator can outperform a number of strong existing approaches
to predict the relative performance ranking among architectures, while speeding up different NAS
approaches significantly.

2 METHOD

We propose a simple metric that estimates the generalisation performance of a deep neural network
model via the Sum of its Training Losses (SoTL). After training a deep neural network whose
prediction is fθ(·) for T epochs1, we sum the training losses collected so far:

SoTL =

T∑
t=1

[
1

B

B∑
i=1

l
(
fθt,i(Xi),yi

)]
(1)

where l is the training loss of a mini-batch (Xi,yi) at epoch t and B is the number of training steps
within an epoch. If we use the first few epochs as the burn-in phase for θt,i to converge to certain
distribution P (θ) and start the sum from epoch t = T −E + 1 instead of t = 1, we obtain a variant
SoTL-E. In the case where E = 1, we start the sum at t = T and our estimator corresponds to the
sum over training losses within epoch t = T . We discuss SoTL’s theoretical interpretation based
on Bayesian marginal likelihood and training speed in Section 3, and empirically show that SoTL,
despite its simple form, can reliably estimate the generalisation performance of neural architectures
in Section 5.

If the sum over training losses is a useful indicator for the generalisation performance, one might
expect the sum over validation losses to be a similarly effective performance estimator. The sum
over validation losses (SoVL) lacks the link to the Bayesian model evidence, and so its theoretical
motivation is different from our SoTL. Instead, the validation loss sum can be viewed as performing
a bias-variance trade-off; the parameters at epoch t can be viewed as a potentially high-variance
sample from a noisy SGD trajectory, and so summation reduces the resulting variance in the valida-
tion loss estimate at the expense of incorporating some bias due to the relative ranking of models’
test performance changing during training. We show in Section 5 that SoTL clearly outperforms
SoVL in estimating the true test performance.

3 THEORETICAL MOTIVATION

The SoTL metric is a direct measure of training speed and draws inspiration from two lines of work:
the first is a Bayesian perspective that connects training speed with the marginal likelihood in the
model selection setting, and the second is the link between training speed and generalisation (Hardt
et al., 2016). In this section, we will summarize recent results that demonstrate the connection
between SoTL and generalisation, and further show that in Bayesian updating regimes, the SoTL
metric corresponds to an estimate of a lower bound on the model’s marginal likelihood, under certain
assumptions.

3.1 TRAINING SPEED AND THE MARGINAL LIKELIHOOD

We motivate the SoTL estimator by a connection to the model evidence, also called the marginal
likelihood, which is the basis for Bayesian model selection. The model evidence quantifies how
likely a dataset D is to have been generated by a model, and so can be used to update a prior belief
distribution over which model from a given set is most likely to have generated D. Given a model
with parameters θ, prior π(θ), and likelihood P (D|θ) for a training data set D = {D1, . . . ,Dn}
with data points Di = (xi, yi), the (log) marginal likelihood is expressed as follows.

logP (D) = logEπ(θ) [P (D|θ)]⇔ logP (D) =
n∑
i=1

logP (Di|D<i) =
n∑
i=1

log
[
EP (θ|D<i) [P (Di|θ)]

]
Interpreting the negative log posterior predictive probability− logP (Di|D<i) of each data point as a
‘loss’ function, the log evidence then corresponds to the area under a training loss curve, where each

1T can be far from the total training epochs Tend used in complete training
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training step would be computed by sampling a data point Di, taking the log expected likelihood
under the current posterior P (θ|D<i) as the current loss, and then updating the posterior by incorpo-
rating the new sampled data point: D<i+1 := D<i ∪{Di}. One can therefore interpret the marginal
likelihood as a measure of training speed in a Bayesian updating procedure. In the setting where we
cannot compute the posterior analytically and only samples θ̂ from the posterior over parameters are
available, we obtain an unbiased estimator of a lower bound L(D) =

∑
EP (θ|D<i) [logP (Di|θ)] on

the marginal likelihood by Jensen’s inequality, which again corresponds to minimizing a sum over
training losses∑

logP (Di|θ̂) ≈
∑

EP (θ|D<i) [logP (Di|θ)] ≤
∑

log
[
EP (θ|D<i)[P (Di|θ)]

]
= logP (D)

with ≈ denoting equality in expectation. A full analysis of the Bayesian setting is outside of the
scope of this work. We refer the reader to (Lyle et al., 2020) for more details of the properties of this
estimator in Bayesian models. Although the NAS setting does not yield the same interpretation of
SoTL as model evidence estimation, we argue that the SoTL metric is still plausibly useful for model
selection. Just as the marginal likelihood measures the utility of updates based on early data points in
predicting later data points, the SoTL of a model trained with SGD will be lower for models whose
mini-batch gradient descent updates improve the loss of later mini-batches seen during optimisation.
We refer the reader to Apppendix B to see a demonstration of the SoTL metric in the Bayesian linear
regression setting. We emphasize that the Bayesian connection thus justifies the sum over training
losses as a tool for model selection, but not the training loss from a single parameter update.

