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Abstract

Deep Metric Learning (DML) is arguably one of

the most influential lines of research for learn-

ing visual similarities with many proposed ap-

proaches every year. Although the field benefits

from the rapid progress, the divergence in training

protocols, architectures, and parameter choices

make an unbiased comparison difficult. To pro-

vide a consistent reference point, we revisit the

most widely used DML objective functions and

conduct a study of the crucial parameter choices

as well as the commonly neglected mini-batch

sampling process. Under consistent comparison,

DML objectives show much higher saturation

than indicated by literature. Further based on

our analysis, we uncover a correlation between

the embedding space density and compression to

the generalization performance of DML models.

Exploiting these insights, we propose a simple,

yet effective, training regularization to reliably

boost the performance of ranking-based DML

models on various standard benchmark datasets.

Code and a publicly accessible WandB-repo

are available at https://github.com/Confusezius/

Revisiting Deep Metric Learning PyTorch.

1. Introduction

Learning visual similarity is important for a wide range of

vision tasks, such as image clustering (Bouchacourt et al.,

2018), face detection (Schroff et al., 2015) or image retrieval

(Wu et al., 2017). Measuring similarity requires learning

an embedding space which captures images and reasonably

reflects similarities using a defined distance metric. One

of the most adopted classes of algorithms for this task is
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Figure 1. Mean recall performance and standard deviation of vari-

ous DML objectives trained with (green) and without (orange) our

proposed regularization. For all benchmarks, see appendix.

Deep Metric Learning (DML) which leverages deep neural

networks to learn such a distance preserving embedding.

Due to the growing interest in DML, a large corpus of litera-

ture has been proposed contributing to its success. However,

as recent DML approaches explore more diverse research

directions such as architectures (Xuan et al., 2018; Jacob

et al., 2019), objectives functions (Wang et al., 2019b; Yuan

et al., 2019) and additional training tasks (Roth et al., 2019;

Lin et al., 2018), an unbiased comparison of their results

becomes more and more difficult. Further, undisclosed

technical details (s.a. data augmentations or training regu-

larization) pose a challenge to the reproducibility of such

methods, which is of great concern in the machine learn-

ing community in general (Bouthillier et al., 2019). One

goal of this work is to counteract this worrying trend by

providing a comprehensive comparison of important and

current DML baselines under identical training conditions

on standard benchmark datasets (Fig. 1). In addition, we

thoroughly review common design choices of DML models

which strongly influence generalization performance to al-

low for better comparability of current and future work.

On that basis, we extend our analysis to: (i) The process of

data sampling which is well-known to impact the DML op-

timization (Schroff et al., 2015). While previous works only

studied this process in the specific context of triplet min-

ing strategies for ranking-based objectives (Wu et al., 2017;

Harwood et al., 2017), we examine the model-agnostic case

of sampling informative mini-batches. (ii) The generaliza-

tion capabilities of DML models by analyzing the structure
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of their learned embedding spaces. While we are not able

to reliably link typically targeted concepts such as large

inter-class margins (Liu et al., 2017; Deng et al., 2018)

and intra-class variance (Lin et al., 2018) to generalization

performance, we uncover a strong correlation to the com-

pression of the learned representations. Lastly, based on this

observation, we propose a simple, yet effective, regulariza-

tion technique which effectively boosts the performance of

ranking-based approaches on standard benchmark datasets

as also demonstrated in Fig. 1. In summary, our most im-

portant contributions can be described as follows:

• We provide an exhaustive analysis of recent DML ob-

jective functions, their training strategies, the influence

of data-sampling, and model design choices to set a

standard benchmark. To this end, we will make our

code publicly available.

• We provide new insights into DML generalization by

analyzing its correlation to the embedding space com-

pression (as measured by its spectral decay), inter-class

margins and intra-class variance.

• Based on the result above, we propose a simple tech-

nique to regularize the embedding space compression

which we find to boost generalization performance of

ranking-based DML approaches.

This work is structured as follows: After reviewing related

work in §2, we discuss and motivate our analyzed compo-

nents of DML models and their training setup in §3. Finally

in §4 we present the findings of our study, analyze DML

generalization in §5 and close with a conclusion in §6.

