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Motivation

Availability & Reliability increasingly important

Frequency ↑, Feature Size ↓ ⇒ Errors ↑

Complexity ↑ Verification Cost ↑ ⇒ Errors ↑Complexity ↑, Verification Cost ↑ ⇒ Errors ↑

Multiprocessors  ⇒ Errors ↑

Global software-only recovery too slow

Can hardware help?Can hardware help?
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Motivation

Cost vs. Performance vs. Availability

Low Cost
– Simple changes to a few key componentsSimple changes to a few key components

Low Performance Overhead
– Handle frequent operations in hardware

High Availability
– Fast recovery from a wide class of errors
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Contribution: New Scheme

Low Cost
– HW changes only to directory controllers

– Memory overhead only 12.5% (with 7+1 parity)

Low Performance Overhead
– Only 6% performance overhead on average– Only 6% performance overhead on average

High Availability
– Recovery from: system-wide transients, loss of one node

– Availability better than 99.999% (assuming 1 error/ day)
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Overview of ReVive

Entire main memory protected by distributed parity
– Like RAID-5, but in memory

Periodically establish a checkpointod c y s b s c c po
– Main memory is the checkpoint state

Writ b k dirt d t fr h pr r t t– Write-back dirty data from caches, save processor context

Save overwritten data to enable restoring checkpoint
– When program execution modifies memory for 1st time
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Distributed N+1 Parity
Node 0 Node 1 Node N

Parity Data DataParity Group

. . .Distributed to
minimize contention

Allocation Granularity: page

dUpdate Granularity: cache line
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Distributed Parity Update in HW
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ReVive: Checkpoint Creation Timeline

Checkpoint (<1ms for 2MB L2) Execute (100 ms)

<5μs ~400μs/MB<1μs ~20μs
P0

P1

Time
P2

P3

Write-Back
Save CPU 

Timer 
Interrupt Sync

P3
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Logging in HW
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Log Filtering

Add L bit to directory entry of each liney y
– Clear all L bits on each checkpoint

Set when logged– Set when logged

– Do not log if already set

Not needed for correctness
– Can be only in directory cache

– Can be completely omitted
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Classes of Recoverable Errors

CPU

Caches

Dir Ctrl
Revive Hardware

Mem Ctrl

DRAM

Net Ctrl Interconnection
Network

DRAM

(Trans + perm) errors in 1 node
Can recover fromModule
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Permanent Node Loss: Recovery

Unavailable (~840ms) Degraded

Detection Repair Log Repair DataExecute
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Evaluation Setup

Splash-2 benchmarksp

16 superscalar processors (6-issue at 1GHz)

16kB L1 cache, 512kB L2 cache

2-D torus network, virtual cut-through routing, g g

100MHz DDR SDRAM

Using 7+1 distributed parity

Checkpoint interval: 10ms and infinite
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Performance Overhead
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Worst-Case Recovery Time
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Network Traffic
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Memory Traffic
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Related Work

Device- or problem-specific schemesp p
– DIVA, Redundant Multithreading, Slipstream, ECC, etc.

ReVive can handle errors that escape these schemes– ReVive can handle errors that escape these schemes,
improving overall availability at low additional cost

Other system recovery schemesOther system-recovery schemes
– Plank et al. - N+1 parity in software

– Masubuchi et al. - logging with bus-snooper

– SafetyNet
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Related Work: SafetyNet

Types of recoverable errors
– ReVive: Permanent (loss of a node)+Transient

– SafetyNet: Transient; perm only w/ redundant devices

HW modifications
– ReVive: Directory controller onlyReVive: Directory controller only

– SafetyNet: Memory, caches, coherence protocol

Performance Overhead
– 6% with ReVive, negligible with SafetyNet
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Conclusions

Recovery from: system-wide transients loss of 1 nodeRecovery from: system wide transients, loss of 1 node 

Availability better than 99.999%

Low performance overhead (6% on average)

HW changes only to directory controllersg y y

Memory overhead 12.5% with 7+1 parity

O h d b d d b i i i– Overhead can be reduced by increasing parity groups
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Rollback Recovery in Multiprocessors

Checkpoint Consistencyp y
– Global, Local Coordinated or Local Uncoordinated

Ch k i S iCheckpoint Separation
– Full or Partial

– Partial can be with Logging, Renaming or Buffering

Checkpoint Storagep g
– Safe External, Safe Internal or for a Specialized Error Class
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Checkpoint Consistency

Global
Synchronization is fast enough on 
h d hiGlobal

– All synchronize to make a single consistent checkpoint

shared-memory machines

Local Coordinated
– Synchronize as needed for a set of consistent checkpointsy p

Local Uncoordinated
D t h i– Do not synchronize

– Set of consistent checkpoints computed when recovering
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Checkpoint Storage

Safe E ternal (e g RAID) Not fast eno ghSafe External (e.g. RAID)
– Recovery data on redundancy protected-disk

Not fast enough

Safe Internal (e.g. DRAM)
– Recovery data in redundancy-protected memoryy y p y

Unsafe Internal
R d t t t t d b d d

Not general enough

– Recovery data not protected by redundancy

– Assumes memory content survives errors
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Checkpoint Separation

Full Too much storage needed

– Checkpoint and working data sets do not intersect

Partial with Buffering Commit atomicity, overheadg
– Buffer non-checkpoint data, flush to commit

Partial with Renaming

y, d

Complex HW or coarse grainPartial with Renaming
– Rename to avoid overwriting checkpoint data

P i l i h L i

Complex HW or coarse grain

Partial with Logging
– Save overwritten checkpoint data in a log
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Log & Parity Update Races

Error while log update in progress
– Must fully perform log update before starting overwrite

Error while parity update in progresso w p y pd p og ss
– Assume a single node fails

C r r ith r ld r t t– Can recover either old or new content

– Both result in consistent recovery (see paper)

Long error detection latency
– Keep sufficient logs to recover far enough into the past
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Availability vs Overhead

If checkpoint interval too shortp
– Lost work and hardware self-check dominate recovery

Fault free execution performance suffers– Fault-free execution performance suffers

If checkpoint interval too long
– Low availability

Find a good balanceg
– Checkpoint intervals of 100ms to 1s
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Analysis

Cache size vs. checkpoint intervalp
– 512kB caches with checkpoints every 10ms

5MB caches with checkpoints every 100ms– 5MB caches with checkpoints every 100ms

Log size vs. checkpoint interval
– Log will grow in sub-linear proportion to interval size

– 10ms: <3MB per node, only two apps >128kB per node

Parity overhead: 12.5% of system memory is parity
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