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Revivals of quantum correlations have often been explained in terms of back-action on quantum systems by
their quantum environment(s). Here we consider a system of two independently evolving qubits, each locally
interacting with a classical random external field. The environments of the qubits are also independent, and there
is no back-action on the qubits. Nevertheless, entanglement, quantum discord, and classical correlations between
the two qubits may revive in this model. We explain the revivals in terms of correlations in a classical-quantum
state of the environments and the qubits. Although classical states cannot store entanglement on their own, they
can play a role in storing and reviving entanglement. It is important to know how the absence of back-action,
or modeling an environment as classical, affects the kind of system time evolutions one is able to describe. We
find a class of global time evolutions where back-action is absent and for which there is no loss of generality in
modeling the environment as classical. Finally, we show that the revivals can be connected with the increase of

a parameter used to quantify non-Markovianity of the single-qubit dynamics.

DOI: 10.1103/PhysRevA.85.032318

I. INTRODUCTION

Understanding the dynamics of correlations in quantum
systems is essential for quantum information and quantum
computation [1,2], and this has been thoroughly investigated
for quantum systems in quantum environments. In this paper
we look at the behavior of correlations for the case when
the environment is modeled as classical, and when the
environment is unaffected by the system dynamics. This
implies that there can be no back-action on the system via
the environment.

Sometimes only parts of the total correlations may be
relevant. In particular, one can characterize, via appropriate
quantifiers, the quantum and classical parts of the correlations
[3,4]. The quantum part of the correlations, quantified by
quantum discord, includes not only entanglement but also
correlations that may occur in separable states. For bipartite
open quantum systems in quantum environments, entangle-
ment may display phenomena such as sudden death, revivals,
and trapping [5-7]. Revivals of entanglement, after finite time
periods when it completely disappears, can be expected when
either direct two-qubit interactions [8,9] or indirect effective
interaction is present, as in the case of two qubits in a
common quantum reservoir [10]. This is because interactions
among quantum systems can create or destroy correlations, in
particular, quantum correlations. Revivals may also occur for
noninteracting qubits in independent quantum environments
and have then been related to the non-Markovian nature of the
environments [6,11]. Recently, attention has been moved to
the dynamics of correlations other than entanglement in the
presence of either Markovian [12] and non-Markovian [13,14]
quantum environments. A peculiar aspect of the dynamics of
these correlations is that even when total correlations behave in
a regular way, both classical correlations and quantum discord
may remain frozen for finite time intervals [15].

In the case of initially entangled noninteracting qubits
in independent non-Markovian quantum reservoirs, entan-
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glement revivals have been explained in terms of transfer
of correlations back and forth from the two-qubit system
to the various parts of the total system. This is due to
the back-action via the environment on the system, which
creates correlations between qubits and environments and
between the environments themselves. In this paper we will
refer to this kind of correlation as correlations induced by
back-action. In particular, correlations may build up between
the two independent quantum reservoirs [16—18], and this
phenomenon has been named sudden birth of entanglement
in reservoirs.

On the other hand, there are features that classical models
of quantum systems fail to capture. Similarly, one would
expect that if the quantum environment of a quantum system
is modeled as classical, for example, a classical light field
coupled to a quantized atom, then there might be qualities of
the dynamics that this model is unable to describe. Intuitively,
one might expect that since a classical environment should
not be able to store quantum correlations in the same way
as a quantum environment, the ability to describe revivals
of quantum correlations might be affected. Similarly, if the
environment has no back-action on the system, then it would
seem that this could also affect the correlation dynamics.
Nevertheless, revivals of quantum correlations can occur for
random classical telegraph noise [19]. It is clearly important to
know exactly what kinds of behavior of correlation dynamics
can be described when an environment is modeled as classical
instead of quantum, or when back-action on the system is not
present.

