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ABSTRACT

Scaling the transaction throughput of decentralized blockchain

ledgers such as Bitcoin and Ethereum has been an ongoing chal-

lenge. Two-party duplex payment channels have been designed

and used as building blocks to construct linked payment networks,

which allow atomic and trust-free payments between parties with-

out exhausting the resources of the blockchain.

Once a payment channel, however, is depleted (e.g., because

transactions were mostly unidirectional) the channel would need

to be closed and re-funded to allow for new transactions. Users are

envisioned to entertain multiple payment channels with different

entities, and as such, instead of refunding a channel (which incurs

costly on-chain transactions), a user should be able to leverage his

existing channels to rebalance a poorly funded channel.

To the best of our knowledge, we present the first solution that

allows an arbitrary set of users in a payment channel network to

securely rebalance their channels, according to the preferences

of the channel owners. Except in the case of disputes (similar to

conventional payment channels), our solution does not require on-

chain transactions and therefore increases the scalability of existing

blockchains. In our security analysis, we show that an honest par-

ticipant cannot lose any of its funds while rebalancing. We finally

provide a proof of concept implementation and evaluation for the

Ethereum network.
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1 INTRODUCTION

Permissionless blockchains such as Bitcoin and Ethereum, where

any participant can choose to join and leave at any moment, have

allowed to replace a trusted third party with a network of mutually

mistrusting peers. Besides the transfer of monetary value, Ethereum

supports the execution of smart contracts, Turing complete code

which is executed in consensus among all peers of the network.

One of the main costs of the decentralization of permissionless

blockchains is their performance. In its current state, Bitcoin for

example only supports up to 7 transactions per second — clearly

insufficient to grow to a mainstream payment system. Because

the simple re-parameterization of permissionless blockchains has

shown to not solve the scalability performance beyond 100 transac-

tions per second [1], and alternative consensus mechanisms typ-

ically introduce different trust assumptions [2–5], second layer

payment channels [6–9] have been introduced.

Payment channels aim to establish direct peer-to-peer payment

channels that allow two parties to privately maintain and update a

two-party ledger. The benefit is that their individual transactions

are not required to be written to the blockchain, while keeping a

guarantee of being able to claim their rightful funds in the global

blockchain ledger at any given time. Payment channels have a few

limitations, but should improve the transaction throughput of a

decentralized ledger to the network bandwidth of the two peers

participating in a payment channel.

Payment networks [6, 8] allow to perform payments between

parties that are not immediately connected by a payment channel.

These linked payments utilize a chain of payment channels as in-

termediate links between two parties that wish to transact with

each other off-chain, without having to open a new payment chan-

nel or conduct an on-chain transaction. Several contributions aim

to improve the performance characteristics of payment networks.

Sprites [7], for example, aims to address the worst-case completion

time of an off-chain linked-transaction. Flare [9] proposes routing

strategies that aim to optimize the amount of time taken on average

to find a payment route.

One fundamental flaw of existing payment channels however

remains the inability to refund a payment channel without per-

forming transactions on the blockchain. Once a payment channel is

depleted, the channel needs to be closed and re-funded, requiring at

least two expensive on-chain transactions. Before refunding a chan-

nel, users might first opt to choose more expensive channel routes,

which will increase the transaction costs over payment channels

(each hop in a payment network receives a relay fee).

This work. In this work, we propose to the best of our knowledge

the first rebalancing scheme for off-chain payment networks. Our

solution enables a set of members in a payment network to shift

balances between their payment channels safely. Rather than to en-

act previously mandatory on-chain channel closing and re-opening,

our solution allows participants to safely Revive a channel by real-

locating off-chain the funds they have assigned to their payment

channels. Rebalancing is naturally limited by certain restrictions on

how much can be reallocated, because we do not shift the deposits

made within a payment channel but rather the credits that partic-

ipants are entitled to. In our security analysis, we show that an

honest participant is guaranteed not to lose any of its funds while

rebalancing.

The main contributions of our work are as follows:

• To the best of our knowledge, Revive is the first rebalanc-

ing scheme for payment channels, that allows a user to
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Figure 1: Revive reduces the costs of refunding payment

channels (within the green area). This figure shows the gas

costs needed to (i) naively execute rebalancing transactions

(current practise), (ii) use Revive to perform a rebalancing

while incurring the cost of dispute, and (iii) use Revive in

the best case without dispute (which is free).

utilize any other of his channels for rebalancing a particular

channel.

• If all participants of the rebalancing are responsive (i.e. hon-

est), rebalancing with Revive is free. Revive thus increases

the transaction scalability of permissionless blockchains by

reducing the frequency at which on-chain channel refund-

ing is necessary. Simultaneously, Revive reduces the costs

of payment channels because it de-incentivises routing pay-

ments through costly payment routes when rebalancing

of lower-priced channels and routes is feasible.

• Revive is payment channel agnostic, i.e., it can be applied

to different underlying payment networks. We expect most

payment channels that operate using smart contracts to be

viable candidates, such as Raiden [8].

• We provide an implementation and evaluation of Revive

for the Ethereum network, using the Sprites[7] payment

channel.

By our estimates, Revive offers users the opportunity to decrease

the costs of performing a rebalancing of their payment channels

when compared to naively executing transactions that aim to di-

rectly achieve a similar goal on the blockchain. We highlight the

possible savings our protocol can provide within the context of the

Ethereum blockchain in Figure 1 (we report the total costs). At best,

our protocol provides free rebalancing, and at worst, the dispute

penalty is incurred, which is still lower than the fees associated

with withdrawing from and refunding every involved channel us-

ing two on-chain transactions. The details behind the reasoning of

our estimates can be found in Section 5.2.1.

The remainder of the paper is organized as follows. In Sec-

tion 2, we provide the necessary background on permissionless

blockchains and payment channel networks. In Section 3we present

the Revive protocol, while we analyze its security in Section 4. We

discuss Revive’s usability in Section 5. Our implementation and

evaluation is presented in Section 6. We overview related work in

the area and contrast it to our solution in Section 7. We conclude

the paper in Section 8.

2 BACKGROUND

In this section, we provide the necessary background on permis-

sionless blockchains such as Bitcoin and Ethereum, and discuss

existing payment channel networks.

2.1 Decentralized Ledgers

With the inception of Bitcoin [10] in the year 2008 by a pseudonym

Satoshi Nakamoto, for the first time in history, the era of decentral-

ized banking began. Bitcoin allows mutually mistrusting peers to

trade, without relying on a traditional trusted third party, such as

a bank. Inspired by Bitcoin, other blockchains such as Ethereum

surfaced. Similar to Bitcoin, Ethereum is a decentralized database

represented as a chain of blocks (i.e., records), where each block

points to its predecessor in the chain. Ethereum, however extended

Bitcoin’s transaction language to a Turing complete programming

language to ease the development of so-called smart contracts (cf.

Appendix 9.1 for more details).

The blockchain’s main intention is to provide an electronic pay-

ment solution that solves the double-spending problem. In the

physical world, it is not trivial to copy a monetary bill, while it is

trivial to copy an electronic “coin”. The blockchain allows to verify

whether a coin has already been spent by a peer, and as such al-

lows to solve the double-spending problem. Therefore, a blockchain

(such as Bitcoin or Ethereum) is an append-only ledger that records

the history of all transactions exchanged among the peers.

The majority of the existing blockchains rely on a so-called Proof

ofWork (PoW) [11, 12], which is a computationally expensive puzzle

that is solved by miners to find a block. Each block is cryptograph-

ically linked to the previous block in the blockchain, effectively

forming a chain of blocks. Nakamoto showed that as long as the

majority of the blockchain miners are honest, an attacker is very

unlikely to alter the blockchain history. Note that besides the ability

to trade monetary value, the Bitcoin system also enables to provide

an electronic solution to trade other commodities, such as physical

products or domain names.

2.1.1 Scalability. The main costs of decentralized blockchains

is the problem that every peer needs to be aware of all transaction

of all other peers to not be vulnerable to double-spending. Bitcoin

currently only supports up to 7 transactions per second [13] and

scaling proposal can be roughly divided into two categories: (i)

improving the underlying consensus algorithm to support more

transactions [2–5] or (ii) developing off-chain solutions [6–9] which

rarely requires the scarce resources of the blockchain.