2. Related Works

Deep Metric Learning: Deep Metric Learning (DML)

has become increasingly important for applications ranging

from image retrieval (Movshovitz-Attias et al., 2017; Roth

et al., 2019; Wu et al., 2017; Lin et al., 2018) to zero-shot

classification (Schroff et al., 2015; Sanakoyeu et al., 2019)

and face verification (Hu et al., 2014; Liu et al., 2017). Many

approaches use ranking-based objectives based on tuples of

samples such as pairs (Hadsell et al., 2006), triplets (Wu

et al., 2017; Yu et al., 2018), quadruplets(Chen et al., 2017)

or higher-order variants like N-Pairs(Sohn, 2016), lifted

structure losses (Oh Song et al., 2016; Yu et al., 2018) or

NCA-based criteria(Movshovitz-Attias et al., 2017). Fur-

ther, classification-based methods adjusted to DML (Deng

et al., 2018; Zhai & Wu, 2018) have proven to be effec-

tive for learning distance preserving embedding spaces. To

address the computational complexity of tuple-based meth-

ods1, different sampling strategies have been introduced

1As an example, the number of triplets scales with O(N3),
where N is the dataset size.

(Schroff et al., 2015; Wu et al., 2017; Ge, 2018; Roth et al.,

2020). Moreover, proxy-based approaches address this issue

by approximating class distributions using only few virtual

representatives (Movshovitz-Attias et al., 2017; Qian et al.,

2019).

Additionally, more involved research extending above ob-

jectives has been proposed: Sanakoyeu et al. (2019) follow

a divide-and-conquer strategy by splitting and subsequently

merging both the data and embedding space; Opitz et al.

(2018); Xuan et al. (2018) employ an ensemble of special-

ized learners and Roth et al. (2019); Milbich et al. (2020a;b)

combine DML with feature mining or self-supervised learn-

ing. Moreover, Lin et al. (2018) and Zheng et al. (2019)

generate artificial samples to effectively augment the train-

ing data, thus learning more complex ranking relations. The

majority of these methods are trained using the essential

objective functions and, further, hinge on the training param-

eters discussed in our study, thus directly benefiting from

our findings. Moreover, we propose an effective regulariza-

tion technique to improve ranking-based objectives.

Mini-batch selection: The benefits of large mini-batches

for training are well studied (Smith et al., 2017; Goyal et al.,

2017; Keskar et al., 2016). However, there has been limited

research examining effective strategies for the creation of

mini-batches. Research into mini-batch creation has been

done to improve convergence in optimization methods for

classification tasks(Mirzasoleiman et al., 2020; Johnson &

Guestrin, 2018) or to construct informative mini-batches us-

ing core-set selection to optimize generative models (Sinha

et al., 2019). Similarly, we analyze mining strategies maxi-

mizing data diversity and compare their impact to standard

heuristics employed in DML (Wu et al., 2017; Roth et al.,

2019; Sanakoyeu et al., 2019)).

Generalization in DML: Generalization capabilities of rep-

resentations (Achille & Soatto, 2016; Shwartz-Ziv & Tishby,

2017) and, in particular, of discriminative models has been

well studied (Jiang* et al., 2020; Belghazi et al., 2018; Goyal

et al., 2017), e.g. in the light of compression (Tishby &

Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017) which is

covered by strong experimental support (Goyal et al., 2019;

Belghazi et al., 2018; Alemi et al., 2016). Verma et al. (2018)

link compression to a ’flattening’ of a representation in the

context of classification. We apply this concept to analyze

generalization in DML and find that strong compression

actually hurts DML generalization. Existing works on gen-

eralization in metric learning focus on robustness of linear

or kernel-based distance metrics (Bellet & Habrard, 2015;

Bellet, 2013) and examine bounds on the generalization

error (Huai et al., 2019). In contrast, we examine the corre-

lation between generalization and structural characteristics

of the learned embedding space.
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3. Training a Deep Metric Learning Model

In this section, we briefly summarize key components for

training a DML model and motivate the main aspects of

our study. We first introduce the common categories of

training objectives which we consider for comparison in

Sec. 3.1. Next, in Sec. 3.2 we examine the data sampling

process and present strategies for sampling informative mini-

batches. Finally, in Sec. 3.3, we discuss components of a

DML model which impact its performance and exhibit an

increased divergence in the field, thus impairing objective

comparisons.

3.1. The objective function

In Deep Metric Learning we learn an embedding function

φ : X 7→ Φ ⊆ R
D mapping datapoints x ∈ X into an

embedding space Φ, which allows to measure the similar-

ity between xi, xj as dφ(xi, xj) := d(φ(xi), φ(xj)) with

d(., .) being a predefined distance function. For that, let

φ := φθ be a deep neural network parametrised by θ with

its output typically normalized to the real hypersphere S
D

for regularization purposes (Wu et al., 2017; Huai et al.,

2019). In order to train φθ to reflect the semantic similarity

defined by given labels y ∈ Y , many objective functions

have been proposed based on different concepts which we

now briefly summarize.