Existing work thus mostly concerns quantum systems in
quantum environments, and has explained revivals in terms of
back-action on the systems by their quantum environments,
and in terms of quantum correlations involving the quantum
environments. In this paper, we want to explain how and why
revivals of correlations, including quantum correlations, can
generally occur also if the environment is classical and when

©2012 American Physical Society
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no back-action is present. We illustrate our discussion with a
model characterized by the absence of correlations induced by
back-action, where the element of randomness is introduced
in a very simple way. The example we will consider is a pair
of independent qubits driven by single classical field modes
with random phase, where revivals of correlations do occur
both for entanglement, for the so-called quantum discord, and
for classical correlations.

We explain the revivals in terms of correlations in the
classical-quantum state of the environments and qubits. We
then discuss a class of global time evolutions for which
back-action on the system is absent. This certainly occurs
when the environment is unaffected by the system. We present
anecessary condition for this to be the case. If the environment
is initially in a classical state, this condition is also sufficient
for it to be unaffected by the system. The state of a quantum
environment may, however, change. Interestingly, for this
general class of time evolutions, modeling the environment
as classical results in no loss of generality. In other words,
any time evolution of the system that could be obtained by
coupling it to a quantum environment can also be obtained by
modeling the environment as classical. Finally, we associate
the revivals with the increase of a parameter that quantifies
non-Markovianity of the reduced dynamics of the qubit.

II. CORRELATION QUANTIFIERS

Given a state p, we adopt the definitions in Ref. [20]
to quantify total correlations 7'(p), quantum discord D(p),
entanglement E(p), and classical correlations C(p):

T(p) = S(pllmy) = S(w,) — S(p),

D(p) = S(plixp) = S(xp) — S(p),

E(p) = S(pllop),

C(p) = S(xpllmy,) = S(my,) — S(xp), (1)

where S(pl|lo) = —Tr(p log, o) — S(p) is the relative entropy,
S(p) = —Tr(plog, p) is the von Neumann entropy; m,, X,
and o, are, respectively, the product state, the classical state,
and the separable state closest to p, while 7, is the product
state closest to x,. These states are such that they minimize
the corresponding relative entropies. Note that entanglement
E cannot be expressed, in general, as a difference of state
entropies. The definition of discord D(p) followed here and
the original one [3] in general do not coincide, but do so for
Bell-diagonal states [20]. We observe that the maximization
procedure involved in the original definition of quantum
discord has been analytically solved only for certain classes
of quantum states, such as “X” states [21]. Our analysis will
be focused on the class of Bell-diagonal states, which is a
subclass of “X” states, so that known analytical results [20,22]
apply.

For two independent quantum systems each interacting
with its own local environment, so that neither direct nor
mediated interactions between the two quantum systems exist,
it is known that entanglement and total correlations cannot
exceed their initial values [23,24]. Using the definition of
T(p) in Eq. (1), the definition of the product state closest
to p and the “generalized H theorem” for dynamical maps
S(Ap||Ao) < S(pllo) [25], this property can be straightfor-
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wardly generalized to the case of an N-partite system where
each independent subsystem is locally affected by an arbitrary
completely positive map. We note that in contrast to this,
quantum discord can increase with respect to its initial value
under local operations [26].

III. MODEL

We consider a pair of noninteracting qubits each locally
coupled to a random external field whose characteristics are
unaffected by the qubit it is coupled to. This implies that
back-action on the dynamics of the qubits is absent. The aim is
to give a clear example of how revivals of quantum correlations
may occur even without back-action. Each environment is a
classical field mode with amplitude fixed and equal for both
qubits. The phase of each mode is not determined and is equal
either to zero or to 7 with probability p = 1/2 (the case when
p1 # 1/2 shall be treated in Sec. V). This model describes a
special case of two qubits, each subject to a phase noisy laser
[27,28] but where the phase can take only two values, and with
the diffusion coefficient in the master equation equal to zero.
This model has in common with the one considered in Ref. [19]
that the environments are unaffected by the system of interest.
However, here the element of randomness is introduced in
the phase which can assume only two possible values with
assigned and fixed probabilities without switching between
them. In Ref. [19] qubits are subject to random telegraph noise,
where instead it is the coupling that switches between two
values during the evolution.

