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are insufficient when analyzing data from microarray ex-

periments where attention is payed on how the time affects

gene’s behavior. There is a lot of interest in this type of time

series experiment because they allow an in-depth analysis of

molecular processes in which the time evolution is impor-

tant, for example, cell cycles, development at the molecular

level or evolution of diseases [8]. Therefore, the use of

specific tools for data analysis in which genes are evaluated

under certain conditions considering the time factor becomes

necessary. The TriGen algorithm, presented in [9], goes

a step further than clustering and biclustering techniques

in the creation of groups of pattern similarity for genes.

TriGen works on a three-dimensional space, thus taking into

account the time factor, and allowing the evaluation of the

behavior of genes only under certain conditions and only

under certain time points. TriGen applies an evolutionary

technique, genetic algorithms, to find solutions that we refer

to as triclusters. In this article we present some changes

made to the TriGen algorithm, in particular to the initial

population creation method and the organization of the input

data to avoid overlapping on the solutions. The algorithm is

applied to the yeast (Saccharomyces Cerevisiae) cell cycle

problem and the results are compared to the ones obtained

in [9]. Other works related with this approach are in [10]

and [11]. The rest of the paper is structured as follows.

Section II describes the TriGen algorithm in detail, Section

III shows the results with synthetic data and with the yeast

data. Section IV summarizes the conclusions reached and

proposals for future work.

II. METHODOLOGY

We describe the implementation of the TriGen algorithm.

In this section we explain the inputs and outputs of the

algorithm and we provide a detailed description of the

evolutionary process and all the operators implied.

A. Input data

The input data is obtained from temporal microarray ex-

periments. Each of these microarrays reveals the expression

level under specific experimental conditions and at an instant

of time. Therefore, the input data consists of T number

of microarrays, as many as time points to be analyzed.
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I. INTRODUCTION

The use of high throughput processing techniques has

revolutionized the technological research and has exponen-

tially increased the amount of data available [1]. Partic-

ularly, microarrays have revolutionized biological research 
by its ability to monitor changes in RNA concentration in
thousands of genes simultaneously [2]. A common practice

when analyzing gene expression data is to apply clustering 
techniques, creating groups of genes that exhibit similar

expression patterns. These clusters are interesting because it
is considered that genes with similar behavior patterns can 
be involved in similar regulatory processes [3]. Although

in theory there is a big step from correlation to functional 
similarity of genes, several articles indicate that this relation

exists [4]. Traditional clustering algorithms work on the

whole space of data dimensions examining each gene in the 
dataset under all conditions tested. Biclustering techniques

[5] go a step further by relaxing the conditions and by

allowing assessment only under a subset of the conditions 
of the experiment, and it has proved to be successful finding

gene patterns [6], [7]. However, clustering and biclustering



Input: Temporary microarray data

Output: Tricluster Solution Set

Begin TriGen algorithm

Repeat for each Tricluster solution
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Data Hierarchy Update
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End TRIGEN algorithm

Figure 1: TriGen algorithm

Each value of a microarray for an specific time t represents

the level of gene expression of a gene g under a specific

experimental condition c.

B. Definition of Tricluster

We define a tricluster as a subset of time instants T , a

subset of genes G and a subset of conditions C extracted

from the input data. In this particular work, each tricluster

contains the expression values of the these three sets and

a fitness value that indicates the tricluster’s quality. The

fitness function will be described in detail in Section II-C4

(Evaluation operator). Qualitatively, a tricluster will provide

information on behavior pattern of a subset of genes under

certain conditions and at certain time points.

C. TriGen Algorithm Description

TriGen is based on a genetic algorithm. The evolutionary

process has an initialization method in which the initial

population will be created using a hierarchy data method

to avoid overlapping among solutions and several operators:

evaluation, which measures the quality of each chromosome

or individual of the population, selection, which serves to

decide which individuals will survive to the next generation,

crossover, which creates the necessary connections between

pairs of individuals to share new genetic material and finally

mutation, which performs punctual changes to individuals

to ensure genetic variability of future generations, i.e.,

exploring new spaces of solutions (See Figure 1).