Ranking-based: The most popular family are ranking-

based loss functions operating on pairs (Hadsell et al., 2006),

triplets (Schroff et al., 2015; Wu et al., 2017) or larger sets

of datapoints (Sohn, 2016; Oh Song et al., 2016; Chen et al.,

2017; Wang et al., 2019b). Learning φθ is defined as an

ordering task, such that the distances dφ(xa, xp) between

an anchor xa and positive xp of the same class, ya = yp, is

minimized and the distances dφ(xa, xn) of to negative sam-

ples xn with different class labels, ya 6= yn, is maximized.

For example, triplet-based formulations typically optimize

their relative distances as long as a margin γ is violated, i.e.

as long as dφ(xa, xn)− dφ(xa, xp) < γ. Further, ranking-

based objectives are also extended to histogram matching,

as proposed in (Ustinova & Lempitsky, 2016).

Classification-based: As DML is essentially solving a dis-

criminative task, some approaches (Zhai & Wu, 2018; Deng

et al., 2018; Liu et al., 2017) can be derived from softmax-

logits li = WT
j φ(xi) + bj . For example, Deng et al. (2018)

exploit the regularization to the real hypersphere SD and the

equality WT
j xi =

∥

∥WT
j

∥

∥ ‖φ(xi)‖ cosϕj to maximize the

margin between classes by direct optimization over angles

ϕj . Further, also standard cross-entropy optimization proves

to be effective under normalization (Zhai & Wu, 2018).

Proxy-based: These methods approximate the distributions

for the full class by one (Movshovitz-Attias et al., 2017) or

more (Qian et al., 2019) learned representatives. By con-

sidering the class representatives for computing the training

loss, individual samples are directly compared to an entire

class. Additionally, proxy-based methods help to alleviate

the issue of tuple mining which is encountered in ranking-

based loss functions.

3.2. Data sampling

The synergy between tuple mining strategies and ranking

losses has been widely studied (Wu et al., 2017; Schroff

et al., 2015; Ge, 2018). To analyze the impact of data-

sampling on performance in the scope of our study, we

consider the process of mining informative mini-batches B.

This process is independent of the specific training objective

and so far has been commonly neglected in DML research.

Following we present batch mining strategies operating on

both labels and the data itself: label samplers, which are

sampling heuristics that follow selection rules based on label

information only, and embedded samplers, which operate on

data embeddings themselves to create batches B of diverse

data statistics.

Label Samplers: To control the class distribution within B,

we examine two different heuristics based on the number, n,

of ’Samples Per Class’ (SPC-n) heuristic:

SPC-2/4/8: Given batch-size b, we randomly select b/n
unique classes from which we select n samples randomly.

SPC-R: We randomly select b− 1 samples from the dataset

and choose the last sample to have the same label as one of

the other b− 1 samples to ensure that at least one triplet can

be mined from B. Thus, we effectively vary the number of

unique classes within mini-batches.

Embedded Samplers: Increasing the batch-size b has

proven to be beneficial for stabilizing optimization due to an

effectively larger data diversity and richer training informa-

tion (Mirzasoleiman et al., 2020; Brock et al., 2018; Sinha

et al., 2019). As the DML training is commonly performed

on a single GPU (limited especially due to tuple mining

process on the mini-batch), the batch-size b is bounded by

memory. Nevertheless, in order to ‘virtually’ maximize the

data diversity, we distill the information content of a large

set of samples B∗, b∗ = |B∗| > b into a mini-batch B by

matching the statistics of B and B∗ under the embedding

φ. To avoid computational overhead, we sample B∗ from a

continuously updated memory bank M of embedded train-

ing samples. Similar to Misra & van der Maaten (2019), M
is generated by iteratively updating its elements based on

the steady stream of training batches B. Using M, we mine

mini-batches by first randomly sampling B∗ from M with

b∗ = 1024 and subsequently find a mini-batch B to match

its data statistics by using one of the following criteria:

Greedy Coreset Distillation (GC): Greedy Coreset (Agar-

wal et al., 2005) finds a batch B by iteratively adding

samples x∗ ∈ B∗ which maximize the distance from

the samples that have already been selected x ∈ B,

thereby maximizing the covered space within Φ by solv-
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ing minB:|B|=b maxx∗∈B∗ minx∈B dφ(x, x
∗).

Matching of distance distributions (DDM): DDM aims to

preserve the distance distribution of B∗. We randomly se-

lect m candidate mini-batches and choose the batch B with

smallest Wasserstein distance between normalized distance

histograms of B and B∗ (Rubner et al., 2000).

FRD-Score Matching (FRD): Similar to the recent GAN

evaluation setting, we compute the frechet distance (Heusel

et al., 2017)) between B and B∗ to measure the simi-

larity between their distributions using FRD(B,B∗) =

‖µB − µB∗‖
2

2
+Tr(ΣB+ΣB∗−2(ΣBΣB∗)1/2), with µ•,Σ•

being the mean and covariance of the embedded set of sam-

ples. Like in DDM, we select the closest batch B to B∗

among m randomly sampled candidates.