For the case we are considering, the dynamical map for
the single qubit S = A,B is of the random external fields
type [8,25] and can be written as

1 ,
As(t,0)ps5(0) = 5 3 UP0psOU; @), )
i=1

where U’(t) = e~"/" is the time evolution operator with
H; = ihg(o,e % — o_e'®), and the factor 1/2 arises from
the equal field-phase probabilities of the model (more in
general, there is a probability pis associated to Uis). Each
Hamiltonian H; is expressed in the rotating frame at the
qubit-field resonant frequency w. In the basis {|1),]0)}, the
time evolution operators Uis(t) have the matrix form

e~'% sin(gt)
cos(gt)

S cos(gt)
Up(t) = (—eid)f sin(g?)

where i = 1,2 with ¢; =0 and ¢, = 7.

This simple model is depicted in Fig. 1, where the two local
environments are realized by two single classical field modes
of the same frequency and amplitude, but each passing across a
random dephaser such that the phase of the field at the location
of each qubit is either zero or m, with probability p = 1/2.
The interaction between each qubit and its local field mode
is assumed to be strong enough so that, for sufficiently long
times, the dissipation effects of the vacuum radiation modes on
the qubit dynamics can be neglected. The dynamics is cyclic,
as evinced from the fact that the unitary matrix of Eq. (3)
(for each i = 1,2) becomes the identity for times ¢t = kw/g
(k =0,1,2,...). The same initial state is thus retrieved at

3)
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FIG. 1. (Color online) Sketch of the physical system. The two
qubits are initially entangled. Each random dephaser (RD) is such
that the field phase at the location of each qubit is either zero or &
with equal probability, p = 1/2, corresponding to either E5 or ES
(S =A,B).

these times. If one takes into account dissipation effects on
the system, the dynamics would not be cyclic anymore, but it
is expected that for weak enough dissipation the qualitative
behavior of the dynamics would remain the same until a
characteristic time. This could be feasible by considering
as qubits two atoms placed in separated zero-temperature
cavities. Each atom is subject to a resonant interaction with a
laser with a random phase but out of resonance with respect
to the characteristic cavity frequencies in order to slow down
spontaneous emission.

The global dynamical map A applied to an initial state
p(0) of the bipartite system, p(¢) = A(#,0)p(0), is again of the
random external fields type, that is,

1 2
p() =7 Y UrOUL0pOU OUT 0. @)

ij=1

We now show that the map A moves inside the class of Bell-
diagonal states (or states with maximally mixed marginals
[22]). We first introduce the notation |14+) = (|01) £ |10))/\/§
for the one-excitation Bell states and |2+.) = (]00) £ |11))/ V2
for the two-excitation Bell states. By using Egs. (3) and (4),
we find that the map acts on single Bell states as

A@0)iz)(ix] = [1 — fFONix) el + fFOLEL L] (S)

where i,i’ = 1,2 with i # i’ and f(t) = sin’(2gt)/2, so that
mixtures of the states 1) (J]1-)) and |2_) (|2,)) are mapped
onto different mixtures of the same states. It immediately
follows that the map A moves inside the class of Bell-diagonal
states, with a generic initial Bell-diagonal state written as

p0) =D A O)is)(il, (=12 s =) (6)

It is worth noting that the diagonal-Bell states in Eq. (6)
include the well-known Werner states [11] and that p(0) is
entangled if the largest A7(0) is greater than 1/2 [20]. The
action of the map (4) on p(0) thus gives another Bell-diagonal
state p(¢) with time-dependent coefficients

MO =250 = FOI+ AT O f @) G #iD. (D)

It can be shown that, forall ¢ > 0, the largest A7 (¢) is always the
same, while, depending on the initial values of the coefficients,
there are switching times after which the second largest A} (¢)
changes. Moreover, since the function f(¢) is periodic, there
will be repeated switching times during the dynamics. The
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restriction of the dynamical map of Eq. (4) to the class
of Bell-diagonal states and the order between the Aj(z) is
crucial to construct the classical, separable, and product states
closest to p(¢) and thus to analytically calculate the correlation
quantifiers in Eq. (1) [20]. In particular, the closest product
states do not evolve (7, = Amy = mp) and are all equal to the
normalized 4 x 4 identity I /4, while the classical state closest
to p(¢) is equal to the evolved classical state closest to p(0),
that is, X, = Xap©) = AXp©)- These properties permit us,
by using the generalized H theorem, to show that

Dlp()] = S(p®ll xpwr)) < SO xp0) = Dp(0)],
Clo®] = Spwllmy,,) < SWPO)mp0) = Clp0)].