The simple re-parameterization of key blockchain parameters

(such as the block interval or the block size), has been shown to not

allow a transaction load beyond 100 transactions per second [1].

Alternative consensus algorithms and constructions moreover cur-

rently rely on additional trust assumptions. In this work, we there-

fore focus on off-chain solutions, which allow to alleviate the burden

of the underlying blockchain.



2.2 Payment Channels

Payment channels allow to establish direct peer-to-peer payment

channels between two parties. Those two parties can privately

maintain and update a two-party ledger, such that their individual

transactions are not required to be written to the blockchain. At the

same time, the payment channel guarantees that the participants

can only spend their rightful amounts and that the payment channel

state can be written to the global blockchain ledger at any time.

Because payment channels avoid transacting on the blockchain,

they can in practice significantly improve the transaction through-

put. The transaction rate is effectively only limited by the network

bandwidth between the participating peers. Another advantage of

payment channels is that they do not require the direct service

of the blockchain miners, and therefore can perform transactions

with lower transaction fees and consequently allow to economically

perform micropayments.

For a channel to be established between two entities, initial

deposits representing the total amounts that can be transacted

in this channel have to be put on the blockchain in escrow. The

security lies in the assurance that in case of a dispute of payment

or a need to withdraw deposits, the latest state of the ledger that

the parties have agreed upon can be submitted to the blockchain

and each party can claim its rightful balance.

2.2.1 Payment Networks. Instead of having to open payment

channels between every pair of individuals that wish to make off-

chain payments to each other, a linked-payment which utilizes a

network of payment channels to find an indirect path from the

sender to the receiver can be used. Such payment networks are

envisioned to improve the usability and practicality of payment

channels.

Finding routes over a payment network can be considered similar

to Internet packet routing. Certain specific routing restrictions

apply. Intermediate nodes that route the linked payment need to

have a sufficient balance in the payment channel that will act as the

outgoing edge for the payment. A routed payment moreover either

atomically succeeds or fails. The individual payments along each

channel need to all be bound together, such that they all succeed or

fail, and no one loses any money. Because intermediate nodes are

typically not involved in the payment between the sender and the

receiver, they need to be incentivised to forward a payment. Current

designs allow for intermediate hops to collect fees for forwarding a

payment.

2.3 Existing Payment Network Designs

In the following section, we discuss different existing designs for

payment networks.

2.3.1 Duplex Micropayment Channels. Decker et al. [14] first

proposed duplex payment channel networks which rely on the

timelock functionality of modern Bitcoin transactions (timelocked

transactions could for example only be included in the blockchain

10 days in the future). For Bitcoin in particular, the Script opcode

OP_CHECKSEQUENCEVERIFY as defined in the Bitcoin Improve-

ment Proposals BIP 68 [15] and BIP 112 [16] helps designing such

channels. Duplex Micropayment Channels support routed pay-

ments that can be confirmed without any confirmation delay.

2.3.2 Lightning. Similar to duplex micropayment channels, the

Bitcoin Lightning Network [6] allows to perform off-chain pay-

ments between Bitcoin participants. Instead of timelocks, Lightning,

however, relies on the punishment to promote honest behaviour.

If an entity broadcasts a malicious transaction, an honest partici-

pant is able to claim all funds of the concerned channel. Lightning

is envisioned to support routing of payments among its payment

channels.

2.3.3 Raiden. The Raiden Network [8] is a work in progress

that aims to implement the same concepts proposed in the Light-

ning Network design, but on the Ethereum blockchain using smart

contracts. Transaction costs are estimated to be 7 orders of magni-

tude lower using Raiden than natively on the Ethereum blockchain,

which would pave the way for efficient micropayments.

Because the Ethereum blockchain supports the creation of cus-

tom exchangeable tokens, the Raiden protocol aims to deliver the

ability to make off-chain transactions with any token that follows

the standard token API [17].

2.3.4 Sprites. Sprites [7] are payment channels designed for

Ethereum. Their design is also inspired by Lightning and Raiden,

but they aim to minimize the worst-case collateral costs of indirect

off-chain payments. Collateral cost is calculated as the amount of

time funds are frozen, or held in escrow, instead of being utilized

or invested, multiplied by the amount of money that is suspended

from use.

When performing a linked payment, the amount of money that is

to be transacted has to be frozen across the entire chain of payment

channels involved, until the transaction completes or terminates.

This requirement is present in Lightning, Raiden and Sprites. The

achieved worst case time however, that a linked payment needs

to complete or cancel in Sprites is not proportional to the length

of the chain of intermediaries used to execute the payment, but is

instead constant, unlike in Lightning and Sprites.

Because the total funds held in escrow during a linked payment

using Sprites is proportional to the length of the transaction chain,

and the upper bound on the amount of time is constant, the worst

case collateral cost per payment that is only linearly, rather than

quadratically1, proportional to the length of the chain used. The use

of the Turing complete smart contracts model offered by Ethereum

to implement the payment channel concept, rather than the direct

migration of an architecture meant for Bitcoin’s limited UTXO2

model over to Ethereum, is what enables Sprites to provide its cost

optimization.

3 LEDGER REBALANCING SCHEME

Over time, the extensive reuse of the same payment route may lead

to an unfavorably skewed network structure in which payment

routing becomes costly and inefficient. Our proposed rebalancing

scheme aims to offer a safe way to mitigate some of the possible

skewness that may arise in a payment network.
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Figure 2: Simple skewed network. Each two parties share

their own bi-directional payment channel. A’s balances are

0 and 100 in its channels with B and C, respectively. B’s bal-

ances are 100 and 0 with A and C respectively. C’s balances

are 100 and 0 with B and A, respectively.

3.1 Motivation

Bi-directional payment channels can become highly skewed, and

thus reduced to uni-directional channels, when used frequently to

make transactions in one direction within the context of a payment

routing network. Even though intermediate nodes that participate

in the routing of a payment maintain their total balances, they

are required to transfer the transacted amount from one payment

channel to another. As an example, a skewed network which could

benefit from a rebalance of its ledgers is presented in Figure 2. In this

simple case, even though A and B are connected by a direct payment

channel, its balance is skewed in the direction of B. Therefore, if

A wishes to make a transfer to B, the longer route comprised of

A-C-B will have to be taken. This simple case can be generalized by

considering the direct payment channel between A and B as some

path that is shorter than the longer path from A through C to B.

If the intermediate nodes in a linked payment charge fees for

routing the payment, then the skewness of the channels leads to

an increased transaction cost because of the usage of longer paths

in routing. Moreover, in all aforementioned payment channel de-

signs, the intermediate payment channels involved in a payment

routing must freeze the transaction amount as collateral in order to

guarantee the safe execution of the linked payment. In such a case,

having to take longer paths because of skewness puts an increased

collateral cost on payment routing. In some situations, it could be

considered beneficial for a payment channel that charges fees to

offer negative routing fees in one direction as to promote that direc-

tion’s use and cause the channel to be slowly rebalanced [18]. Such

a sacrificial strategy would become unnecessary in case Revive is

efficiently adopted.

3.2 System Model

Our rebalancing scheme is designed within the context of a de-

centralized blockchain that allows the trusted execution of smart

contracts capable of supporting an off-chain payment network that

contains a set of reasonably connected payment routers.

3.2.1 Blockchain. In our scheme, the blockchain is considered

as an integrity protected and immutable root of trust that comprises

a decentralized database containing a global view of accounts, their

balances and transactions, and extra associated data. Each account

1as in Lightning and Raiden
2Unspent Transaction Output

in the ledger is controlled by its own private key, that only the

owner of the account should know. A transaction from any ac-

count cannot be authorized without possession of its respective

private key. Authorized modifications to the ledger are considered

to be globally available after a block is generated, on average every

predetermined block time T.

3.2.2 Smart Contracts. In addition to primitive ledger transac-

tions that transfer balance from one account to another, our scheme

also requires a smart contract execution environment, such as found

in Ethereum [17]. Recall that Ethereum’s smart contracts are al-

lowed to hold a balance in the ledger, and control it according to

their code. We assume that once a smart contract is published, it

cannot be modified, nor can a result outside the bounds of its correct

execution be accepted on the global ledger.