3.3. Training parameters, regularization and

architecture

Network GN IBN R50

CUB200, R@1 45.41 48.78 43.77

CARS196, R@1 35.31 43.36 36.39

SOP, R@1 44.28 49.05 48.65

Table 1. Recall performance of commonly used network architec-

tures after ImageNet pretraining. Final linear layer is randomly

initialized and normalized.

Next to the objectives and data sampling process, success-

ful learning hinges on a reasonable choice of the training

environment. While there is a multitude of parameters to be

set, we identify several factors which both influence perfor-

mance and exhibit an divergence in lately proposed works.

Architectures: In recent DML literature predominantly three

basis network architectures are used: GoogLeNet (Szegedy

et al., 2015) (GN, typically with embedding dimensionality

512), Inception-BN (Ioffe & Szegedy, 2015) (IBN, 512)

and ResNet50 (He et al., 2016) (R50, 128) (with optionally

frozen Batch-Normalization layers for improved conver-

gence and stability across varying batch sizes2, see e.g. Roth

et al. (2019); Cakir et al. (2019)). Due to the varying number

of parameters and configuration of layers, each architecture

exhibits a different starting point for learning, based on its

initialization by ImageNet pretraining (Deng et al., 2009).

Table 1 compares their initial DML performance measured

in Recall@1 (R@1). The reference to differences in archi-

tecture is one of the main arguments used by individual

works not compare themselves to competing approaches.

Disconcertingly, even when reporting additional results us-

ing adjusted networks is feasible, typically only results using

a single architecture are reported. Consequently, a fair com-

parison between approaches is heavily impaired.

Weight Decay: Commonly, network optimization is regular-

2Note that Batch-Normalization is still performed, but no pa-
rameters are learned.

ized using weight decay/L2-regularization (Krogh & Hertz,

1992). In DML, particularly on small datasets its careful ad-

justment is crucial to maximize generalization performance.

Nevertheless, many works do not report this.

Embedding dimensionality: Choosing a dimensionality D
of the embedding space Φ influences the learned manifold

and consequently generalization performance. While each

architecture typically uses an individual, standardized di-

mensionality D in DML, recent works differ without re-

porting proper baselines using an adjusted dimensionality.

Again, comparison to existing works and the assessment of

the actual contribution is impaired.

Data Preprocessing: Preprocessing training images typi-

cally significantly influences both the learned features and

model regularization. Thus, as recent approaches vary in

their applied augmentation protocols, results are not nec-

essarily comparable. This includes the trend for increased

training and test image sizes.

Batchsize: Batchsize determines the nature of the gradient

updates to the network, e.g. datasets with many classes

benefit from large batchsizes due to better approximations

of the training distribution. However, it is commonly not

taken into account as a influential factor of variation.

Advanced DML methodologies There are many extensions

to objective functions, architectures and the training setup

discussed so far. However, although extensions are highly

individual, they still rely on these components and thus ben-

efit from findings in the following experiments, evaluations

and analysis.

4. Analyzing DML training strategies

Datasets As benchmarking datasets, we use:

CUB200-2011: Contains 11,788 images in 200 classes of

birds. Train/Test sets are made up of the first/last 100 classes

(5,864/5,924 images respectively) (Wah et al., 2011). Sam-

ples are distributed evenly across classes.

CARS196: Has 16,185 images/196 car classes with even

sample distribution. Train/Test sets use the first/last 98

classes (8054/8131 images) (Krause et al., 2013).

Stanford Online Products (SOP): Contains 120,053 prod-

uct images divided into 22,634 classes. Train/Test sets are

provided, contain 11,318 classes/59,551 images in the Train

and 11,316 classes/60,502 images in the Test set (Oh Song

et al., 2016). In SOP, unlike the other benchmarks, most

classes have few instances, leading to significantly different

data distribution compared to CUB200-2011 and CARS196.

4.1. Experimental Protocol

Our training protocol follows parts of Wu et al. (2017),

which utilize a ResNet50 architecture with frozen Batch-

Normalization layers and embedding dim. 128 to be com-

parable with already proposed results with this architec-
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Figure 2. Evaluation of DML pipeline parameters and architec-

tures on all benchmark datasets and their influence on relative

improvement across different training criteria.

ture. While both GoogLeNet (Szegedy et al., 2015) and

Inception-BN (Ioffe & Szegedy, 2015) are also often em-

ployed in DML literature, we choose ResNet50 due to its

success in recent state-of-the-art approaches (Roth et al.,

2019; Sanakoyeu et al., 2019). In line with standard prac-

tices we randomly resize and crop images to 224 × 224
for training and center crop to the same size for evaluation.