Therefore, under the map of Eq. (4), not only entanglement
but also discord and classical correlations cannot exceed their
initial values during the dynamics.

IV. DYNAMICS OF CORRELATIONS FOR EQUAL
FIELD-PHASE PROBABILITIES

We are now able to analyze the evolution of the relevant
quantifiers of correlations under the map of Eq. (4) for different
choices of p(0). One finds a rich variety of behaviors of the
quantifiers. In particular, Fig. 2 shows the time evolutions of
T, D, and C starting from a Bell-diagonal state consisting
of only the two Bell states |1.), with XT(O) =09, A, (0) =
0.1. This is a case for which switching times for the time-
dependent coefficients A5 (f) and A (¢) exist. In this case the
dynamics of correlations is such that, while total correlations
oscillate, either classical correlations or discord are frozen
during alternating finite time periods. When discord is frozen,
classical correlations are oscillating, and vice versa. This kind
of behavior has already been found in the case of two qubits
locally subject to nondissipative channels [15]. This may thus
be taken to signify that such peculiar behavior of both quantum
and classical correlations is a general result not connected to
specific systems and interactions.

Figure 3 displays the dynamics of entanglement E starting
from the same initial Bell-diagonal state as before. Again,

0.5

0.0

0 Hh=n/4 72
ot

=374 n

FIG. 2. (Color online) Dynamics of discord D (blue solid line),
classical correlations C (red dashed line), and total correlations T
(green dotted line) for an initial Bell-diagonal state with A} (0) =
0.9, 27 (0) = 0.1, and A5 (0) = A (0) = 0. Total correlations oscillate
regularly, while transitions between decay and rise of quantum and
classical correlations occur periodically.
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FIG. 3. (Color online) Dynamics of entanglement E (orange solid
line) and discord D (blue dashed line) for an initial Bell-diagonal state
with the same coefficients as in Fig. 2. D vanishes only at given times
t,=02n—1)m/(4g) n=1,2,...), while E disappears for finite
time intervals. The quantifier of non-Markovianity ZZ(¢)/10 (green
dotted line) is also plotted, showing its increase in correspondence
with the revival of correlations.

collapses and revivals of entanglement occur, as is known
to happen for quantum non-Markovian environments such as
amplitude damping channels [6]. In our case, the occurrence of
revivals is clearly connected to the cyclical nature of the total
dynamics. We note that in the presence of small dissipation,
the same qualitative behavior of correlations is expected, that
is, partial revivals should still occur when the dissipation
effects are weak enough. We also note that the occurrence of
entanglement revivals is not in conflict with the fact that the two
qubits are subject to local independent environments. Indeed,
while entanglement must be constant if the local actions are
unitary, in the general case for nonunitary dynamics (as in
our model), the only constraint (already mentioned above) is
that the entanglement cannot exceed its initial value during
the dynamics. This is not in conflict with the fact that, for
example, entanglement goes to zero and then revives up to the
initial value.

It should be pointed out that the above revivals of quantum
correlations, as characterized by entanglement and discord,
occur without transfer of correlations induced by back-
action from system to environment. The absence of back-
action implies that the initial two-qubit correlations cannot
be “temporarily stored” as correlations entirely within the
environments. This differs from a common point of view where
revivals are interpreted in terms of transfer of correlations
induced by back-action that correlates the independent non-
Markovian environments, which in turn again recorrelates the
qubits [16—18]. In our example this mechanism is absent.