3.2.3 Off-chain Payment Network. Our work is meant to be

adapted to pre-existing off-chain payment network solutions to

extend them with a safe rebalancing approach. In our view of the

system, we require the existence of an off-chain payment solution

that allows a pair of peers to keep track of their own two-way

ledgers off-chain. This off-chain ledger is assumed to be pegged to

an on-chain smart contract that requires an initial funding from the

two peers. The contract is assumed to only allow peers to withdraw

balances that they have both agreed on using their signatures. Of

course, the sum of the two off-chain balances may not exceed the

total deposit in the on-chain contract at any given time.

3.2.4 Payment Network Topology. The payment channel con-

nectivity between the participants of a rebalancing is a core element

to the efficacy of applying Revive. For a rebalancing to take place

among a set of channel owners, each channel owner is expected

to make a set of outgoing payments which are compensated by

another set of incoming payments, through the same payment chan-

nels that connect the channel owners participating in a rebalancing.

This means that, when modeling the participants as nodes and the

payment channels among them as edges, any such graph that con-

tains no cycles3 is not rebalanceable. On the other hand, the more

possible cycles present in the graph, the more potential rebalancing

transactions there are to be found.

An example is presented in Figure 3, whereby the network pre-

sented in Figure 3a contains no cycles and thus no rebalancing can

take place, and the network presented in Figure 3b contains a few

cycles that can be utilized. Moreover, all cycles can be utilized in

parallel if the balances in the intersecting channels are sufficient.

In Figure 3b, the channel between A and E appears in two such

cycles, and the assumption when utilizing both cycles to enact a re-

balancing is that E carries sufficient balance with A in that channel

to compensate for the funds A gives to B and C.

3.2.5 Communication Network. For the purpose of the rebal-

ancing scheme we assume an underlying communication network,

where all the participants can communicate directly off-chain (e.g.

via a TCP connection). Given that the participants had previously

established off-chain payment channels, prior to needing to rebal-

ance them, we assume that the line of communication that was

used for channel establishment can be reused by our protocol.

3A sequence of vertices starting and ending at the same vertex.
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Figure 3: Example payment channel network topologies

demonstrating when a rebalancing is possible.

3.2.6 Adaptability. The algorithm for calculating a set of rebal-

ancing transactions is independent from the enforcement mech-

anism of the transaction set. Therefore, to adapt Revive to any

blockchain satisfying our system model, one only needs to adapt

the rebalancing protocol to support the target smart contract frame-

work. For example, implementing the smart contracts provided in

our paper for Ethereum (cf. Section 9.2) in the Rootstock [19] smart

contract platform for Bitcoin, would provide the same on-chain

enforcement mechanism required to settle disputes and atomically

execute a transaction set. The off-chain peer to peer communica-

tions can then be directly made compliant.

3.3 Rebalancing Protocol

The protocol steps in Figure 4 outline how the rebalancing group

is expected to proceed in order to atomically execute a set of trans-

actions.

3.3.1 Leader Election. Before the protocol can commence, a

leader needs to be elected to act as a point of synchronization for

the protocol, and upon receiving enough information about channel

balances, calculate a set of rebalancing transactions according to

the specifications we discuss later. This leader does not need to

be a stakeholder in any of the payment channels that are to be

rebalanced, therefore, it may even be a third party chosen by the

participants.

For our purposes, we adopt a leadership rotation strategywhereby

all participants are identified by their public addresses in the global

ledger, which we assume to be unique and numeric. We refer to

the set of participants as P and denote the public identifier of a

participant p ∈ P as ID(p). Moreover, we assume that rebalancing

rounds happen, among a fixed set of participants, in series. We refer

to the point in time at which the participants formed a network

that rebalances itself as Ts .

At Ts , the first leader is chosen as the participant p with the

smallest identifier ID(p) such that ∀q , p ∈ P : ID(p) < ID(q). After

the completion of each round, or after a predefined amount of time

passes since the termination of the last round, the next leader is

chosen as the participant with the smallest identifier greater than

that of the previous leader. More formally, the successor s of a

leader p, is the smallest such s ∈ P so that ID(s) > ID(p). If no such

successor s exists, then leadership is passed back to the first ever

Leader Blockchain Participant

Signal Rebalancing

Rebalancing Init Req.

Participation Confirmation

Channel Freeze Request

Frozen Channels Confirmation
Rebalance Objectives

Full Rebalancing Transaction Set

Signed Commitment

Full Signed Commitment Set

Dispute

Figure 4: Protocol Sequence Diagram. Solid lines with filled

arrows require a response for the leader to proceed with

the participant in the protocol. Dashed lines with arrow

heads are the participant’s responses. Solid lines with arrow

heads do not require a response, and are not required for the

sender or recipient to proceed.

elected leader, which has the smallest identifier in the participant

set.

In other cases, it might be preferable to allow only a subset of

participants, perhaps even only one, to attain leadership due to, for

example, their increased reliability or performance. Revive can be

adapted to any leader election strategy as the remaining protocol

steps are decoupled from how the leader was chosen.

3.3.2 Triggering. At first, the currently elected leader waits for

rebalancing initiation requests from participants in the sub-network.

When enough requests are received (past an arbitrarily defined

threshold), the leader sends an initiation request to all participants

asking for confirmation of their participation in this round of re-

balancing. This triggering phase is customizable and serves to set

a threshold past which a rebalancing is considered to be worth

executing. This allows the protocol to scale its utility according

to the size and requirements of the participants in a rebalancing

group.

3.3.3 Participation. In response to the initialization request, the

participants reply with a participation confirmation which allows

the leader to construct a list of who will be partaking in rebalancing

this round. This list is later on used to enable the safe execution

of the rebalancing. After receiving the confirmations, the leader

announces to the involved participants which nodes are confirmed

in the current round, and asks them to freeze the relevant payment

channels they wish to rebalance.

3.3.4 Transaction Set Generation. Participants are then expected

to respond with which channels they have frozen, along with their



respective balances and objectives for the challenge. Mutual agree-

ment by both owners of a payment channel on the freezing and

the balances should be expected. Moreover, the participants may

submit rebalancing objectives, which specify whether they wish

to gain or lose credit in each channel. Mutual agreement by both

peers on the direction of rebalance in a channel should also be

expected here. For example, if A wishes to gain credit in its chan-

nel with B, then B must be willing to lose credit in its channel

with A. The leader then proceeds to calculate a set of transactions

that should conserve everyone’s total balances, and abide by the

participants’ preferences for each channel. The generation is done

through solving a linear program described below that produces a

set of rebalancing transactions.

3.3.5 Consensus. The transaction set, along with a list of par-

ticipating members, is then sent in the form of a commitment to all

nodes for verification and signing. The commitment is composed

of the merkle-tree root [20] of all rebalancing transactions, and

a hash of all the participants’ public addresses (identities), both

hashed together. When participants receive this commitment from

the leader, they verify the proper construction of the hashes, and

that the rebalancing transactions are correctly generated. Each par-

ticipant then responds to the leader with its own signature on the

commitment. Once all signatures are obtained by the leader, they

are multicast to the involved participants. They can then consider

the payment channels unfrozen, because the complete consensus

on the transaction set can safely be considered as a binding state

update for each payment channel.

3.3.6 Dispute. If the complete signature collection is withheld

from some participant, it can issue an on-chain subsidized availabil-

ity challenge for it. The response to that answer will be comprised

of the complete rebalancing round data, which includes the set of

participants, their signatures and the merkle root of the transaction

set. If this challenge is not answered in some predefined amount of

time, the rebalancing round is considered annulled, and participants

can safely assume that the latest state prior to the rebalancing is

valid. We discuss this issue in more detail in the security analysis

presented in Section 4.

3.4 Rebalancing Objectives

Participants can specify how they would like to shift the balances of

their payment channels in a rebalancing instance, or an averaging

method can be employed to automatically determine an equilibrium

seeking set of objectives.

3.4.1 Notation. We denote the maximum balance shift that a

node u is willing to sustain in its payment channel with a node v

by ∆u,v , while δu,v denotes the balance that node u is going to

gain in its payment channel with v as a result of the rebalancing

transactions set.

3.4.2 Linear Programming Model. In our work, we model the

rebalancing problem as a linear program. Several solving strategies

for linear programs have been proposed and proven in various

literature. We forgo a detailed examination of these methods and

instead point the interested reader to sources such as [21], and the

short discussion on linear programming in Section 7.