During training, random horizontal flipping (p = 0.5) is

used. Optimization is performed using Adam (Kingma &

Ba, 2015) with learning rate fixed to 10−5 and no learning

rate scheduling for unbiased comparison. Weight decay

is set to a constant value of 4 · 10−4, as motivated in sec-

tion 4.2. We implemented all models in PyTorch (Paszke

et al., 2017), and experiments are performed on individual

Nvidia Titan X, V100 and T4 GPUs with memory usage

limited to 12GB. Each training is run over 150 epochs for

CUB200-2011/CARS196 and 100 epochs for Stanford On-

line Products, if not stated otherwise. For batch sampling

we utilize the the SPC-2 strategy, as motivated in section

4.3. Finally, each result is averaged over multiple seeds to

avoid seed-based performance fluctuations. All loss-specific

hyperparameters are discussed in the supplementary mate-

rial, along with their original implementation details. For

our study, we examine the following evaluation metrics (de-

scribed further in the supplementary): Recall at 1 and 2

(Jegou et al., 2011), Normalized Mutual Information (NMI)

(Manning et al., 2010), F1 score (Sohn, 2016), mean aver-

age precision measured on recall of the number of samples

per class (mAP@C) and mean average precision measured

on the recall of 1000 samples (mAP@1000). Please see the

supplementary (supp. A.3) for more information.

4.2. Studying DML parameters and architectures

Now we study the influence of parameters & architectures

discussed in Sec. 3.3 using five different objectives. For

each experiment, all metrics noted in Sec. 4.1 are measured.

For each loss, every metric is normalized by the maximum

across the evaluated value range. This enables an aggregated

summary of performance across all metrics, where differ-

ences correspond to relative improvement. Fig. 2 analyzes

each factor by evaluating a range of potential setups with the

other parameters fixed to values from Sec. 4.1: Increasing

the batchsize generally improves results with gains varying

among criteria, with particularly high relevance on the SOP

dataset. For weight decay, we observe loss and dataset de-

pendent behavior up to a relative performance change of 5%.

Varying the data preprocessing protocol, e.g. augmentations

and input image size, leads to large performance differences

as well. Base follows our protocol described in Sec. 4.1.

Red. refers to resizing of the smallest image side to 256
and cropping to 224x224 with horizontal flipping. Big uses

Base but crops images to 256x256. Finally, we extend Base

to Adv. with color jittering, changes in brightness and hue.

We find that larger images provide better performance re-

gardless of objective or dataset. Using the Adv. processing

on the other hand is dependent on the dataset. Finally, we

show that random resized cropping is a generally stronger

operation than basic resizing and cropping.

All these factors underline the importance of a complete

declaration of the training protocol to facilitate reproducibil-

ity and comparability. Similar results are observed for the

choice of architecture and embedding dimensionality D. At

the example of R50, our analysis shows that training objec-

tives perform differently for a given D but seem to converge

at D = 512. However, for R50 D is typically fixed to

128, thus disadvantaging some training objectives over oth-

ers. Finally, comparing common DML architectures reveals

their strong impact on performance with varying variance

between loss functions. Highest consistencies seem to be

achievable with R50 and IBN-based setups.

Implications: In order to warrant unbiased comparability,

equal and transparent training protocols and model archi-

tectures are essential, as even small deviations can result in

large deviations in performance.

4.3. Batch sampling impacts DML training

We now analyze how the data sampling process for mini-

batches impacts the performance of DML models using the

sampling strategies presented in Sec. 3.2. To conduct an

unbiased study, we experiment with six conceptually differ-

ent objective functions: Marginloss with Distance-Weighted

Sampling, Triplet Loss with Random Sampling, ProxyNCA,

Multi-Similarity Loss, Histogram loss and Normalized Soft-

max loss. To aggregate our evaluation metrics (cf. 4.1),

we utilize the same normalization procedure discussed in

Sec. 4.2. Fig. 3 summarizes the results for each sampling

strategy by reporting the distributions of normalized scores

of all pairwise combinations of training loss and evaluation

metrics. Our analysis reveals that the batch sampling pro-

cess indeed effects DML training with a difference in mean

performance up to 1.5%. While there is no clear winner

across all datasets, we observe that the SPC-2 and FRD

samplers perform very well and, in particular, consistently
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(a) CUB200-2011 (b) CARS196 (c) SOP

Figure 3. Comparison of mini-batch mining strategies on three different datasets. Performance measures Recall@1 and 2, NMI, mAP and

F1 are normalized across metrics and loss function. We plot the distributions of relative performances for each strategy.