V. DYNAMICS OF CORRELATIONS FOR DIFFERENT
FIELD-PHASE PROBABILITIES

The above results are obtained in the case when the phase of
each field is zero or & with equal probability distributions for
both the subsystems (p; = p3 = 1/2, S = A, B). Extending

PHYSICAL REVIEW A 85, 032318 (2012)

the map of Eq. (4) to the case when p§ =1 — p5 # 1/2, it
becomes

2
A@0)p©) = Y ppf UL UL 0pOU U 1) 9)
ij=1
This map, applied to an arbitrary Bell-diagonal state of Eq. (6),

in the standard computational basis B = {|1) = |11),]2) =
[10),|3) = |01),]4) = |00)}, gives the state at time ¢

at)  b() c(t) d(t)
b(r)y 3—a(t) e) —c()
cty et) t—a@) -b@) |’
dit) —c@) —b(t) a(t)

p(t) = (10)

where

a(t) = [1 —2{(0) = A7 (0)1/2 — [F(1) — GOI(p)I f (1),
b(t) = [F()) — pfG() — pf L(V)] sin(4gt)/4,

c(t) = [F) — pPG() — pfL(0) ] sin(4gt) /4,

d(t) = [FO\) — I(p)LIf (1) — 15 /2,

e(r) = d(t) + [1 — 227(0) — 23 (0)]/2,

with F(A) =1 —2A7(0) — A7(0) — A5 (0)/2, G(A)=1-
215(0) = A3(0), L) = 1 = 2[4 (0) + A7 ()L 1(p) = pit +
pB —2pfpB, and f(t) = sin?(2g1)/2, as before. The density
matrix p(¢) above is not Bell-diagonal in the basis B [22],
but it is straightforward to show that it has maximally mixed
marginals, Trgp(t) = Trap(t) = 1/2, just like Bell-diagonal
states. In fact, it is known that any two-qubit state with
maximally mixed marginals always can be reduced, up to
local unitary equivalence, to a state which is Bell-diagonal
in some other basis [22,29]. Since local unitary operations
do not affect the correlation quantifiers [4], we can use the
expressions of Eq. (1) to study the dynamics in terms of the
eigenvalues of p(t), analogously to what was done above for
the case plS = 1/2. Notice that, as a consequence, classical
correlations can be obtained by C = T — D, a relation valid
only for Bell-diagonal states [20].

For the sake of simplicity we limit the present analysis to the
case when pf! = pB = p,, because the other cases pi' # p?&
result in only quantitative but not qualitative differences in the
time behavior of the correlation quantifiers. We are able to plot
total correlations T'[p(¢)], discord D[p(¢)], and entanglement
E[p(1)] as functions of gt by choosing suitable values of the
initial coefficients A7(0) and diagonalizing the state 5(¢) for
some values of p; at different values of 7. In Fig. 4 we display
the plots for the same initial Bell-diagonal state as was chosen
for the case pf = 1/2 (that is, AT(O) =1-2,(0)=0.9 and
)\f(O) = 0). It is seen that the amplitudes of oscillation for all
the correlation quantifiers tend to decrease when p; moves
from 1/2 (the behavior is symmetric with respect to 1/2),
with the quantifiers remaining closer to their initial values. In
particular, quantum discord and entanglement do not vanish
anymore. This behavior is expected, because changing p,
cannot affect the presence or the frequency of oscillations,
as is clear from the cyclic behavior of the dynamics due
to Egs. (3) and (9). Moreover, when the limiting case is
considered where each local field becomes fully deterministic
(pf = 0,1), the two-qubit evolution is a tensor product of

(1)
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FIG. 4. (Color online) Dynamics of correlation quantifiers T
(dashed lines, panel a), D (solid lines, panel a), and E (panel b)
for an initial Bell-diagonal state with the same coefficients as in
Fig. 2 and for values of p; =1 — p, from bottom to top equal to
0.2 (orange line), 0.08 (red line), and 0.025 (blue line). Discord D is
almost constant for p; = 0.025.

local unitary evolutions on each qubit [see Eq. (9)], both when
pf‘ = pf (fields in phase) and when pf‘ =1- plB (fields with
opposite phase). In this case all correlation quantifiers are, as
is known [4], constant in time and equal to their initial value.
The only possible behavior for correlation quantifiers when p,
goes to 0 (or 1) is thus a reduction of the oscillation amplitude
toward their initial value.