The generation of a set of rebalancing transactions can be for-

mulated as a linear program. In this model, participants may only

specify for each channel a maximum amount they are willing to

either gain or lose, but not both. If both peers of a payment channel

agree on its direction of transfer, one variable denoting the positive

direction of transfer is added to the linear program.

Linear Program:Maximize: Σu,vδu,v Subject to:

(1) ∀u,v : ∆u,v > 0 ∧ ∆v,u < 0 ⇔ 0 ≤ δu,v ≤ min(∆u,v ,−∆v,u )

(2) ∀u : Σvδv,u = Σvδu,v

The objective of the linear program is to maximize the amount

of funds moved between channels while the constraints serve to

maintain the sanity and fairness of the generated transaction set.

The first constraint definition introduces linear constraints on the

program as long as the two parties connected by the payment

channel agree on the direction of balance change that they are

willing to have in the channel. If A wishes to dispose of balance in

the AB channel, and B wishes to gain balance in the same channel,

then the δa,b variable is given an appropriate upper bound. The

second constraint enforces the conservation of balance, such that

the set of resulting transactions is a zero sum rebalance, whereby no

party gains or loses any money by executing the set of transactions

relevant to its payment channels.

It is assumed that ∆u,v ≤ balu,v for all inputs ∆u,v such that no

payment channel is used past its total funding. It is also important

that for any pair of (a,b), if δa,b is defined in the program, then

δb,a is not, as that breaks the semantics of the constraints and the

objective function.

3.4.3 Channel Averaging Strategy. In an automated settingwhere

manual entry of rebalancing objectives is impractical, a strategy

for automatically determining a set of objectives for each channel

is required. To simplify the process of adopting our model in such a

setting, we suggest the use of a straightforward strategy: averaging.

More formally, in this strategy, each two peers of a payment channel

that is going to be rebalanced submit their rebalancing objectives

as follows: ∀u,v : ∆u,v =
1

2
(balu + balv ) − balu . This strategy

can be followed using the linear model previously specified, since

both peers would automatically agree on the direction of balance

shift that seeks equilibrium. We conjecture that this strategy, due to

its nature, would improve the efficacy of a payment network after

rebalancing in the average case. In cases where a channel imbalance

in one direction is a favored outcome, then this strategy would lead

to sub-optimal rebalances.

3.4.4 Numerical Precision. In all of the aforementioned solu-

tions, the numerical accuracy of the program solving methods is a

crucial detail to keep in mind. We do not employ integer program-

ing methods for performance reasons, and allow fractional results

to occur. Therefore, the resulting balance transfers from the linear

program solution may very likely have a decimal precision beyond

that of the underlying global ledger. For this reason we resolve to

simply rounding down the resulting transactions from our rebalanc-

ing schemes and assume that all losses incurred as a consequence

are negligible. We justify this by examining the current smallest

units that are exchangeable using Bitcoin and Ethereum, and their

respective prices in US dollars as of the writing of this paper.



Until the writing of this paper, the maximum trading price of 1

Bitcoin is on the order of 1,000 U.S. dollars, while the smallest ex-

changeable unit, a satoshi, is equal to 10−8 Bitcoin. As for Ethereum,

the maximum trading price as of yet is on the order of 100 U.S. dol-

lars, while the smallest unit, wei, is equal to 10
−18 Ether. This puts

the maximum possible loss incurred in each rebalancing transac-

tion at a marginal fraction of a cent. If the trading values of these

currencies at some point increase at least a million fold, then any

non-integer solution would lead to some losses. However, we con-

jecture that if such an event occurs, then the global ledgers of these

currencies will have to be extended to allow higher precision trans-

actions, as to always be viable for micropayments and a realistic

representation of monetary value.

3.5 Optimality

According to the rebalancing objectives defined in Section 3.4, we

defined the objective functions of the mathematical programming

models to represent the total amount of funds shifted between pay-

ment channels, or, rebalanced. When using Revive to improve the

routing of future payments within a network, the optimal solution

under such a definition would therefore be one that eliminates

the most skewness in the network where possible. For off-chain

payment networks comprised of at least a few hundred payment

routing nodes, it would be rather difficult to coordinate a successful

global rebalancing where all network members are participants in

a single Revive rebalancing instance. Therefore, it would be more

feasible to run multiple ’local’ rebalances that ameliorate skew-

ness in smaller sub-networks within the network in parallel. More

importantly, we conjecture that through running these multiple

smaller instances, a globally optimal rebalancing can be approxi-

mated. We mainly base our argument on the expected outcome of

running Revive in multiple local instances on networks similar to

the hypothetical network in topology in Figure 5.

While a local, sub-optimal solution may fail to rebalance as many

payment channels as effectively as a global optimal solution would,

the combination of multiple local Revive solutions to global net-

work would still lead to a more balanced global set of ledgers. Unless

a very high degree of global coordination can be achieved, users

of Revive would have to make this trade-off in optimality. More-

over, even after a global run, some payment channels may remain

skewed, because they could have significantly larger deposits in

them than their peers’ other payment channels, and thus there

aren’t enough funds to route to them.

3.6 Atomic Enforceability

For safety and efficiency purposes, we designed our protocol to use

the underlying blockchain network primarily as a recourse. A valid

rebalancing that results from the full execution of this protocol

must be enforceable in the private payment channels involved, and

thus also in the global decentralized ledger when need be. Likewise,

an invalid rebalancing, should not be enforceable.

Payment channels are generally designed to support on-chain

deposits and withdrawals of committed funds. Prior to finalizing

withdrawals, the latest agreed upon balances of each channel peer

must be broadcast on-chain in order to confirm that the amount

to be withdrawn is correctly requested. Usually the state updates

(a) Example global network be-

fore local groups execute re-

balances. There are five rebal-

ancing groups in this figure:

four in the corners, and one in

the center.

(b) The same hypothetical net-

work after the rebalancing

groups conclude their local

protocol runs.

Figure 5: Example effect of separate Revive instances on

a global network. Nodes in the graphs represent payment

routers. Dashed edges represent terminal payment channels

(e.g. to non-routing consumers). Green undirected edges rep-

resent balanced payment channels. Red directed edges rep-

resent skewed payment channels that allow payments in

the edge direction. Shaded regions represent Revive sub-

networks.

are modeled as a mutually signed commitment that reflects how

much balance each peer of the payment channel has. In case the

last agreed upon balances for the payment channel resulted from

our rebalancing protocol, then the payment channel design must be

extensible as to allow it to accept a valid rebalancing as yet another

valid state update, even though its commitment structure would be

different.

In Revive (ref. Figure 4), the commitment sent back by partici-

pants encompasses the following two main elements: the full set of

participants in this round, and the full set of rebalancing transac-

tions that the leader has produced. Therefore, when a participant

commits to a rebalancing round, it essentially authorizes that when

the signatures of all the confirmed participants, in this round, are

provided, for this round, then all of the payments included in the

rebalancing transaction set are enforceable. This is done in order

to mandate that all of the transactions in the rebalancing round are

atomic, as in they will all proceed together or abort.

In retrospect, participants in a rebalancing agree to reduce some

of the balances they are owed in some of their payment channels

contingent on those losses being recovered as balance gains in other

channels. Therefore, every participant must obtain a guarantee that

all of their outgoing transactions are matched by some incoming

transactions, and that if outgoing funds are enforceable, then in-

coming funds must also be enforceable to compensate. We designed

our commitment scheme to account for these global enforceability

reasons.

Moreover, broadcasting the data associated with a rebalancing

on-chain to trigger a state update would always be more expensive

than submitting a succinct, mutually signed balance commitment.



We suggest an additional collaborative pre-broadcast step to allevi-

ate this cost. After delivery of the full rebalancing signature set to

both peers, they can simply mutually sign the transactions relevant

to their mutual payment channels and send their respective signa-

tures to each other. While this step is purely optional and does not

affect enforceability, it does allow peers to cut extra costs associated

with performing on-chain withdrawals from a payment channel

immediately following a rebalancing operation.

We demonstrate this concept by extending the Sprites [7] pay-

ment channel to accept a valid rebalancing, in addition to its regular

two-party state update, as a valid balance commitment in our proof

of concept implementation discussed in Section 6.