3.2 TRAINING SPEED AND GENERALISATION

Independent of the accuracy of SoTL in estimating the Bayesian model evidence, it is also possible
to motivate our method by its relationship with training speed: models which achieve low train-
ing loss quickly will have low SoTL. There are both empirical and theoretical lines of work that
illustrate a deep connection between training speed and generalisation. On the theoretical front, we
find that models which train quickly can attain lower generalisation bounds. Training speed and
generalisation can be related via stability-based generalisation bounds (Hardt et al., 2016; Liu et al.,
2017), which characterize the dependence of the solution found by a learning algorithm on its train-
ing data. In networks of sufficient width, (Arora et al., 2019) propose a neural-tangent-kernel-based
data complexity measure which bounds both the convergence rate of SGD and the generalisation er-
ror of the model obtained by optimisation. A similar generalisation bound and complexity measure
is obtained by (Cao & Gu, 2019).

While theoretical work has largely focused on ranking bounds on the test error, current results do
not provide guarantees on consistency between the ranking of different models’ test set performance
and their generalisation bounds. The empirical work of (Jiang* et al., 2020) demonstrates that
many complexity measures are uncorrelated or negatively correlated with the relative performance
of models on their test data but notably, a particular measure of training speed – the number of steps
required to reach cross-entropy loss of 0.1, was highly correlated with the test set performance rank-
ing of different models. The connection between training speed and generalisation is also observed
by (Zhang et al., 2016), who find that models trained on true labels converge faster than models
trained on random labels, and attain better generalisation performance.

4 RELATED WORK

Various approaches have been developed to speed up architecture performance estimation, thus im-
proving the efficiency of NAS. Low-fidelity estimation methods accelerate NAS by using the vali-
dation accuracy obtained after training architectures for fewer epochs (namely early-stopping) (Li
et al., 2016; Falkner et al., 2018; Zoph et al., 2018; Zela et al., 2018), training a down-scaled model
with fewer cells during the search phase (Zoph et al., 2018; Real et al., 2019) or training on a subset
of the data (Klein et al., 2016a). However, low-fidelity estimates underestimate the true perfor-
mance of the architecture and can change the relative ranking among architectures (Elsken et al.,
2018). This undesirable effect on relative ranking is more prominent when the cheap approximation
set-up is too dissimilar to the full evaluation (Zela et al., 2018). As shown in our Fig. 2 below,
the validation accuracy at early epochs of training suffers low rank correlation with the final test
performance.
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Another way to cheaply estimate architecture performance is to train a regression model to ex-
trapolate the learning curve from what is observed in the initial phase of training. Regression model
choices that have been explored include Gaussian processes with a tailored kernel function (Domhan
et al., 2015), an ensemble of parametric functions (Domhan et al., 2015), a Bayesian neural network
(Klein et al., 2016b) and more recently a ν-support vector machine regressor (ν-SVR)(Baker et al.,
2017) which achieves state-of-the-art prediction performance. Although these model-based methods
can often predict the performance ranking better than their model-free early-stopping counterparts,
they require a relatively large amount of fully evaluated architecture data (e.g. 100 fully evalu-
ated architectures in (Baker et al., 2017)) to train the regression surrogate properly and optimise the
model hyperparameters in order to achieve good prediction performance. The high computational
cost of collecting the training set makes such model-based methods less favourable for NAS un-
less the practitioner has already evaluated hundreds of architectures on the target task. Moreover,
both low-fidelity estimates and learning curve extrapolation estimators are empirically developed
and lack theoretical motivation.

Finally, one-shot NAS methods employ weight sharing to reduce computational costs (Pham et al.,
2018; Liu et al., 2019; Xie et al., 2019b). Under the one-shot setting, all architectures are considered
as subgraphs of a supergraph. Only the weights of the supergraph are trained while the architectures
(subgraphs) inherit the corresponding weights from the supergraph. Weight sharing removes the
need for retraining each architecture during the search and thus achieves a significant speed-up.
However, the weight sharing ranking among architectures often correlates very poorly with the true
performance ranking (Yang et al., 2020; Yu et al., 2020; Zela et al., 2020), meaning architectures
chosen by one-shot NAS are likely to be sub-optimal when evaluated independently (Zela et al.,
2020). Moreover, one-shot methods are often outperformed by sample-based NAS methods (Dong
& Yang, 2020; Zela et al., 2020).