These findings show how the most relevant case for
our purposes is the case when pls = pg = 1/2, when both
entanglement and discord vanish and revivals occur.

VI. CORRELATIONS IN A CLASSICAL QUANTUM STATE

We have shown that quantum correlations can revive also
for a classical environment, and without back-action. To look
more closely at this, let us consider a so-called classical-
quantum state of the two qubits labeled A and B, and the
classical environments labeled a and b. This state is initially
given by

i=1

2 2
poE0) = pGPO)® Y pili)iE (i1 ® Y pil el (12)
j=1

where p5” is the quantum state of the two qubits, and |1)%
and |2)% are two “classical” basis states that environment
a can take, and |l>bE and |2)bE are classical basis states of
environment b. The classical environments can only be in
separable mixtures of their basis states; in our case, p; =

PHYSICAL REVIEW A 85, 032318 (2012)

p> = 1/2. The single-qubit map on qubit A is now equivalent
to applying a unitary transform

2
U ) =Y UMW) ® i) il (13)

i=l

to qubit A and its environment a, where U/ is defined in Eq. (2)
for § = A, and tracing over the environment. The environment
acts as a “control system” for what unitary operation is applied
to the qubit. The map UB’(t) for qubit B is constructed
analogously. During time evolution according to U4¢ and
UB?, the states of the classical environments do not change.
The qubits obviously do not affect their environments, and
back-action by the environments on the qubits is clearly not
present. The two-qubit map in Eq. (4) can be obtained by
applying U4%(¢) ® UB%(¢) to both qubits and environments,
and tracing over the latter.

We can now quantify the correlations in the classical-
quantum system exactly as for a quantum-only system, using
the definitions in Eq. (1). Since the subsystems Aa and Bb
both evolve under local unitary operations, the quantum and
classical correlations between Aa and Bb are obviously con-
stant. If we trace over the environments, then the correlations
that remain between A and B were found to oscillate. If we
trace over the qubits A and B, then the environments a and b
remain completely uncorrelated throughout the evolution.

If we look at the qubit-environment state Aa, “entangle-
ment” arises neither within this state, nor in Bb. Interestingly,
“quantum discord” may arise in the classical-quantum state
Aa, and in Bb, however, one easily realizes that the presence
of “quantum discord” is not necessary for the revival of
quantum correlations between the two qubits." The classical
environments cannot store any quantum correlations on their
own, and they do not become entangled with their respective
quantum systems. But through the classical record they keep
memory of what unitary operation has been applied to the
qubits, and they can obviously nevertheless play a vital
role in reviving the quantum correlations, particularly the
entanglement, that was initially present in quantum systems
A and B. This remains the case, even without back-action.
Although the environments can hold information about the
quantum systems, it may be somewhat misleading to talk about
“information flow from the system(s) to the environment(s)”
or “information backflow from the environment(s) to the
system(s).” This is because the information an environment
holds about a system is due to what action the environment
has on the system, and not the other way around.

After this explanation, it may seem trivial that classical
environments can store quantum correlations in the sense that
the state Aa — Bb can be entangled, but the state A — B when
the classical environments are traced out is less entangled or
even separable. This fact has nevertheless been overlooked
when explaining the mechanisms for revivals of quantum
correlations. Although in our case the environments are clas-
sical, quantum correlations in the system can obviously revive
when there is no back-action also for quantum environments.

'"We have enclosed “entanglement” and “quantum discord” in
quotes, since the environment is really a classical state.
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The considerations above can also easily be generalized to
an arbitrary number of dimensions for both systems and
environments.