We discuss in detail each of these methods and operators.

1) Codification of Individuals: Each member of the pop-

ulation represents a tricluster which is a potential solution.

It has genetic material that will be manipulated by the

genetic operators described in ”Genetic Operators” below.

This genetic material is composed by a set of chromosomes,

they are a subset of time instants T , a subset of genes

G and a subset of conditions C extracted from the input

data. Each of them is composed by a number of genes, they

are the components of the tricluster (they correspond to the

components of the input data).

2) Data Hierarchy: To avoid overlapping solutions (tri-

clusters) and cover the widest space possible in the input

data we maintain a hierarchy for the input data. Time

points, genes and conditions coordinates are organized by

the number of occurrences (levels) in the previous triclusters

found. Thus, each coordinate will be assigned an initial level

of 0 and, when a tricluster is found, each of its coordinates

will be increased by 1. The hierarchy data is a support tool

for the initialization method and it helps us to cover the

space of the input data efficiently with triclusters.

3) Generation of Initial Population: The population

is randomly created following some considerations. The

method receives two parameters: the number of individuals

and a parameter indicating how many of them will be

randomly chosen. For the latter, we randomly choose a

subset of times, genes and conditions of the input data. This

process is repeated as many times as specified by the second

input parameter described above. For the rest of individuals,

we use the data hierarchy so that we choose the lowest level

coordinates to create the individuals.

4) Genetic Operators:

Selection: Groups of individuals are randomly created

sorted from lowest to highest according to the fitness func-

tion, and then a random selection from the three groups of

the individuals required according to an input parameter is

made.

Crossover: This operator completes the population

in the next generation Pt generating two new individuals

(children) combining the genetic material from two existing

ones (parents). For each point of the two parents get two

children so the number of crossings is determined by number

of individuals who are required to complete the population.

This is a one-point cross that determine a random point cross

for the times, genes and conditions and mixing each of the

parts to obtain two child by crossing.

Mutation: This operator selects, based on a mutation

probability input parameter, a number of individuals who

suffer a random out of six: add a time component, a gene

component or a condition component , or remove a time

component, gene component or condition component.

Evaluation: Since triclustering emerges as an improve-

ment of biclustering to analyze microarray data taking into

account the temporal dimension, we have adapted the clas-

sical biclustering fitness function, Mean Squared Residue
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(MSR), presented by Cheng and Church in [12], to the three

dimensional space. MSR compares the similarity of each

value in the bicluster to the mean values of all genes under

the same condition, the mean of the gene under the other

conditions included in the bicluster, and the mean of all

values in the bicluster. In the case of triclustering, we will

assess the similarity of each value not only related to genes

and conditions, but also including the temporary plane, i.e.,

we asses how a gene g behaves under all conditions C at

the time points T , how a condition c affects all genes G

in time T , and the time factor t in relation to genes G and

conditions C, as well as the mean value of all the tricluster.

This is formalized as follows:

rGCT =

∑

gεG,cεC,tεT

r2

gct

|G| ∗ |C| ∗ |T |
− Weights− Distinction

in the first member of equation, the numerator is:

rgct = Vgct + MGC(t) + MGT (c) + MCT (g) −

MG(c, t) − MC(g, t) − MT (g, c) − MGCT

where Vgct is the tricluster value being evaluated, MGC(t)
is the mean of the genes under conditions at a point in

time t, MGT (c) is the mean of the genes over time under a

condition c, MCT (g) is the mean of a gene g in time under

the conditions, MG(c, t) is the mean of the genes under one

condition and a time point, MC(g, t) is the mean of the

values of a gene at a time point under conditions, MT (g, c)
is the mean of a gene under a condition at all time points

and MGCT is the mean value of all points of tricluster.