Apart from the above mentioned performance estimators used in NAS, many complexity measures
have been proposed to analyse the generalisation performance of deep neural networks. (Jiang*
et al., 2020) provides a rigorous empirical analysis of over 40 such measures. This investigation
finds that sharpness-based measures (McAllester, 1999; Keskar et al., 2016; Neyshabur et al., 2017;
Dziugaite & Roy, 2017) (including PAC-Bayesian bounds) provide good correlation with test set
performance, but their estimation requires adding randomly generated perturbations to the network
parameters and the magnitude of the perturbations needs to be carefully optimised with additional
training, making them unsuitable performance estimators for NAS. Optimisation-based complexity
measures also perform well in predicting generalisation. Specifically, the number of steps required
to reach loss of 0.1, as mentioned in Section 3.2, is closely related to our approach as both quantities
measure the training speed of architectures. To our knowledge though, this measure has never been
used in the NAS context before.

5 EXPERIMENTS

In this section we compare the following measures. Note T denotes the intermediate training epoch,
which is smaller than the final epoch number Tend > T : Our proposed estimator Sum of training
losses over all preceding epochs (SoTL), which sums the training losses of an architecture from
epoch t = 0 to the current epoch t = T , and its variant Sum of training losses over the most recent
E epochs (SoTL-E), which uses the sum of the training losses from epoch t = T − E to t = T .
Sum of validation losses over all preceding epochs (SoVL) computes the sum of the validation
losses of an neural architecture from epoch t = 0 to the current epoch t = T . Validation accuracy
at an early epoch (VAccES) corresponds to early-stopping practice whereby the user assumes the
validation accuracy of an architecture at early epoch t = T < Tend is a good estimator of its final test
performance at epoch t = Tend. Learning curve extrapolation (LcSVR) method is the state-of-
the-art extrapolation method proposed in (Baker et al., 2017) which uses a trained ν-SVR to predict
the final validation accuracy of an architecture. The inputs for the SVR regression model comprise
architecture meta-features (e.g. number of parameters and depth of the architecture), training hyper-
parameters (e.g. initial learning rate, mini-batch size and weight decay), learning curve features up
to epoch t = T (e.g. the validation accuracies up to epoch t = T , the 1st-order and 2nd-order
differences of validation curve up to epoch t = T ). In our experiments, we train the SVR on data of
200 randomly sampled architectures and following the practice in (Baker et al., 2017), we optimise
the SVR hyperparameters via random search using 3-fold cross-validation. We also compare against
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Figure 1: Rank correlation (with final test accuracy) performance of the sum of training losses,
SoTL (blue) and SoTL-E (red), and those of validation losses (purple), SoVL (solid) and SoVL-E
(dash dot), as well as that of final test loss (black) for 5000 random architectures in NASBench-201
on three image datasets. Note the correlation performances of final test loss and SoVL-E near the
end of training get surprisingly poor for CIFAR10/100. We explain this in Section 5.1.

with two baselines on the DARTS search space: the training losses at each mini batch (TLmini)
and the variant of VAccES, VAccES(EMA) whereby the exponential moving average of the weights
(Tan & Le, 2019) is used during validation to improve validation accuracy.

The datasets we used to compare these performance estimators are:

• NASBench-201 (Dong & Yang, 2020): the dataset contains information of 15,625 different neu-
ral architectures, each of which is trained with SGD optimiser for 200 epochs (Tend = 200) and
evaluated on 3 different datasets: CIFAR10, CIFAR100, IMAGENET-16-120. The NASBench-
201 datasets can be used to benchmark almost all up-to-date NAS search strategies.

• RandWiredNN: we produced this dataset by generating 552 randomly wired neural architec-
tures from the random graph generators proposed in (Xie et al., 2019a) and evaluating the archi-
tecture performance on the FLOWERS102 dataset (Nilsback & Zisserman, 2008). We explored
69 sets of hyperparameter values for the random graph generators and for each set of hyper-
parameter values, we sampled 8 randomly wired neural networks from the generator. All the
architectures are trained with SGD optimiser for 250 epochs (Tend = 250). This dataset allows
us to evaluate the performance of our simple estimator on model selection for the random graph
generator in Section 5.3.

• DARTS: we produce this dataset by randomly sampling 100 architectures from the search space
used in DARTS (Liu et al., 2019) and evaluating them on CIFAR10. This search space is more
general than that of NASBench-201 and widely adopted in NAS (Zoph et al., 2018; Liu et al.,
2019; Chen et al., 2019; Xie et al., 2019b; Xu et al., 2019; Real et al., 2019; Li & Talwalkar,
2020; Pham et al., 2018; Shaw et al., 2019; Zhou et al., 2020). We experiment with different
evaluation set-ups in Section 5.2 and use this dataset to assess the stability/robustness of our
estimator as well as make comparison to TLmini and VAcc(EMA).