Figure 4. Metrics Correlation matrix for standard (Recall, NMI)

and underreported retrieval metrics. mAP denotes mAP@C. Please

refer to the supplementary for more information.

outperform the SPC-4 strategy which is commonly reported

to be used in literature (Wu et al., 2017; Schroff et al., 2015).

Implications: Our study indicates that DML benefits from

data diversity in mini-batches, independent of the chosen

training objective. This coincides with the general benefit

of larger batchsizes as noted in section 4.2. While complex

mining strategies may perform better, simple heuristics like

SPC-2 are sufficient.

4.4. Comparing DML models

Based on our training parameter and batch-sampling eval-

uations we compare a large selection of 14 different DML

objectives and 4 mining methods under fixed training condi-

tions (see 4.1 & 4.2), most of which claim state-of-the-art

by a notable margin. For ranking-based models, we employ

distance-based tuple mining (D) (Wu et al., 2017) which

proved most effective. We also include random, semihard

sampling (Schroff et al., 2015) and a soft version of hard

sampling (Roth & Brattoli, 2019) for our tuple mining study

using the classic triplet loss. Loss-specific hyperparame-

ters are determined via small cross-validation gridsearches

around originally proposed values to adjust for our training

setup. Exact parameters and method details are listed in

supp. A.1. Table 2 summarizes our evaluation results on all

benchmarks (with other metric rankings s.a. mAP@C or

mAP@1000 in the supplementary (supp. I)), while Fig. 4

measures correlations between all evaluation metrics. Par-

ticularly on CUB200-2011 and CARS196 we find a higher

performance saturation between methods as compared to

SOP due to strong differences in data distribution. Gen-

erally, performance between criteria is much more similar

than literature indicates, (see also concurrent work by Mus-

grave et al. (2020)). We find that representatives of ranking-

based objectives outperform their classification/NCE-based

counterparts, though not significantly. On average, margin

loss (Wu et al., 2017) and multisimilarity loss (Wang et al.,

2019a) offer the best performance across datasets, though

not by a notable margin. Remarkably, under our carefully

chosen training setting, a multitude of losses compete or

even outperform more involved state-of-the-art DML ap-

proaches on the SOP dataset. For a detailed comparison to

the state-of-the-art, we refer to the supplementary (supp. F).

Implications: Under the same setup, performance saturates

across methods, contrasting results reported in literature.

Taking into account standard deviations, usually left un-

reported, improvements become even less significant. In

addition, carefully trained baseline models are able to out-

perform state-of-the-art approaches which use considerable

stronger architectures. Thus, to evaluate the true benefit of

proposed contributions, baseline models need to be compet-

itive and implemented under comparable settings.

5. Generalization in Deep Metric Learning

The previous section showed how different model and train-

ing parameter choices result in vastly different performances.

However, how such differences can be explained best on

basis of the learned embedding space is an open question

and, for instance, studied under the concept of compres-

sion (Tishby & Zaslavsky, 2015). Recent work (Verma

et al., 2018) links compression to class-conditioned flatten-

ing of representation, indicated by an increased decay of

singular values obtained by Singular Value Decomposition

(SVD) on the data representations. Thus, class representa-

tions occupy a more compact volume, thereby reducing the

number of directions with significant variance. The subse-
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Benchmarks→ CUB200-2011 CARS196 SOP