4 SECURITY ANALYSIS

Our protocol is designed to prevent any honest participant from

losing any funds despite some strong adversarial assumptions. We

will proceed to formally analyze the security guarantees of our pro-

tocol. The global blockchain ledger acts as a recourse for dispute

resolution, and there are costs associated with initiating and resolv-

ing these on-chain disputes. For example, a fee is paid per kilobyte

of data broadcast on the Bitcoin blockchain [10], while gas is paid

to activate smart contracts and enact transactions in Ethereum [22].

In our security analysis, we consider these expenses as external to

the funds committed to in a rebalancing by participants. However,

we also designed our protocol to minimize these expenses through

requiring the least amount of information possible be needed on-

chain in case of dispute.

4.1 Threat Model

We assume an irrational adversary that would be willing to lose

some, or all, of their own committed funds in order to cause hon-

est parties to lose theirs, temporarily or otherwise. This irrational

adversary may be in control of the leader role, some of the partici-

pants, or even all but one honest party that is the target of an attack.

An adversary in our model may cause parties under its control to

sign and authorize any set of messages using their identities, or

front-run any user input, but may not violate the integrity of the

keys honest protocol participants use. In addition, we assume an

adversary can cause denial of service attacks that abort the protocol

at any given point. In the following discussion, we define malicious

behavior as that which would cause a participant committed to

performing a set of transactions in a rebalancing to lose control

of some or all of their committed funds, either permanently or

temporarily.

4.2 Guarantees for Honest Parties

Under the previous adversarial assumptions, a diligent honest par-

ticipant in our protocol is able to protect itself from losing any

of its committed funds, but will not be able to ensure that it is

always treated fairly in the protocol or that the rebalancing always

succeeds.

4.2.1 Balance Conservation. When the leader is done calculating

a set of transactions that need to take place between participants in

order to rebalance their payment channels, it then sends this set to

each participant to commit to. The information present in this set

of transactions is sufficient for each honest party to decide whether

the transaction set it is committing to will cause it to lose or gain

any funds, because a diligent honest party should verify that all the

transaction amounts related to its payment channels in the set sum

up to a net total of zero4. The most up to date state of a payment

channel, where one is not a peer, cannot be truly verified unless

broadcast onto a network. Each honest party can therefore only

be responsible for verifying the balance conservation properties

of transactions related to its payment channels. This conservation

check is sufficient to protect honest parties from committing to any

rebalancing round that may cause them to lose funds. In case a set

of transactions fails this check, then the honest party should not

provide its signature. This effectively halts the rebalancing round

as the full signed commitment set will never be producible by the

adversary.

4.2.2 Objective Satisfiability. The protocol as we described it so

far provides no guarantees towards fairness in rebalancing funds

while equally satisfying the objectives set by all participants. A

malicious leader may choose to omit, or restrict, the rebalancing

objectives of some parties in order to produce a rebalancing set that

is more favorable to the objectives of others, all while not violating

the conservation of balance for any party. Unfairness may even arise

from no malicious intent, but from the optimization path chosen by

the linear program solver. One approach might involve having the

leader publicly commit to a randomness seed prior to requesting

channel balance information. The leader then sends all initially

received channel balances alongside the generated rebalancing

transactions to each participant. Any participant interested would

re-solve the linear program using the same seed of randomness

in order to verify that the agreed upon objective function was

indeed the one optimized for. Additionally, the transaction structure

used in the payment channel must bind each new state to the

previous one, so that the resulting rebalancing transactions are

only enforceable if the correct balances were initially revealed. This

additional verification would of course come at the cost of the

efficiency and privacy of the protocol, but that may be a critical

trade-off an implementation of our protocol is inclined to make.

4.2.3 Delayed Propagation Immunity. The adversary, whether

in control of the leader, a subset of participants or just in control

of the network, may opt to withhold, in one way or the other, the

full signed commitment set from honest participants who wish

to enforce the rebalancing transactions after having given their

signed commitment. Without the proper protection, this could lead

to a dangerous situation whereby an enforceable state update to

a payment channel is in the hands of the adversary and not the

channel’s honest owners. Effectively, this may lead an adversary

that is in control of some of the direct peers of an honest participant,

in addition to the leader, to steal committed funds.

Assuming that the adversary is in control of some of the direct

peers of an honest participant, and that the channels between the

honest participant and the adversary’s participants are involved

in the rebalancing, then the attack would proceed as follows: The

adversary would finalize the channels that have pending rebalanc-

ing transactions in favor of the honest participant and close them

without honoring those transactions. Then the adversary would

4Up to the discussed numerical accuracy.



finalize the channels that have rebalancing transactions in favor of

the honest participant’s peers, but use the full commitment set to

force the honoring of the pending transactions outgoing from the

honest participant. In this case, the honest party loses the funds

committed to the outgoing transactions in a rebalancing while not

being able to claim the incoming funds. One possibility would be to

put an expiry date on the rebalancing, after which none of its trans-

actions could be enforceable via an on-chain broadcast. However,

this poses a problem to atomic enforceability, as some honest peers

may have finalized their transactions before expiry, while other still

haven’t, due to network delays or otherwise. Another suggestion

could be requiring that honest parties collaborate if any of them has

received the full set. However, this is still not a formidable solution,

as it is not effective when the adversary withholds the full set from

all honest parties.

Solution. Our proposed solution is to allow any participant to

be able to issue an on-chain availability challenge towards the full

signed commitment set. This challenge would carry an effective

deadline by which the full signature set must be announced (by

anyone) on-chain, or the rebalancing will be annulled and all of its

transactions unenforceable in the global ledger. One notable detail

to take care of is that the grace period of channel finalization, as

discussed in [7], must be longer than the grace period extended

by the availability challenge deadline as to effectively prevent the

aforementioned attacks. This solution imposes an added worst-case

cost for running the protocol that increases proportionally to the

number of participants involved in a single rebalancing. We discuss

this issue further and provide some insights on how to possibly use

Revive in a reasonable manner as to minimize incurring worst-case

costs in Section 5.

4.2.4 Ungraceful Abortion. If, from the view of an honest party,

the protocol terminates at any point prior to the party’s submission

of its signature on the rebalancing commitment, then it is safe

to assume that all the involved transactions are not enforceable.

However, termination of the protocol, for any reason, past the

submission of the party’s signature, and prior to its reception of

the full signature set, is equivalent to the adversary withholding

the signature set from the participant. In this case, as previously

discussed in Section 4.2.3, the participant will need to issue the

on-chain availability challenge.

4.3 Privacy

In order for the leader to effectively calculate the appropriate re-

balancing transactions for the round, it must have knowledge of

the latest balances of each involved payment channel. We consider

this to be a privacy leaking component of the protocol equivalent

to a public broadcast of the latest state of each involved payment

channel.

In our adversarial setting, we hold no guarantees of what infor-

mation may or may not be leaked by an adversary in control of the

leader or any participant. Moreover, we note that the information

carried in the structure of the transactions that are to be executed is

highly dependant on the design of the underlying payment channel.

For example, in our implementation using Sprites [7], the leader is

made aware of the last state of each participating payment channel,

and then each participant is made aware of the next state of each

payment channel after rebalancing.

On the other hand, in a payment channel design whereby the

generated transaction set would not contain total balance infor-

mation but rather balance changes, then only a malicious leader

could cause a privacy leak. Malicious participants in this case would

only learn changes in balances, but not what the starting or ending

balances for each channel are, unless they are peers in them.

5 USABILITY

In this section we discuss the conditions under which Revivewould

be suitable for use, its limitations and when it is advisable to employ.

5.1 Context

Employing off-chain solutions such as payment channels or other

protocols (such as Revive) implies a certain degree of trust be-

tween the involved parties. It is imperative, however, that trust

be minimized wherever possible in a system design, and instead

its trustworthiness increased. In Revive, when a party A agrees

to participate in a rebalancing whereby another party, B, is par-

ticipating, then A is effectively trusting that B will be available to

not cause the protocol to abort prematurely. Moreover, if B is the

acting leader in the round, then A is also trusting that B will not

deny sending the full set of signatures to A. These two expectations

come at an operational risk. In the first case, A is only risking the

collateral it has frozen for the protocol to proceed. If B causes the

protocol to prematurely abort, then that collateral was frozen in

vain when it could have been used elsewhere. In the second case, A

is also risking being required to pay a fee for issuing an on-chain

availability challenge for the signature set because of B’s lack of

cooperation.