More details on the three datasets are provided in Appendix A. In NAS, the relative performance
ranking among different models matters more than the exact test performance of models. Thus,
we evaluate different performance estimators by comparing their rank correlation with the model’s
true/final test accuracy. We adopt Spearman’s rank correlation following (Ying et al., 2019; Dong
& Yang, 2020). We flip the sign of SoTL/SoTL-E/SoVL/TLmini (which we want to minimise) to
compare to the Spearman’s rank correlation of the other methods (which we want to maximise).
We test different summation window sizes in Appendix C and find E = 1 consistently give the
best results. Thus, we set E = 1 as the default choice for our SoTL-E estimator in the following
experiments. Note SoTL-E withE = 1 corresponds to the sum of training losses over all the batches
in one single epoch. All experiments were conducted on a 36-core 2.3GHz Intel Xeon processor with
512 GB RAM.
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Figure 2: Rank correlation performance of various baselines: SoTL-E, SoTL, SoVL, Val Acc and
LcSVR for 5000 random architectures in NASBench-201 on three image datasets (a) to (c) and for
552 randomly wired architectures on FLOWERS102 (d). In all cases, our SoTL-E achieves superior
rank correlation with the true test performance in much fewer epochs than other baselines. We shade
the region T > 100; this shaded region is less interesting in NAS where we want to use as fewer
training epochs as possible to maximise the speed-up gain compared to full evaluation T = Tend.

5.1 TRAINING LOSS VS VALIDATION LOSS

We perform a simple sanity check against the validation loss on NASBench-201 datasets. Specif-
ically, we compare our proposed estimators, SoTL and SoTL-E, against two equivalent variants of
validation loss-based estimators: SoVL and Sum of validation losses over the most recent epoch
(SoVL-E with E = 1). For each image dataset, we randomly sample 5000 different neural network
architectures from the search space and compute the rank correlation between the true test accuracies
(at T = 200) of these architectures and their corresponding SoTL/SoTL-E as well as SoVL/SoVL-E
up to epoch T . The results in Fig. 1 show that our proposed estimators SoTL and SoTL-E clearly
outperform their validation counterparts.

Another intriguing observation is that the rank correlation performance of SoVL-E drops signifi-
cantly in the later phase of the training (after around 100 epochs for CIFAR10 and 150 epochs for
CIFAR100) and the final test loss, TestL (T=200), also correlates poorly with final test accuracy.
This implies that the validation/test losses can become unreliable indicator for the validation/test
accuracy on certain datasets; as training proceeds, the validation accuracy keeps improving but the
validation losses could stagnate at a relatively high level or even start to rise (Mukhoti et al., 2020;
Soudry et al., 2018). This is because while the neural network can make more correct classifica-
tions on validation points (which depend on the argmax of the logits) over the training epochs, it
also gets more and more confident on the correctly classified training data and thus the weight norm
and maximum of the logits keeps increasing. This can make the network overconfident on the mis-
classified validation data and cause the corresponding validation loss to rise, thus offsetting or even
outweighing the gain due to improved prediction performance (Soudry et al., 2018). Training loss
won’t suffer from this problem (Appendix D). While SoTL-E struggles to distinguish architectures
once their training losses have converged to approximately zero, this contributes to a much smaller
drop in estimation performance of SoTL-E compared to that of SoVL-E and only happens near the
very late phase of training (after 150 epochs) which will hardly be reached if we want efficient NAS
using as few training epochs as possible. Therefore, the possibility of network overconfidence under
misclassification is another reason for our use of training losses instead of the validation losses.

5.2 COMPARISON AGAINST OTHER BASELINES

We now compare our estimators SoTL and SoTL-E against other baselines mentioned at the start of
Section 5. The results on both NASBench-201 and RandWiredNN datasets are shown in Fig. 2. Our
proposed estimator SoTL-E, despite its simple form and cheap computation, outperforms all other
methods under evaluation for T < 100 for all architecture/image datasets. Although the validation
accuracy(VAccES) at T ≥ 150 can reach similar rank correlation, this is less interesting for appli-
cations like NAS where we want to speed up the evaluation as much as possible and thus use as
fewer training epochs as possible. The learning curve extrapolation method, LcSVR, is competitive.
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Figure 3: Rank correlation performance of various baselines: SoTL-E, SoTL, SoVL, VAccES, VAc-
cES(EMA) and TLmini for 100 random architectures from DARTS search space on CIFAR10. We
test the three training set-ups used in (Liu et al., 2019): (a) the search phase (over 200 architec-
tures), (b) the retraining phase for CIFAR10 and (c) the retraining phase for ImageNet. Our SoTL-E
achieves superior rank correlation in much fewer epochs than other baselines. Note also that the sum
of training loss (SoTL/SoTL-E) gives better test performance estimation than individual training loss
(TLmini).

However, the method requires hundreds of fully trained architecture data2 to train the regression
surrogate. Lots of computational resources are needed to obtain such training data.