Approaches ↓ R@1 NMI R@1 NMI R@1 NMI

Imagenet (Deng et al., 2009) 43.77 57.56 36.39 37.96 48.65 58.64

Angular (Wang et al., 2017) 62.10± 0.27 67.59± 0.26 78.00± 0.32 66.48± 0.44 73.22± 0.07 89.53± 0.01
ArcFace (Deng et al., 2018) 62.67± 0.67 67.66± 0.38 79.16± 0.97 66.99± 1.08 77.71± 0.15 90.09± 0.03
Contrastive (Hadsell et al., 2006) (D) 61.50± 0.17 66.45± 0.27 75.78± 0.39 64.04± 0.13 73.21± 0.04 89.78± 0.02
GenLifted (Hermans et al., 2017) 59.59± 0.60 65.63± 0.14 72.17± 0.38 63.75± 0.35 75.21± 0.12 89.84± 0.01
Hist. (Ustinova & Lempitsky, 2016) 60.55± 0.26 65.26± 0.23 76.47± 0.38 64.15± 0.36 71.30± 0.10 88.93± 0.02
Margin (D, β = 0.6) (Wu et al., 2017) 62.50± 0.24 67.02± 0.37 77.70± 0.32 65.29± 0.32 77.38± 0.11 90.45± 0.03
Margin (D, β = 1.2) (Wu et al., 2017) 63.09± 0.46 68.21± 0.33 79.86± 0.33 67.36± 0.34 78.43± 0.07 90.40± 0.03
Multisimilarity (Wang et al., 2019a) 62.80± 0.70 68.55± 0.38 81.68± 0.19 69.43± 0.38 77.99± 0.09 90.00± 0.02
Npair (Sohn, 2016) 61.63± 0.58 67.64± 0.37 77.48± 0.28 66.55± 0.19 75.86± 0.08 89.79± 0.03
Pnca (Movshovitz-Attias et al., 2017) 62.80± 0.48 66.93± 0.38 78.48± 0.58 65.76± 0.22 − −
Quadruplet (D) (Chen et al., 2017) 61.71± 0.63 66.60± 0.41 76.34± 0.27 64.79± 0.50 76.95± 0.10 90.14± 0.02
SNR (D) (Yuan et al., 2019) 62.88± 0.18 67.16± 0.25 78.69± 0.19 65.84± 0.52 77.61± 0.34 90.10± 0.08
SoftTriple (Qian et al., 2019) 60.83± 0.47 64.27± 0.36 75.66± 0.46 62.66± 0.16 − −
Softmax (Zhai & Wu, 2018) 61.66± 0.33 66.77± 0.36 78.91± 0.27 66.35± 0.30 76.92± 0.64 89.82± 0.15

Triplet (D) (Wu et al., 2017) 62.87± 0.35 67.53± 0.14 79.13± 0.27 65.90± 0.18 77.39± 0.15 90.06± 0.02
Triplet (H) (Roth & Brattoli, 2019) 61.61± 0.21 65.98± 0.41 77.60± 0.33 65.37± 0.26 73.50± 0.09 89.25± 0.03
Triplet (R) (Schroff et al., 2015) 58.48± 0.31 63.84± 0.30 70.63± 0.43 61.09± 0.27 67.86± 0.14 88.35± 0.04
Triplet (S) (Schroff et al., 2015) 60.09± 0.49 65.59± 0.29 72.51± 0.47 62.84± 0.41 73.61± 0.14 89.35± 0.02

R-Contrastive (D) 63.57± 0.66 67.63± 0.31 81.06± 0.41 67.27± 0.46 74.36± 0.11 89.94± 0.02
R-Margin (D, β = 0.6) 64.93± 0.42 68.36± 0.32 82.37± 0.13 68.66± 0.47 77.58± 0.11 90.42± 0.03
R-Margin (D, β = 1.2) 63.32± 0.33 67.91± 0.66 81.11± 0.49 67.72± 0.79 78.52± 0.10 90.33± 0.02
R-SNR (D) 62.97± 0.32 68.04± 0.34 80.38± 0.35 67.60± 0.20 77.69± 0.25 90.02± 0.06
R-Triplet (D) 63.28± 0.18 67.86± 0.51 81.17± 0.11 67.79± 0.23 77.33± 0.14 89.98± 0.04

Table 2. Comparison of Recall@1 and NMI performances for all objectives averaged over 5 runs. Each model is trained using the

same training setting over 150 epochs for CUB/CARS and 100 epochs for SOP. ’R-’ denotes model trained with ρ-regularization. Bold

denotes best results excluding regularization. Boldblue marks overall best results. Please note that a ranking on all other metrics (s.a.

mAP@C, mAP@1000) as well as a visual summary can be found in the supplementary (supp. I, supp. C)!

quent strong focus on the most discriminative directions is

shown to be beneficial for classic classification scenarios

with i.i.d. train and test distributions. However, this overly

discards features which could capture data characteristics

outside the training distribution. Hence, generalization in

transfer problems like DML is hindered due to the shift in

training and testing distribution (Bellet & Habrard, 2015).

We thus hypothesize that actually retaining a considerable

amount of directions of significant variance (DoV) is crucial

to learn a well generalizing embedding function φ.

To verify this assumption, we analyze the spectral decay

of the embedded training data ΦX := {φ(x)|x ∈ X} via

SVD. We then normalize the sorted spectrum of singular

values (SV) SΦX

3 and compute the KL-divergence to a

D-dim. discrete uniform distribution UD, i.e. ρ(Φ) =
KL(UD || SΦX

)4. We don’t consider individual training

class representations, as testing and training distribution are

shifted5. Lower values of ρ(Φ) indicate more directions

of significant variance. Using this measure, we analyze a

large selection of DML objectives in Fig. 5 (rightmost) on

3Excluding highest SV which can obfuscate remaining DoVs.
4For simplicity we use the notation ρ(Φ) instead of ρ(ΦX ).
5For completeness, class-conditioned singular value spectra as

Verma et al. (2018) are examined in supp. H.