For these reasons, we suggest that Revive be employed in a

context where the reliability of the involved peers is reputable in

order to avoid needlessly tying collateral or incurring added costs

repeatedly. We expect that payment routers that will face the prob-

lems Revive aims to solve will be looking to establish relationships

among each other that promote a functioning, reliable payment

network. In the worst case, we have insured that no theft of commit-

ted funds is possible, but malfunctioning or malicious parties can

still cause a denial, or degradation, of the service offered through

Revive. We highly recommend utilizing Revive in a reputation

based context whereby participants are accountable for their previ-

ous reliability when running the protocol, and may be favored or

dismissed in future rebalancing instances based on their attained

reputation.

5.2 Scaling and Associated Costs

The design of Revive centers around enabling a trust-free exchange

of funds that rehabilitates a payment network and ensures that

it is able to route payments efficiently. However, this trust-free

design backed by a blockchain requires that in cases of dispute,

enough non-repudiable information is available to decide a fair

outcome. A running instance of Revive produces the minimal

information needed to safely enable rebalancing, while ensuring

that fund commitments are honored. As an instance grows in size,

due to the participation of more users or the involvement of more



payment channels, thenmore information is produced, whichmight

make on-chain enforcement expensive or even impossible. For this

reasonwe offer advice on reasonably scaling up instances of Revive,

while not exceeding the limitations that a backing blockchain might

have, using Ethereum as a practical example.

5.2.1 Scaling Users. As more participants are involved in a re-

balancing round, more signatures will need to be collected on the

hash of the instance. In Ethereum, the cost of verifying a user’s

signature on-chain in a smart contract is 3,000 gas units [22]. There

are other costs associated with submitting data to a smart contract

and processing it. In our implementation, discussed in Section 6,

the cost of an on-chain dispute increases by approximately 9,000

gas units per involved participant. However, it is noteworthy to

mention that in case Ethereum adopts the Schnorr [23] signature

scheme (see Section 7), this per user cost would drop by at least

4,400 gas5 down to 4,600 (cf. Figure 1). Recall the plot presented in

Figure 1, which estimates the operational costs of naive on-chain

rebalancing versus those of Revive.

Naive Transactions. The worst case naive rebalancing would be

if every user either withdraws or deposits into one of the involved

payment channels. This would incur an Ethereum transaction cost

of 21,000 gas [22] twice per channel, once by each peer. In the best

case for naive rebalancing, each channel is only either deposited

to, or withdrawn from, by one of its peers; therefore, the on-chain

transaction cost is incurred only once per channel.

Revive rebalancing. In a flawless Revive instance, where no

disputes take place and everything is settled off-chain, there are

exactly zero gas costs incurred, regardless of the number of chan-

nels involved. As for the Revive cost ranges, in the worst case, the

rebalancing instance represents a ring network of users connected

by payment channels, similar to that in Figure 2. Therefore, each ad-

ditional payment channel adds a user to the instance, requiring an

additional 9,000 gas units in disputes as discussed. In the best case

of dispute, only two participants maintain all of the involved chan-

nels, which implies that only two signatures will ever be needed in

case of dispute.

Ethereum has a mechanism which limits the amount of gas that

can be exhausted per block [17], the gas limit. Even if someone is

willing to spend a considerable amount of ether to pay for the gas

costs of verifying a large rebalancing instance, there still would be

an upper bound that if reached, may render a rebalancing unveri-

fiable on-chain, and thus unenforceable in practice. In theory, on

Ethereum, Revive could be executed with roughly 300 participants

and still produce verifiable instances. At a gas cost of 25 Gwei, such

a rebalancing instance would cost approximately 0.075 Ether to

verify. However, even when verifiability is not impossible, we very

much advise against running the protocol at such a scale, unless a

very high guarantee of reliability is available among participants.

Our recommendation is to calculate the estimated on-chain cost

of verification prior to participating in a rebalancing, so that the

risk of added running costs is known well ahead. Depending on

5We base this estimate on the amount of data that would be spared from submission
to the smart contract. We cannot estimate any further possible savings and we have
no guarantee of how the implementation of this scheme might change other costs.

the used blockchain, and the context of use, the costs and risks will

vary, and should be estimated on a per use-case basis.

5.2.2 Scaling Payment Channels. Two peers may have more

than one payment channel with each other. If we keep the number

of participants in a rebalancing constant, we can add more payment

channels to the rebalancing with an added cost per dispute that

increases logarithmically in the number of involved channels. This

is due to the use of merkle trees when constructing the rebalancing

commitment. In case of dispute, the information required to be

evaluated on-chain is comprised of participant signatures, and a

merkle tree based proof of membership of a transaction in the

transaction set. The merkle tree of transaction sets would grow

in height logarithmically [20] as more transactions are added, and

thus the proof of membership would grow marginally longer. Per

Ethereum’s implementation we estimate that the state update cost

would grow by approximately 4,400 gas units per one level of height

increase in the transaction set merkle tree.

5.2.3 Linear Program Scalability. Linear Program Solvers are

highly efficient in practice. Even though some of their underlying

algorithms may have exponential complexity in the worst-case,

they were shown to converge in expected polynomial time of the

number of variables [24]. However, as efficient as these solvers

are in practice, there is no absolutely guaranteed time by which

they will terminate. As the problem size grows, the expected time

towards reaching a solution increases. For this reason, users of

Revive must be mindful of the underlying limitations, since the

linear programming model is the core of finding a satisfying set of

rebalancing transactions. Even when implemented over an under-

lying blockchain, or similar system, which has perfectly reliable

participants and inexpensive on-chain dispute resolution, scaling

the rebalancing instance to a significantly large number of payment

channels, more than tens of thousands, may come at the cost of a

very long time expenditure until the leader can generate a rebal-

ancing, at least on an average desktop computer. For this reason

we suggest that the linear program instances be concerned with

no more than a thousand payment channels, if not a few hundred,

if such a demand were to arise and if the underlying blockchain

would economically permit it (recall how dispute costs scale). If it is

indeed found necessary to scale beyond that, then the participants

should be split across several rebalancing instances, as at that scale

the differences in optimality between global and local rebalances,

as explained in 3.5, should be trivially inconsequential compared

to the performance costs.

Besides our linear programming solution, other rebalancing ob-

jectives with more complex considerations could be explored. How-

ever, if the constraints become too complex, a non-linear solver

might be required, which could render the process inefficient, or less

scalable. We leave the exploration of further rebalancing objectives

for future work.

6 PROOF OF CONCEPT IMPLEMENTATION

To complement our protocol specification, we provide a working

proof of concept, implemented in Python. The POC contains scripts

that create a test blockchain network and some participants using

the pyethereum library, on top of which our protocol is simulated.



We also demonstrate how the mathematical model solutions can be

translated into rebalancing transactions compatible with a modified

version of the Sprites payment channel. The full source code can

be found in [25].

6.1 Modified Sprites Payment Channel

The first component of our implementation is a modified version

of the Sprites [7] payment channel. Our modifications include two

new features that are required for our protocol to proceed, and one

additional security fix. In this section, we refer to the two source

files written in the Solidity smart contract language, suffixed by

’.sol’.

6.1.1 Rebalance Challenge Contract. The contract defined in

’challenge.sol’ (cf. Appendix 9.2) provides three main functionalities.

The first of which is the ability to issue a subsidized availability

challenge against a rebalancing instance. The issuer of the challenge

must deposit an amount of funds that is proportional to the size

of the rebalancing instance in order to pay for another party to

respond to the challenge. While this is an optional design choice,

we determined the subsidization of the challenge to be the best

course of action since it prohibits a malicious participant from

issuing fake challenges with the intention of forcing one of the

other nodes to pay to respond to it. Instead, now only in the case of

a malicious leader would someone need to issue a challenge if the

full signature set is not made available. The second feature is the

ability to permanently settle the availability and correctness of a

rebalancing instance. This allows the instance to be used to update

the on-chain state of any involved payment channel, closes any

open challenges against it, and prohibits any future challenges from

being issued. The third feature is a simple check that allows any

other smart contract, such as a payment channel contract, to verify

whether a rebalancing instance has been verified for availability

and correctness.