We further verify the robustness of our estimator across different training set-ups adopted in (Liu
et al., 2019) on the DARTS dataset. Specifically, we evaluated on architectures of different sizes (8
cells and 20 cells) as well as different training set-ups (initial learning rate, learning rate scheduler
and batch size). The results in Fig. 3 show that our estimator again outperforms the competing
methods. Note here the curve of TLmini corresponds to the average rank correlation with final test
accuracy achieved by the mini-batch training loss over the epoch. The clear performance gain of our
SoTL estimator over TLmini supports our claim that it is the sum of training losses, which carries
the theoretical interpretation explained in Section 3, instead of the training loss at a single minibatch,
that serves as a good estimator of generalisation performance. Further, the results of VAcc(EMA)
show that the EMA technique, which smooths and improves the accuracies during validation, does
not necessarily improve the rank correlation of validation accuracy with the final test performance.

5.3 ARCHITECTURE GENERATOR SELECTION

For the RandWiredNN dataset, we use 69 different hyperparameter values for the random graph gen-
erator which generates the randomly wired neural architecture. Here we would like to investigate
whether our estimator can be used in place of the true test accuracy to select among different hyper-
parameter values. For each graph generator hyperparameter value, we sample 8 neural architectures
with different wiring. The mean and standard error of both the true test accuracies and SoTL-E
scores over the 8 samples are presented in Fig. 4. Our estimator can well predict the relative per-
formance ranking among different hyperparameters (Rank correlation≥ 0.85) based on as few as 10
epochs of training. The rank correlation between our estimator and the final test accuracy improves
as we use the training loss in later epochs.

5.4 SPEED UP NAS

Similar to early stopping, our method is model-free and can significantly speed up the architecture
performance evaluation by using information from early training epochs. In this section, we incor-
porate our estimator, SoTL-E, at T = 50 into several NAS search strategies: Regularised Evolution
(Real et al., 2019) (top row in Fig. 5), TPE (Bergstra et al., 2011) (bottom row in Fig. 5) and
Random Search (Bergstra & Bengio, 2012) (Appendix E) and performance architecture search on
NASBench-201 datasets. We compare this against the other two benchmarks which use the final
validation accuracy at T = 200, denoted as Val Acc (T=200) and the early-stop validation accuracy
at T = 50, denoted as Val Acc (T=50), respectively to evaluate the architecture’s generalisation

2We follow (Baker et al., 2017) and train the SVR on 200 architectures.
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Figure 4: Model selection among 69 random graph generator hyperparamters on RandWiredNN
dataset using (a) our SOTL-E and (b) VAccES. We use each hyperparameter value to generate 8
architectures and evaluate their true test accuracies after complete training. The mean and standard
error of the test performance across 8 architectures for each hyperparameter value are presented as
Test Acc (yellow) and treated as ground truth (Right y-axis). We then compute our SoTL-E=1 esti-
mator for all the architectures by using their first T < 250 epochs of training losses. The mean and
standard error of SoTL-E scores for T = 10, . . . , 90 are presented in different colours (Left y-axis
of (a)). The rank correlation between the mean Test Acc and that of SoTL-E for various T is shown
in the corresponding legends in (a). The same experiment is conducted by using early-stopped
validation accuracy (VAccES) for performance estimation (b). With only 10 epochs of training, our
SoTL-E estimator can already capture the trend of the true test performance of different hyperparam-
eters relatively well (Rank correlation= 0.851) and can successfully identify 24-th hyperparamter
setting as the optimal choice. The prediction of best hyperparameter by VAccES is less consistent
and the rank correlation scores of VAccES at all epochs are lower than those of SoTL-E

performance. All the NAS search strategies start their search from 10 random initial data and are
repeated for 20 seeds. The mean and standard error results over the search time are shown in Fig.
5. By using our estimator, the NAS search strategies can find architectures with lower test error
given the same time budget or identify the top performing architectures using much less runtime as
compared to using final or early-stopping validation accuracy. Also the gain of using our estimator
is more significant for NAS methods performing both exploitation and exploration (RE and TPE)
than that doing pure exploration (Random Search in Appendix E).

6 CONCLUSION

We propose a simple yet reliable method for estimating the generalisation performance of neural
architectures based on its early training losses. Our estimator enables significant speed-up for per-
formance estimation in NAS while outperforming other efficient estimators in terms of rank corre-
lation with the true test performance. More importantly, our estimator has theoretical interpretation
based on training speed and Bayesian marginal likelihood, both of which have strong links with
generalisation. We believe our estimator can be a very useful tool for achieving efficient NAS.
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A DATASETS DESCRIPTION

The datasets we experiment with are:

• NASBench-201 (Dong & Yang, 2020): the dataset contains information of 15,625 different
neural architectures, each of which is trained with SGD optimiser and evaluated on 3 differ-
ent datasets: CIFAR10, CIFA100, IMAGENET-16-120 for 3 random initialisation seeds. The
training accuracy/loss, validation accuracy/loss after every training epoch as well as architec-
ture meta-information such as number of parameters, and FLOPs are all accessible from the
dataset. The search space of the NASBench-201 dataset is a 4-node cell and applicable to almost
all up-to-date NAS algorithms. The dataset is available at https://github.com/D-X-Y/
NAS-Bench-201.