CUB200-2011, CARS196 and SOP6. Comparing R@1 and

ρ(Φ) reveals significant inverse correlation (≤ −0.63) be-

tween generalization and the spectral decay of embedding

spaces Φ, which highlights the benefit of more directions of

variance in the presence of train-test distribution shifts.

We now compare our finding to commonly exploited

concepts for training such as (i) larger margins between

classes (Deng et al., 2018; Liu et al., 2017), i.e. an

increase in average inter-class distances πinter(Φ) =
1

Zinter

∑

yl,yk,l 6=k d(µ(Φyl
), µ(Φyk

)) ; (ii) explicitly introduc-

ing intra-class variance (Lin et al., 2018), which is indicated

by an increase in average intra-class distance πintra(Φ) =
1

Zintra

∑

yl∈Y

∑

φi,φj∈Φyl
,i 6=j d(φi, φj). We also investi-

gate (iii) their relation by using the ratio πratio(Φ) =
πintra(Φ)/πinter(Φ), which can be regarded as an embed-

ding space density. Here, Φyl
= {φi := φθ(xi)|xi ∈

X , yi = yl} denotes the set of embedded samples of a class

yl, µ(Φyl
) their mean embedding and Zinter, Zintra normaliza-

tion constants. Fig. 5 compares these measures with ρ(Φ).
It is evident that neither of the distance related measures

π•(Φ) consistently exhibits significant correlation with gen-

eralization performance when taking all three datasets into

6A detailed comparison can be found in supp. I.
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Figure 5. Correlation between generalization and structural prop-

erties derived from ΦX using different DML objectives on each

dataset. Left-to-Right: Mean intra-class distances πintra & inter-

class distances πinter, the ratio πintra/πinter and spectral decay ρ.

Figure 6. Toy example illustrating the effect of ρ-regularization.

(Leftmost) training and test data. (Mid-left) A small, normal-

ized two-layer fully-connected network trained with standard con-

trastive loss fails to separate all test classes due to excessive com-

pression of the learned embedding. (Mid-right) The regularized

embedding successfully separates the test classes by introducing

a lower spectral decay. (Rightmost) Singular value spectra of

training embeddings learned with and without regularization.

account. For CUB200-2011 and CARS196, we however

find that an increased embedding space density (πratio) is

linked to stronger generalisation. For SOP, its estimate is

likely too noisy due to the strong imbalance between dataset

size and amount of samples per class.

Implications: Generalization in DML exhibits strong in-

verse correlation to the SV spectrum decay of learned repre-

sentations, as well as a weaker correlation to the embedding

space density. This indicates that representation learning

under considerable shifts between training and testing dis-

tribution is hurt by excessive feature compression, but may

benefit from a more densely populated embedding space.

5.1. ρ-regularization for improved generalization

We now exploit our findings to propose a simple ρ-

regularization for ranking-based approaches by counteract-

ing the compression of representations. We randomly alter

tuples by switching negative samples xn with the positive

Figure 7. Sing. Value Spectrum for models trained with (red) and

without (blue) ρ-regularization for various ranking-based criteria.

xp in a given ranking-loss formulation (cf. Sec. 3.1) with

probability pswitch. This pushes samples of the same class

apart, enabling a DML model to capture extra non-label-

discriminative features while dampening the compression

induced by strong discriminative training signals.

Fig. 6 depicts a 2D toy example (details supp. G) illustrating

the effect of our proposed regularization while highlighting

the issue of overly compressed data representations. Even

though the training distribution exhibits features needed to

separate all test classes, these features are disregarded by

the strong discriminative training signal. Regularizing the

compression by attenuating the spectral decay ρ(Φ) enables

the model to capture more information and exhibit stronger

generalization to the unseen test classes. In addition, Fig. 7

verifies that the ρ-regularization also leads to a decreased

spectral decay on DML benchmark datasets, resulting in

improved recall performance (cf. Tab. 2 (bottom)), while

being reasonably robust to changes in pswitch (see supp. B).

In contrast, in the appendix we also see that encouraging

higher compression seems to be detrimental to performance.

Implications: Implicitly regularizing the number of direc-

tions of significant variance can improve generalization.

6. Conclusion

In this work, we counteract the worrying trend of diverging

training protocols in Deep Metric Learning (DML). We con-

duct a large, comprehensive study of important training com-

ponents and objectives in DML to contribute to improved

comparability of recent and future approaches. On this basis,

we study generalization in DML and uncover a strong corre-

lation to the level of compression and embedding density of

learned data representation. Our findings reveal that highly

compressed representations disregard helpful features for

capturing data characteristics that transfer to unknown test

distributions. To this end, we propose a simple technique

for ranking-based methods to regularize the compression

of the learned embedding space, which results in boosted

performance across all benchmark datasets.
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