The denominator factor is:

|G| ∗ |C| ∗ |T |

where |G|, |C| and |T | are, respectively, the number of

genes, times and conditions in the tricluster under evaluation.

The second member of equation, Weights, corresponds to:

Weights = |G| ∗ wg + |C| ∗ wc + |T | ∗ wt

where wg , wc and wt are the weights of the genes, conditions

and times for the solution tricluster respectively and |G|,
|C| and |T | correspond again to the number of genes,

times and conditions in the tricluster under evaluation. When

increasing the value of one of these weights, we favor the

TriGen algorithm finding triclusters with a greater number

of components on that term.

The Distinction member can be explained as:

Distinction =
CDNg

|G|
∗wdg+

CDNc

|C|
∗wdc+

CDNt

|T |
∗wdt

where CDNg (Coordinate Distinction Number of g), CDNc

(Coordinate Distinction Number of c) and CDNt (Co-

ordinate Distinction Number of t) are, respectively, the

number of genes, conditions and time coordinates in the

tricluster solutions that do not contain the tricluster being

evaluate, wdg , wdc and wdt are the distinction weights of

the genes, conditions and times respectively and |G|, |C|
and |T | correspond again to the number of genes, times and

conditions in the tricluster under evaluation. Distinction

measures how different the individual under evaluation is

compared to the tricluster previously found. If the the value

of any of the weights is increased, we favor the finding

of triclusters with non-overlapping gene, condition or time

coordinates regarding the triclusters previously found.

III. RESULTS

We show the results obtained applying the TriGen algo-

rithm both to real and synthetic data. Synthetic data are

widely used not only for testing the performance of microar-

ray analyzing techniques [13] but also in more general data

mining publications [14]. All experiments were done on a

Mac Book Pro machine (Intel Core 2 Duo, 2.53 GHz, 4 GB

memory) over Mac OS Snow Leopard. TriGen algorithm are

developed with Eclipse Helios IDE on Java language. The

computational cost of an experiment with 200 generations,

100 individuals in the initial population and 10 solutions

(these are the parameters used in the experiments presented

in this paper) is 27 seconds.

A. Results using Synthetic Data

The set of synthetic data has been generated using a

software application developed for such purpose. For this

particular work, we have simulated data from 5 different

time points and 10 conditions using microarrays contain-

ing 1000 genes. Each gene is assigned a random value

which is contained in the rank, respectively for each con-

dition, [1, 15], [7, 35], [60, 75], [0, 25), [30, 100], [71, 135],
[160, 375], [5, 30], [25, 40] y [10, 30]. In such data set, we

have allocated a tricluster with all its values fixed to 1.

The size of the tricluster is time = 5, genes = 8 and

conditions = 8. TriGen was able to successfully find a solu-

tion containing the aforementioned tricluster. The execution

was made with the following parameters: 100 generations

and 500 members in the population. The selection parameter

is 70% and the mutation probability is 5%. The weight

values have been adjusted to wg = 0.01, wc = 0.55 y

wt = 0.35, in order to favor the number of conditions and

time points, since the genes show high dimensionality in

relation to conditions and time.

B. Results using Real Data

We have applied the TriGen algorithm to the yeast (Sac-

charomyces Cerevisiae) cell cycle problem [15] as we did in

[9]. The yeast cell cycle analysis project’s goal is to identify

all genes whose mRNA levels are regulated by the cell cycle.

By applying TriGen to this dataset, we aim to find a pattern

on this cell cycle.