• RandWiredNN: we produce this dataset by generating 552 randomly wired neural architectures
from the random graph generators proposed in (Xie et al., 2019a) and evaluating their perfor-
mance on the image dataset FLOWERS102 (Nilsback & Zisserman, 2008). We explore 69 sets
of hyperparameter values for the random graph generators and for each set of hyperparameter
values, we sample 8 randomly wired neural networks from the generator. A randomly wired neu-
ral network comprises 3 cells connected in sequence and each cell is a 32-node random graph.
The wiring/connection within the graph is generated with one of the three classic random graph
models in graph theory: Erdos-Renyi(ER), Barabasi-Albert(BA) and Watt-Strogatz(WS) models.
Each random graph models have 1 or 2 hyperparameters which decide the generative distribution
over edge/node connection in the graph. All the architectures are trained with SGD optimiser for
250 epochs and other training set-ups follow those in (Liu et al., 2019). This dataset allows us
to evaluate the performance of our simple estimator on hyperparameter/model selection for the
random graph generator. We will release this dataset after paper publication.

• DARTS: we produce this dataset by randomly sampling 100 architectures from the search space
used in DARTS (Liu et al., 2019) and evaluating them on CIFAR10. This search space comprises
a cell of 7 nodes. An architecture from this search space is formed by stacking the cell 8 or 20
times. Specifically, the first two nodes in cell k are the input nodes which equals to the outputs
of cell k−2 and cell k−1 respectively. The last node in the cell k is the output node which gives
a depthwise concatenation of all the intermediate nodes. The remaining four intermediate nodes
are operation nodes take can take one out of eight operation choices. This search space is larger
and more general than that of NASBench-201, and is also widely adopted in NAS (Zoph et al.,
2018; Liu et al., 2019; Chen et al., 2019; Xie et al., 2019b; Xu et al., 2019; Real et al., 2019; Li
& Talwalkar, 2020; Pham et al., 2018; Shaw et al., 2019; Zhou et al., 2020). In Section 5.2, we
experiment with the three different evaluation set-ups used in (Liu et al., 2019):

1. Search phase: We stack 8 cells to form the architecture and train the architecture for 150
epoch on CIFAR10 with a batch size of 128. We use the SGD optimiser with an initial
learning rate of 0.05 and a cosine-annealing schedule, momentum of 0.9 and weight decay
of 3× 10−4;

2. Retraining phase for CIFAR10: We stack 20 cells to form the architecture and train the
architecture for 150 epoch on CIFAR10 with a batch size of 96. We use the SGD optimiser
with an initial learning rate of 0.025 and a cosine-annealing schedule, momentum of 0.9 and
weight decay of 3× 10−4;

3. Retraining phase for ImageNet: We stack 20 cells to form the architecture and train the
architecture for 150 epoch on CIFAR10 with a batch size of 128. We use the SGD optimiser
with an initial learning rate of 0.1 and a step-decay schedule (decayed by a factor of 0.97
after each epoch), momentum of 0.9 and weight decay of 3× 10−4.

For this dataset, we also record the training loss for each minibatch and an alternative validation
accuracy value evaluated using the exponential moving average (EMA) of the network weights
(Tan & Le, 2019) on top of the conventional training and validation loss/accuracies. The mini-
batch training loss is used to verify our claim that it is the sum of training losses, which has nice
theoretical interpretation, instead of individual training loss that gives good correlation with the
generalisation performance of the architectures. The EMA version of the validation accuracy is
used to check whether a smoothed and improved version of the early-stopped validation accuracy
will have better correlation with the final true test performance.
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Figure 6: Example on a simple Bayesian linear regression problem. We see that the sum over training
losses gives an estimator for the lower bound L of model evidence, and that the SoTL measure is
more effective than the final training loss at distinguishing the two modelsM1 andM2.

B EXAMPLE ON BAYESIAN LINEAR REGRESSION

We illustrate how the SoTL metric corresponds to a lower bound on the marginal likelihood that can
be used for model selection in a simple Bayesian linear regression setting. We consider an idealised
data set (X, y) with X ∈ Rn×(n+1) and y ∈ Rn, with X of the form X = (xi)

n
i=1 = ((yi +

εi0, 0, . . . , εi, . . . , 0))
n
i=1, and εi ∼ N (0, 1). We wish to compare two Bayesian linear regression

models M1 and M2, each of which uses one of two different feature embeddings: φ1 and φ2,
where φ1(x) = x is the identity and φ2(x) = x>e1 = (y + ε0) retains only the single dimension
that is correlated with the target, removing the noisy components of the input. The model which uses
φ2 will have less opportunity to overfit to its training data, and will therefore generalise better than
the model which uses φ1; similarly, it will also have a higher marginal likelihood. We demonstrate
empirically in Fig. 6 that the SoTL estimator computed on the iterative posterior updates of the
Bayesian linear regression models also exhibits this relative ranking, and illustrate how the SoTL
relates to the lower bound described in Section 3.