VII. A CLASS OF GLOBAL TIME EVOLUTIONS GIVING
NO BACK-ACTION

It is now clear that classical and quantum correlations
may revive even when environments are modeled as classical,
and for no back-action, and why this happens. There is no
back-action when the system does not affect itself via the
environment. This must be the case when the environment
dynamics is unaffected by the system. We will now discuss
a class of global (system-environment) evolutions where
back-action is absent. We show that for this class of time
evolutions, any reduced dynamics of the system that can be
obtained with a quantum environment can also be obtained
with a classical environment.

‘We consider time evolutions (in the finite-dimensional case)
described by completely positive (CP) maps [1]. Such time
evolution of a quantum system S can be described as a unitary
transform acting on § and some environment E, followed by
tracing over E. This will yield a CP map for the time evolution
of S:

ps(t) = Tre[U(1)ps(0) @ pe(0)U T (1)]
=" Apo(OALD). (14)
k

Here A;(¢) are the Kraus operators for the CP map, satisfying
>k A,Tc(t)Ak(t) = 1Ig, and pg(0) is some initial state of the
environment. (Given a CP map, we can construct U(¢) so that
pe(0) = 10)££(0].)

The unitary transformation U (¢) will in general also affect
the state of the environment so that not all completely positive
maps on a quantum system can be described through unitary
evolution of the system plus an unchanged environment. De-
note the basis states for S and E by |i)s and | j) g, respectively.
We also assume that a classical environment could be prepared
in any mixture of its basis states, and a quantum environment
in any linear superposition of these states. We moreover let
the environment undergo an assigned evolution Ug(t) which
is unaffected by the system, meaning that its evolution is just

pe(t)=U E(t),oE(O)UE(t). One realizes that the condition
s(ilg(leg(t)U(t)U)E|k)s = O unless j =1 (15)

is necessary for the state of the environment to be unaffected
by the system. It is also possible to show that this condition is
sufficient for the environment not to be affected by the system,
provided that it is initially prepared in a classical mixture of
the chosen basis states. This can be shown by looking at pg(¢)
and, using the condition in Eq. (15.)’ requiring that it satisfies
the equality pg(t) = UE(t),oE(O)U;(t). If Eq. (15) is satisfied,
then U (¢) must be of the form

U = U0 ® Us0)lj)exil, (16)

J

where U_f ®) = g(JjIU } (1)U (¢)|j) g are arbitrary unitary trans-
forms on the system. The time evolution of the quantum system
can therefore be described by the random application of unitary
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transformations,

ps) =Y pUS0)psOU}", (17)
J

where the time-independent probabilities p; are determined by
the initial state of the environment. This state can be chosen as
aquantum state |)g = > i NPili)E, but the “classical” state
PE = Z]- pjliYee(jl will yield exactly the same CP map for
the system. Importantly, therefore, if the global time evolution
has the form of Eq. (16), there is no loss of generality in
modeling the environment as classical. It is worth noticing
that the map acting on the system given in Eq. (17) is exactly
of the “random external fields” type. The map considered in
our physical model in Sec. III is of this form.

We remark that if the environment is in a quantum
superposition state of the relevant basis states, then the
reduced state of the environment can be affected by the
system, since in this case the system and environment may
become entangled. More specifically, diagonal elements of
the environment-reduced density matrix evolve unaffected by
the system, according to Ug(¢) only. Nondiagonal elements,
however, including their absolute values, can be affected
by the system dynamics. Nevertheless, this behavior in the
environment-reduced density matrix has no effect on the
reduced dynamics of the system.