6.1.2 Rebalance State Update. Because the two parties respon-

sible for a payment channel may not cooperatively sign the new

state resulting from a valid rebalancing, the payment channel needs

to be augmented so that it can accept a valid rebalancing, with full

signatures, as a state update. In ’channel.sol’ (cf. Appendix 9.2), we

added a new functionality to the Sprites payment channel contract

that allows a payment channel state to be updated on-chain after it

has been verified in the rebalancing contract. After validation of

the rebalancing instance, providing the signature of the counter-

party in a payment channel on that instance, and the rebalancing

transaction particular to the payment channel being updated, our

modified contract accepts the new balances as the latest state.

6.1.3 State Security Fix. One final modification we made was

the addition of the payment channel contract address to the state of

the payment channel. The Sprites channel was constructed to accept

an update state sent by one party if that party could provide the

signature of the counter-party on that state. However, the state only

contained a round number and balance information, but nothing

that ties the state to one particular instance of a payment channel.

Therefore, if a party were involved in multiple payment channels,

their signature on the state of one of those channels could be used

to update another channel as long as the on-chain deposits were

not overdrawn by the update.

6.2 Simulation Cases

We present simulations of two different scenarios of mishaps that

may occur in practice, and how to respond to them within the

specification of the protocol while protecting user funds from being

stolen.

Setup. The simulations are initialized to reflect the example pre-

sented in Figure 2, where three participants can use Revive to

rebalance their payment channels, such that the end goal of each

participant is two channels with 50 credits in their favor, rather

than one with 100 and the other with 0.

6.2.1 On-chain Update. In this case, referred to as test ’simu-

lation_scenario_1’, the protocol produces a valid rebalancing that

is signed by everyone, and the signature set is made available to

all participants for enforcement. However, none of the participants

choose to collaboratively sign the individual transactions within the

rebalancing that are relevant to their payment channels. Therefore,

they all resort to publishing and validating the rebalancing instance

on-chain, and then using it to enforce a state update on their re-

spective payment channel. This case was designed to highlight

the effect off-chain collaborative updates have on cutting expected

running costs of the protocol.

6.2.2 Availability Challenge. In ’simulation_scenario_2’, the full

signature set is made unavailable for one of the participants. While

a more mature implementation should include a means by which

any participant can reach out to any other in order to request the

full signature set if they have it, we simply highlight here that

even in case one participant was isolated, they can still insure their

funds. The isolated participant proceeds to issue the availability

challenge using the on-chain contract after having submitted their

signature on the rebalancing instance and not getting a response.

The main point that is highlighted here is that all honest parties are

incentivized to answer the challenge, because it is subsidized, and

in case the challenge expires the enforcement of their rebalancing

transactions are voided if they have not yet locked in the transac-

tions. We postulate that as long as there remains one honest party

with one payment channel with incoming funds not collaboratively

finalized, then it is in their best interest to answer the posted chal-

lenge in order to secure their funds. This example also stresses that

no two honest parties should collaboratively finalize a rebalancing

transaction on their payment channel unless both have knowledge

of the full signature set.

A simulation of our model’s effects over pre-existing transac-

tion data from other sources would have further demonstrated its

practicality. Unfortunately, we are limited in how much we can

predict about the internal routing structures that would surface

in real routing networks due to a lack of data from their relative

novelty. Validating the simulation would therefore present a major

obstacle.

6.3 Model Solution Interpretation

In order to demonstrate how solutions to the mathematical models

we have provided can be translated into practical transactions, in



our case for the Sprites payment channel, we present an explanation

of the definitions found in the ’linprog.py’ python file. The defini-

tion of ’linear_program_solution_to_transactions’ is sufficient to

translate the set of payment channel balance changes to a bundle of

equivalent directional transactions. The conversion is quite straight-

forward. If δu,v is positive then, as previously mentioned, funds

should be transferred from u to v. In case of our sprites adaptation,

we need to decrease the credits value of u, and increase that of v, in

order to portray a transfer from u to v. The converse takes place if

δv,u is negative.

7 RELATED WORK

In this section we survey related work.

Blockchain Satoshi Nakamoto presented with the invention of

Bitcoin in the year 2008 [10], the first open and decentralized

blockchain. Many alternative follow up blockchains have emerged

since then, for example Ethereum [17] which allows to express a

richer transaction language through smart contracts. Other propos-

als, such as zcash [26] and Monero [27] have built up on Bitcoin

to enhance the transaction privacy. Bonneau et al. [28] provide an

excellent holistic overview of cryptocurrencies and related work in

the field. With the emergence of smart contracts and more expres-

sive transaction languages, it was shown that smart contracts have

severe security vulnerabilities [29]. Luu et al. [30] provide a sym-

bolic execution tool for current Ethereum smart contract developers

to verify their code. Schnorr signatures[23] have been recently sug-

gested as a possible addition to Bitcoin[31]. This scheme allows

the aggregation of multiple signatures into one which is verifiable

against an aggregate of the relevant public keys in a single step.

Off-Chain Payment Networks: Several off-chain payment solu-

tions have been proposed and can be divided into two categories.

The first category relies on blockchain based time locks (e.g. by

Decker et al. [14]). The channel starts with a commitment transac-

tion which for example lasts for 10 days. The subsequent commit-

ment transaction will then last 9 days, and can thus be spent before

the first transaction. The second category of payment channels re-

lies on punishment, i.e. if one party misbehaves, the other party can

claim all funds of the channel. One instance of this payment chan-

nel is the Lightning Network[6]. The Lightning Network relies on

Bitcoin, while the Raiden Network[8] is currently in development

for the Ethereum blockchain. Existing payment channels are still

in early development and therefore allow for several improvement

proposals. Sprites [7], inspired by Lightning and Raiden aims to

minimize the worst-case collateral costs of indirect off-chain pay-

ments. Flare [9] is another proposal to optimize the search process

of finding a payment route. Bolt [32] provides different construc-

tions that allow for privacy preserving off-chain payment channels.

BitcoinJ, a lightweight Bitcoin client implementation, also supports

micropayment channels [33].

Linear programming: Essentially, a mathematical programming

model aims to represent a practical problem using numerical vari-

ables and parameters. While parameters are numbers that are

known, or set, by the decision maker, the values of variables are

to be determined in the process of solving the program. In a linear

program, a mathematical model may have linear (in)equality con-

straints that bound the possible values of the program variables.

Moreover, there can also be a linear objective function which should

be optimized for [34].

Linear Program Example: A simple linear program example is

the following. Maximize: F (x ,y) = 2x − 3y Subject to:

(1) 120 ≤ x ≤ 210

(2) 70 ≤ y ≤ 190

(3) 250 ≤ x + y

Solution: Max F (x ,y) = 210 at (x ,y) = (210, 70)

Linear programming has been a cornerstone of mathematical op-

timization problems since the introduction of the Simplex method

by Dantzig in 1947 [34]. Even though its theoretical worse-case

performance is exponential in the problem size, it has been found

to be greatly efficient in practice, and has been widely adopted in

numerous industrial fields [24]. Interest developed into why an

algorithm with very expensive worst-case performance costs was

very successful and efficient in practice. The work presented in [24]

analyzes the expected performance of the Simplex method in what

is dubbed a smoothed analysis framework, and provides insight

as to why the algorithm is quite successful despite its worst-case

complexity. Further works aimed to develop linear program solv-

ing methods that have better worst-case guarantees than those of

Simplex. In 1978 Khachivan presented the first polynomial time

algorithm for solving linear programs [35], which achieved a worst

case convergence time polynomial in the number of bits needed to

represent the linear program. Despite its lower theoretical complex-

ity compared to Simplex, the Ellipsoid method performed worse

in practice [24]. In the early 1980s, the interior point method was

introduced by Karmakar [36]. It is also guaranteed to converge in

time polynomial in the linear problem size, but its practical perfor-

mance has been on par with, and sometimes superior to, that of the

simplex method [24].

8 CONCLUSION

Decentralized blockchain ledgers that rely on miners to process

transactions incentivize those miners with a reward for their con-

tributions towards advancing the state of the global ledger. With

the advent of off-chain payment networks, transaction processing

will mostly be concerned with enacting changes to multiple private

off-chain ledgers instead. We have designed the Revive protocol

to maintain the equilibrium of the balances that intermediaries in

a payment network keep among each other. Under ideal circum-

stances, this maintenance would come at no cost to the participants.