C EFFECT OF SUMMATION WINDOW E

As shown in Fig. 1, summing the training losses over E most recent epochs (SoTL-E) can achieve
higher rank correlation with the true test accuracy than summing over all the previous T epochs
(SoTL), especially early on in training. We grid-search different summation window sizes E =
1, 10, . . . , 70 to investigate the effect of E and observe consistently across all 3 image datasets that
smaller window size gives higher rank correlation during the early training phase and all E values
converge to the same maximum rank correlation (Fig. 7).

We further verify this observation by performing the same experiments on DARTS dataset for which
we have saved the mini-batch training losses and thus can compute the sum of training losses for
less than one epoch E < 1. For example, E = 0.3 corresponds to the sum of training losses over
the first 30% of the mini-batches/optimisation steps in the epoch. The results in Fig. 8 show again
that E = 1 is the optimal choices although smaller summation window in general leads to better
performance than large window sizes at the very early part of the training. Thus, we recommend
E = 1 as the default choice for our SoTL-E estimator. Note SoTL-E=1 corresponds to the sum of
training losses over all the batches in one single epoch.

D TRAINING LOSSES VS VALIDATION LOSSES

D.1 EXAMPLE SHOWING TRAINING LOSS IS BETTER CORRELATED WITH VALIDATION
ACCURACY THAN VALIDATION LOSS

We sample three example architectures from the NASBench-201 dataset and plot their losses and
validation accuracies on CIFAR100 over the training epochs T . The relative ranking for the vali-
dation accuracy is: Arch A (0.70) > Arch B (0.67) > Arch C (0.64), which corresponds perfectly
(negatively) with the relatively ranking for the training loss: Arch A (0.05) < Arch B (0.31) <
Arch C (0.69). Namely, the best performing architecture also has the lowest final training epoch
loss. However, the ranking among their validation losses is poorly/wrongly correlated with that of
validation accuracy; the worst-performing architecture has the lowest final validation losses but the
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Figure 7: Rank correlation performance of the sum of training losses over E most recent epochs
(SoTL-E) on the NASBench-201 dataset. Different E values are investigated for 5000 random
architectures in NASBench-201 on three image datasets. In all three cases, smaller E consistently
achieves better rank correlation performance in the early training phase with E = 1 being the best
choice.
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Figure 8: Rank correlation performance of the sum of training losses over E most recent epochs
(SoTL-E) on the DARTS dataset. Different E values include those < 1 are investigated for 100
random architectures in DARTS search space under three different evaluation set-ups. In all three
settings, smallerE in general achieves better rank correlation performance in the early training phase
with E = 1 again being the best choice. The performance of E < 1 is not stable and deteriorates
from E = 1.

(a) Arch A: Train loss=0.05,
Val. loss=1.36, Val. acc = 0.70

(b) Arch B: Train loss=0.31,
Val. loss=1.30, Val. acc = 0.67

(c) Arch C: Train loss=0.69,
Val. loss=1.29, Val acc = 0.64

Figure 9: Training losses, validation losses and validation accuracies of three example architectures
on CIFAR100. The average of the training losses, validation losses and validation accuracies over
the final 10 epochs is presented in the subcaption of each architecture.

best-performing architecture has the highest validation losses. Moreover, in all three examples, es-
pecially the better-performing ones, the validation loss stagnates at a relatively high value while the
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validation accuracy continues to rise. The training loss doesn’t have this problem and it decreases
while the validation accuracy increases. This confirms the observation we made in Section 5.2
that the validation loss will become an unreliable predictor for the final validation accuracy as well
as the generalisation performance of the architecture as the training proceeds due to overconfident
misclassification.

D.2 COMPARISON WITH SUM OVER VALIDATION ACCURACY
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Figure 10: Rank correlation performance of the sum over training losses, SoTL (red), the sum
over training accuracy, SoTAcc (blue), the sum over validation losses, SoVL (purple) and the sum
of validation accuracy, SoVAcc (green) for 5000 random architectures in NASBench-201 on three
image datasets. Note SoTL denotes the summation from epoch 0 to epoch T and SoTL-E denotes the
summation over the most recent epoch T. The same applies for those of SoVL-E, SoTAcc/SoTAcc-E
and SoVAcc/SoVAcc-E. The results on CIFAR10 and CIFAR100 confirm the discussion in Section
5.2 and in the subsection above; as the training proceeds, the validation loss can become poorly
correlated with the validation/test accuracy while the training loss is still perfectly correlated with
the training accuracy. Thus, another baseline to check against is the sum over validation accuracy,
SoVAcc/SoVAcc-E. It’s expected that SoVAcc-E should converge to a perfect rank correlation (=1)
with the true test performance at the end of the training. However, the results in (a), (b) and (c) show
that our proposed estimator SoTL-E can consistently outperform SoVAcc-E in the early and middle
phase of the training (roughly T ≤ 150 epochs). This reconfirms the usefulness of our estimator.