VIII. REVIVALS AND NON-MARKOVIANITY

It is appealing to interpret the revival of correlations
by referring to intrinsic characteristics of two-qubit system
evolution itself. Revival of correlations can be connected to
the degree of non-Markovianity of the map, which effectively
is the memory that the state of the system has of the
correlations it owned in the past. In our model of the two-qubit
dynamics, negative rates in the corresponding single-qubit
master equation appear, as occurs, e.g., for a phase noisy
laser [28], of which our model is a special case. Negative rates
typically indicate non-Markovianity of the map [30]. Both the
single-qubit and the two-qubit time evolution in our model is
thus non-Markovian. In particular, in Fig. 3 we see that the
state p(t;) at t; = w/4g has both zero entanglement and zero
discord. Nevertheless, both entanglement and discord subse-
quently revive. If we take the intermediate state p(#) as the
initial state, then since correlations cannot exceed their initial
values as shown by Eq. (8), this state remains nonentangled and
has zero discord. Therefore, A(z,t1)p(t1) # A(t,t0)p(t)) where
o(t)) = A(t1,10)p(2p). Our map does not satisfy the Markovian
composition law A(t,ty) = A(t,t1)A(t1,1p) for completely
positive maps [25], where A(#,,t,) has been defined in Eq. (4).
This means that the time evolution from the intermediate state
p(t;) onward is not a CP evolution.

One can render the association between revival of cor-
relations and the non-Markovianity of the time evolution
quantitatively as follows. We generalize the quantifier of
non-Markovianity introduced in Ref. [31], which is based
on the increase of entanglement between the system and an
isolated ancilla, to the time-dependent form

IE(;)=/ dElpas)] dt’ — AE(), (18)

dt’
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where E is defined in Eq. (1) and AE(t) = E(¢t) — E(t)), with
to < t. Equation (18) can be applied to the single-qubit map
(2) in our model by initially preparing qubit B (system) and
another qubit A (ancilla) in a maximally entangled state, for
example, pap(0) = |24)(24|. The evolved state is then given
by pag(t) = cos?(gt)|24) (24| + sin’(gt)|1_)(1_|, while the
closest separable state o,,,:) = %[|2+)(2+| 4+ [1)(1_]] is
time independent. We find that Z£(¢) monotonically increases
in the same time regions when revivals of entanglement and
quantum discord occur, as shown in Fig. 3. As a consequence of
this behavior, ZZ (t) would increase to infinity in the ideal case
of zero dissipation. In a more realistic scenario, the periodic
behavior of various quantifiers will be limited to a small
number of periods, and Z(¢) will increase until dissipation
destroys the revival of correlations.

The entanglement in Eq. (18) is that between a single-
qubit subject to some single-qubit time evolution, and an
ancilla qubit which does not evolve. One can also define a
corresponding quantifier for which the ancilla qubit is also
subject the same single-qubit time evolution as the first qubit.
The entanglement in this quantifier would then correspond
exactly to that between the two qubits in our model, as plotted
in Fig. 3. This makes the connection between the revival of
two-qubit system correlations and the non-Markovianity.

IX. CONCLUSIONS

We have considered a simple model where random external
classical fields act locally on two independent qubits. We
found that collapses and revivals of entanglement between the
qubits, as well as decreases and increases of quantum discord
and classical correlations, occur even when the environment
is unaffected by the system qubits. This is in contrast to the
common interpretation that revival of correlations is caused by
transfer of back-action-induced correlations between system
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and environment [16,18]. In terms of correlations in a classical-
quantum state, we have explained why quantum correlations
can revive also for classical independent environments on
which back-action is not present. We have shown that the
increase of correlations in our system can be connected with
the increase of a parameter used to quantify non-Markovianity
of the dynamics of the individual qubits. If randomness would
be introduced in the amplitude instead of in the phase, as
considered in this paper, one may expect that revivals of
correlations should also occur.

Furthermore, we have discussed a class of global time
evolutions for which back-action is absent, even if the reduced
dynamics of the environment can be affected by the system.
We have shown that for this class of time evolutions, any
system dynamics obtained with a quantum environment can
also be obtained by modeling the environment as classical.
This global time evolution results in a reduced dynamics for the
system precisely of the form that arises from random external
fields. Suppose that a quantum system plus its environment
undergo unitary evolution, so that there is no additional
environment. It is natural to think of a classical environment
as a “macroscopic” system that should not be significantly
affected by the “microscopic” quantum system it interacts
with. Interestingly, what we found means that conversely, if
a quantum system either does not affect its environment or
influences the latter in a way that does not result in back-action,
then there is no loss of generality in modeling the environment
as classical, as far as the possible time evolutions of the system
are concerned.
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