This decreases undesirably long routing in case some of the pay-

ment channels in the network start attaining skewed balances.

The core design of Revive can be adapted to a decentralized

ledger environment that allows the enforcement of one transaction,

or lack thereof, to affect the enforcement of another. While we have

found Ethereum, and Sprites, to be suitable environments in which

to practically demonstrate Revive, we encourage the adaptation

of the protocol to other viable candidates. Our general method for

generating a set of rebalancing transaction is based on solving a

linear program. For the purpose of shifting the payment channel



balances of Revive participants towards equilibrium, we have pro-

vided an automatic way for establishing the required rebalancing

objectives.

Off-chain payment routing networks exhibit many challenges

in terms of performance and scalability. For this reason we have

provided a set of guidelines on how to safely adopt Revive in a prac-

tical manner while minimizing exposure to potential performance

penalties.
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9 APPENDIX

9.1 Blockchain Background

9.1.1 Blockchain Transactions. Bitcoin transactions are sent

from so-called addresses to other addresses. An address is a unique

identifier (hash) of a public key. Only the owner of the correspon-

dent private key is eligible to sign an appropriate transaction which

allows to transfer monetary funds.

Interestingly, most currently proposed blockchains have a com-

plex process for evaluating transactions in order to allow for a

higher flexibility and extensibility of the application scenarios6.

Bitcoin transactions are evaluated with a stack-based program-

ming language called Script. Mainly due to security reasons Script

only supports a limited instruction set. The limited instruction

set and the lack of an available high-level programming language

have encouraged the development of blockchain systems support-

ing more intuitive and expressible programming languages. While

there are several such systems (e.g., NXT, Clearmatics), Ethereum is

the most popular one. Ethereum, was introduced in the year 2013 by

Buterin [22], and supports a pseudo7 Turing complete coding sys-

tem. Its cryptocurrency is called ether and Ethereum supports two

kinds of addresses: (i) externally owned addresses (typically owned

by a user) and (ii) contract owned addresses. Ethereum programs

run on the Ethereum Virtual Machine (EVM) [17] and programs in

EVM code are referred to as smart contracts.

To avoid denial-of-service attacks, transactions are required to

pay a fee for their execution. In Bitcoin, each transaction can pay a

transaction fee, while in Ethereum, a transaction pays gas (also to

execute contracts).

6Bitcoin transactions follow the unspent transaction output (UTXO) model, while
Ethereum transactions are not UTXO based.
7Pseudo, because the smart contract execution is halted if insufficient funds are pro-
vided for the execution, i.e. insufficient gas.



9.1.2 Smart Contracts. Any Ethereum user is eligible to write

and publish a smart contract (or contract). Other users can then exe-

cute the smart contract that is recorded in a blockwhich is appended

to the blockchain. Note that all information in the blockchain is pub-

licly available. To execute a contract, a user submits an Ethereum

transaction containing all information required to process the con-

tract. A miner can process the user transaction and commit it by

writing this transaction to a new block (possibly along with other

transactions). A valid block needs to be appended to the latest block

of the blockchain8. A transaction is considered completed, when

it has been added in a block. For security purposes, users should

wait for several block confirmations (i.e., several additional blocks

after the block containing the transaction), before considering a

transaction to be final.

9.2 Smart Contracts

In this section we provide the function signatures and main vari-

ables of our smart contracts.

1 pragma solidity ^0.4.10;

2

3 contract RebalanceAvailabilityContract {

4 function verifySignature ( address pub , bytes32 h,

uint8 v, bytes32 r, bytes32 s) {}

5

6 function verifyAllSignatures ( address [] pub ,

bytes32 h, uint8 [] v, bytes32 [] r, bytes32 []

s) {}

7

8

9 // Challenges can be answered within 5 blocks

10 uint constant CHALLENGE_VALIDITY = 5;

11 uint constant GAS_PRICE_IN_WEI = 25000000000 wei;

12 // 2x sha3 , storage value change , storage value

load , transaction , data bytes

13 uint constant GAS_PER_CHALLENGE_RESPONSE = 60 +

5000 + 200 + 21000 + 68*(32) ;

14 // sha3( address ), ecrecover , data bytes

15 uint constant GAS_PER_PARTICIPANT = 6 + 3000 +

68*(1 + 32*2 + 20);

16

17 mapping ( bytes32 => int ) challenge ;

18

19 // The issued challenge is subsidized by the

participant who raises it.

20 function submitChallenge (

21 address [] participants ,

22 bytes32 transactionMerkleTreeRoot ) payable

{}

23

24 function answerChallenge (

25 uint8 [] V,

26 bytes32 [] R,

27 bytes32 [] S,

28 address [] participants ,

29 bytes32 transactionMerkleTreeRoot ) {}

30

31 function isChallengeSuccess ( bytes32 instanceHash )

returns (bool) {}

32 }

Listing 1: Smart contract defined in challenge.sol.

8This is a simplification: miners “compete” on adding their own block to the top-most
block of the blockchain until they reach a consensus on which miner has succeeded.

1 pragma solidity ^0.4.10;

2

3 contract PaymentChannelRebalanceable {

4

5 // Blocks for grace period

6 uint constant DELTA = 10;

7

8 // Events

9 event EventInit ();

10 event EventUpdate (int r);

11 event LogBytes32 ( bytes32 b);

12 event LogAddress ( address a);

13 event LogInt (int i);

14 event LogUInt (uint ui);

15 event LogInts (int [2] i);

16 event LogUInts (uint [2] ui);

17 event LogBool (bool b);

18 event EventPending (uint T1 , uint T2);

19

20 // Utility functions

21 modifier onlyplayers {}

22 function max(uint a, uint b) internal returns (uint

) {}

23 function min(uint a, uint b) internal returns (uint

) {}

24 function verifySignature ( address pub , bytes32 h,

uint8 v, bytes32 r, bytes32 s) {}

25 function verifyMerkleChain ( bytes32 link , bytes32 []

chain , bool [] markleChainLinkleft ) {}

26

27 // /////////////////////////////

28 // State channel data

29 // /////////////////////////////

30 int bestRound = -1;

31 enum Status { OK , PENDING }

32 Status public status ;

33 uint deadline ;

34

35 // Constant (set in constructor )

36 address [2] public players ;

37 mapping ( address => uint) playermap ;

38 RebalanceAvailabilityContract public rac;

39

40 // ///////////////////////////////////

41 // Payment Channel - Application specific data

42 // //////////////////////////////////

43

44 // State channel states

45 int [2] public credits ;

46 uint [2] public withdrawals ;

47

48 // Externally affected states

49 uint [2] public deposits ; // Monotonic , only

incremented by deposit () function

50 uint [2] public withdrawn ; // Monotonic , only

incremented by withdraw () function

51

52 function sha3int (int r) constant returns ( bytes32 )

{}

53

54 function PaymentChannelRebalanceable (

55 RebalanceAvailabilityContract _rac ,

56 address [2] _players ) {}

57 EventInit ();

58 }

59

60 // Increment on new deposit

61 function deposit () payable onlyplayers {}

62



63 // Increment on withdrawal

64 function withdraw () onlyplayers {}

65

66 // State channel update function

67 function update (uint [3] sig , int r, int [2]

_credits , uint [2] _withdrawals )

68 onlyplayers {}

69

70 // State channel update function when latest

change was due to rebalance

71 function updateAfterRebalance (

72 uint8 [] V,

73 bytes32 [] R,

74 bytes32 [] S,

75 address [] participants ,

76 bytes32 [] transactionMerkleChain ,

77 bool [] markleChainLinkleft ,

78 int r,

79 int [2] _credits ,

80 uint [2] _withdrawals )

81 onlyplayers {}

82

83 // State channel update function when latest

change was due to rebalance

84 function updateAfterRebalanceChallenged (

85 address [] participants ,

86 bytes32 [] transactionMerkleChain ,

87 bool [] markleChainLinkleft ,

88 int r,

89 int [2] _credits ,

90 uint [2] _withdrawals )

91 onlyplayers {}

92

93 // Causes a timeout for the finalize time

94 function trigger () onlyplayers {}

95

96 function finalize () {}

97 }

Listing 2: Smart contract defined in channel.sol. Adapted from

the Sprites payment channel in [7].
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