D.3 OVERFITTING ON CIFAR10 AND CIFAR100

In Figure 2 in Section 5.2, the rank correlation achieved by SoTL-E on CIFAR10 and CIFAR100
will drop slighted after around T = 150 epochs but similar trend is not observed for IMAGENET-
16-120. We hypothesise that this is due to the fact that many architectures converge to very small
training losses on CIFAR10 and CIFAR100 in the later training phase, making it more difficult
to distinguish these good architectures based on their later-epoch training losses. But this doesn’t
happen on IMAGENET-16-120 because it’s a more challenging dataset. We test this by visualising
the training loss curves of all 5000 architectures in Figure 11a where the solid line and error bar
correspond to the mean and standard error respectively. We also plot out the number of architectures
with training losses below 0.1 3 in Figure 11b. It is evident that CIFAR10 and CIFAR100 both see
an increasing number of overfitted architectures as the training proceeds whereas all architectures
still have high training losses on IMAGENET-16-120 at end of the training T = 200 with none of
them overfits. Thus, our hypothesis is confirmed. In addition, similar observation is also shared in
(Jiang* et al., 2020) where the authors find the number of optimisation iterations required to reach
loss equals 0.1 correlates well with generalisation but the number of iterations required going from
loss equals 0.1 to loss equals 0.01 doesn’t.

3the threshold 0.1 is chosen following the threshold for optimisation-based measures in (Jiang* et al., 2020)
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(a) Training loss
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(b) No. of arch with loss< 0.1

Figure 11: Mean and 5 standard error of training losses and validation losses on 5000 architectures
on different NASBench-201image datasets. (a) shows the training curves and (b) shows the number
of architectures whose training losses go below 0.1 as the training proceeds. Many architectures
reach very small training loss in the later phase of the training on CIFAR10 and CIFAR100, thus may
overfitting on these two datasets. But all the architectures suffer high training losses on IMAGENET-
16-120, which is a much more challenging classification task, and none of them overfits.

E ADDITIONAL NAS EXPERIMENTS

In this work, we incorporate our estimator, SoTL-E, at T = 50 into three NAS search strategies:
Regularised Evolution (Real et al., 2019), TPE (Bergstra et al., 2011) and Random Search (Bergstra
& Bengio, 2012) and performance architecture search on NASBench-201 datasets. We modify the
implementation available at https://github.com/automl/nas_benchmarks for these
three methods.
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Figure 12: NAS performance of Random Search (RS) in combined with final validation accu-
racy (Final Val Acc), early-stop validation accuracy (ES Val Acc) and our estimator SoTL-E on
NASBench-201. SoTL-E enjoys competitive convergence as ES Val Acc and both are faster than
using Final Val Acc.

Random Search (Bergstra & Bengio, 2012) is a very simple yet competitive NAS search strategy
(Dong & Yang, 2020). We also combined our estimator, SoTL-E, at training epoch T = 50 with
Random Search to perform NAS. We compare it against the baselines using the final validation ac-
curacy at T = 200, denoted as Val Acc (T=200), and the early-stop validation accuracy at T = 50,
denoted as Val Acc (T=50). Other experimental set-ups follow Section 5.5. The results over running
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hours on all three image tasks are shown in Figure 12. The use of our estimator clearly leads to
faster convergence as compared to the use of final validation i.e. Val Acc (T=200). Moreover, our
estimator also outperforms the early-stop validation accuracy, Val Acc (T=50) on the two more chal-
lenging image tasks, CIFAR100 and IMAGENET-16-120, and is on par with it on CIFAR10. The
performance gain of using our estimator or the early-stopped validation accuracy is relatively less
significant in the case of Random Search compared to the cases of Regularised Evolution and TPE.
For example, given a budget of 150 hours on CIFAR100, Regularised Evolution and TPE when com-
bined with our estimator can find an architecture with a test error around or below 0.26 but Random
Search only finds architecture with test error of around 0.27. This is due to the fact that Random
Search is purely explorative while Regularised Evolution and TPE both trade off exploration and
exploitation during their search; our estimator by efficiently estimating the final generalisation per-
formance of the architectures will enable better exploitation. Therefore, we recommend the users to
deploy our proposed estimator onto search strategies which involve some degree of exploitation to
maximise the potential gain.
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