The data is available in http://genome-

www.stanford.edu/cellcycle/. In this experiment, 6179
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(b) time point 2
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(c) time point 3
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(d) time point 4
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(e) time point 5
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(f) time point 6
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(g) time point 12
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(h) time point 13

Figure 2: Gene expression values under two experiments at

time point 0 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 12 (g) and

13 (h).
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Figure 3: Gene expression values under eight time points at

pheromone (a) and cdc15 (b) experiments.
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Figure 4: Gene expression for eight time points under gene

solution set at pheromone (a) and cdc15 (b) experiments.

genes are analyzed under 6 conditions, termed cln3, clb2,

pheromone, cdc15, cdc28 and elutriation [15]. Samples were

taken at 2 time points for cln3, 2 for clb2, 18 for pheromone,

24 for cdc15, 17 for cdc28 and 14 for elutriation. As we

did in [9], to apply the TriGen algorithm we did not take

into account the conditions with only 2 time points, since
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they are not relevant for a time course experiment, so we

used the first 14th time points of the pheromone, cdc15,

cdc28 and elutriation experiment. Therefore our dataset

contains 14 time points, 6179 genes and 4 conditions.

The algorithm has been executed to extract 20 solutions,

i.e. 20 triclusters with the following parameters: 100

generations, 200 members in the population, 80% for

selection probability and 50% for mutation. The weights

applied have been wg = 0.0, wc = 0.2 y wt = 0.8, thus

we favored the condition dimension and penalized gene

dimension to get a reduced subset of genes on solution

triclusters. The distinction weights have been wdg = 1.0,

wdc = 0.0 y wdt = 0.0, thus we favor the distinction ratio

of the gene dimension, therefore solution triclusters cover

as much as possible the input data space on gene dimension

since it is the largest one.

For legibility reasons we focus in one of the solu-

tions, a tricluster gathering 36 genes under 2 experiments,

pheromone (experiment 0) and cdc15 (experiment 1) and 8

time points, instants 0, 2, 3, 4, 5, 6, 12 and 13.

We show three groups of graphics related to this solution:

In Figure 2 we present the outline of the gene expression

values (Y axis) for each solution gene point (X axis) com-

paring the pheromone (experiment 0) and cdc15 (experiment

1), experiments setting time points to instants 0 (a), 2 (b),

3 (c), 4 (d), 5 (e), 6 (f), 12 (g) and 13 (h). In Figure 3 we

present the outline of gene expression values (Y axis) for

each solution gene point (X axis) comparing 0, 2, 3, 4, 5, 6,

12 and 13 time points setting the experiments to pheromone

(a) and cdc15 (b). Finally in Figure 4 we present the outline

of gene expression values (Y axis) for each time point (X

axis) comparing each solution gene setting the experiments

to pheromone (a) and cdc15 (b).

In view of the results, we can say that in the levels

of expression of the genes for the pheromone and cdc15

experiments share a common behaviour at the indicated time

points. Regarding the results obtained in [9], we can see

that the changes on the TriGen algorithm have improved

the quality of the solutions in terms of pattern finding

and solution distribution over the input data. Generally, we

see that the algorithm has been capable to group together

genes with very similar gene expression values for the three

dimensions visited. Therefore, TriGen has shown its ability

to mine groups of co-expressed genes taking into account

the time dimension.

IV. CONCLUSIONS AND FUTURE WORK

We have presented the results obtained by applying the

tricluster algorithm TriGen to the yeast cell cycle problem.

TriGen represents an step further than clustering and bi-

clustering in the analysis of temporal microarray data since

it groups genes which exhibit a similar behavior under a

subset of conditions and under a subset of time points.

It is genetic based algorithm, with an evaluation function

developed as the natural 3D extension from the classic

function evaluation for biclustering proposed by Cheng y

Church in [12]. The results show that the algorithm is

capable to mine triclusters of genes based on their expression

levels. We have improved, as we have seen, the pattern

finding capability of the algorithm but it is still in an early

development stage, so there is still a lot of work to do,

not only for the algorithm, such as a deeper study of the

evaluation function or parallelization of the algorithm to

make it faster, but also for the validation phase or the

application of this algorithm for other types of data, such

as image analysis. Analyze the biological value of these

patterns and its possible applications is the next step in our

work and also included in the future work.
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