
RevLib: An Online Resource for

Reversible Functions and Reversible Circuits

Robert Wille1 Daniel Große1 Lisa Teuber1 Gerhard W. Dueck2 Rolf Drechsler1

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{rwille,grosse,teuber,drechsle}@informatik.uni-bremen.de
2Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada

gdueck@unb.ca

Abstract

Synthesis of reversible logic has become an active re-

search area in the last years. But many proposed algorithms

are evaluated with a small set of benchmarks only. Further-

more, results are often documented only in terms of gate

counts or quantum costs, rather than presenting the spe-

cific circuit. In this paper RevLib (www.revlib.org)

is introduced, an online resource for reversible functions

and reversible circuits. RevLib provides a large database of

functions with respective circuit realizations. RevLib is de-

signed to ease the evaluation of new methods and facilitate

the comparison of results. In addition, tools are introduced

to support researchers in evaluating their algorithms and

documenting their results.

1 Introduction

The number of elements integrated within digital cir-

cuits grows exponentially, leading to enormous challenges

in Computer Aided Design (CAD). Due to this exponential

growth physical boundaries will be reached in the near fu-

ture. Furthermore, power consumption of circuits becomes

a major issue. To face these problems the research in the

area of reversible logic and its applications in low-power

design and quantum computing has become an intensely

studied topic.

In the past many researchers have focused on synthesis

of reversible logic (e.g. [16, 13, 1, 10, 8, 18, 19, 7]) us-

ing the different gate libraries including (multiple control)

Toffoli gates [17], Fredkin gates [5], Peres gates [14], and

elementary quantum gates [3]. Several synthesis methods –

heuristic as well as exact ones – have been proposed.

However, most of these approaches are evaluated with

limited sets of benchmarks. Due to page limitations many

synthesis results are presented only by listing the respective

costs but not the concrete circuit realization. This becomes

a significant issue, since some authors use their own cost

metrics, which makes it hard to decide which realization

is better than others. Thus, a complementary comparison

of different algorithms with respect to a large set of bench-

marks is often not possible.

In this paper RevLib (www.revlib.org) is intro-

duced, an online resource for reversible functions and re-

versible circuits. The motivation behind RevLib is to ease

empirical studies in order to improve the evaluation of

new approaches by providing an easy access to a large

and complementary benchmark database. The benefits of

widely used benchmark collections have already been seen

e.g. in the circuit domain with ISCAS benchmarks [4], in

the area of Boolean satisfiability by SATLIB [9] and by

TSPLIB [15] for the traveling salesman problem.

RevLib provides a benchmark suite of reversible func-

tions. For irreversible functions several embeddings (con-

taining constant inputs and gabarge outputs [11]) are avail-

able1. The benchmark suite contains a variety of different

types of problem instances. Furthermore, for each func-

tion specification at least one reversible circuit realization

is given using different gate libraries. Thereby, reversible

circuits obtained from exact approaches as well as heuris-

tic approaches are provided. This allows to compare (new)

algorithms with respect to the achieved quality. Figure 1

provides some screenshots of RevLib.

To fill the database any researcher can submit functions

and/or circuit realizations to RevLib. Since no widely ac-

cepted format for the specification of reversible functions

and reversible circuits exists, a standardized file format is

proposed in this paper. Additionally, several tools are pro-

vided supporting researchers in evaluating their approaches

1Pure reversible functions are also called completely specified func-

tions, while embedded irreversible function are called incompletely speci-

fied functions. Both, completely specified and incompletely specified func-

tions will be defined in so called specifications.



(a) Frontpage

(b) Function page with different specifications and realizations

Figure 1. Screenshots from RevLib



and documenting their results, i.e. a Benchmark Generator

for creating random reversible functions with user-defined

properties and a Quantum Viewer (Quiver) for automatic vi-

sualization of reversible circuits given in the proposed for-

mat.

The rest of the paper is structured as follows. Section 2

describes the benchmark suite provided by RevLib. In Sec-

tion 3 the standardized file formats are specified; Section 4

introduces the tools currently available at RevLib. Some

examples illustrating the advantages of a large benchmark

database are discussed in Section 5. Finally, Section 6 con-

cludes the paper.

2 Benchmark Suite

Generally, benchmark collections should provide a large

variety of problem instances allowing evaluation of differ-

ent types of algorithms. The benchmark suite at RevLib

offers several functions from different domains, such as

arithmetic functions (e.g. adders, divisibility checkers, com-

parators, etc.), encoding functions (e.g. hamming code,

graycode, etc.), classes of functions (e.g. symmetric func-

tions, linear functions, etc.) and algorithm-specific func-

tions (e.g. worst-case functions for heuristic approaches,

hidden weighted bit function, etc.).

In the absence of suitable “real life” functions, it is de-

sirable to generate pseudo random function. In Section 4.1

a tool for generating randomized benchmarks with user-

defined properties is introduced. This tool has the capabil-

ity to reproduce the same set of functions, given the same

parameters. Therefore, only the parameters need to be re-

ported, not the specifications for the functions.

3 File Formats

This section describes the standardized file format used

at RevLib for the specification of reversible functions and

circuits, respectively. Both formats will be defined in ASCII

files consisting of two parts: the header and the specifica-

tion.

3.1 Header

The header contains information about the characteris-

tics of the instance, i.e.:

• Version: In order to support further enhancements, any

changes will be associated with a version number. The

version of a respective file is given by the line starting

with .version.

• Comments: Comments provide human-readable infor-

mation about the respective instance, e.g. a short de-

scription, authors, or similar. A comment line starts

with a # character. All comment lines will be ignored

by programs.

• Number of Variables: The line starting with

.numvars signifies the number n of variables (lines)

of the respective function (circuit). The number has to

be a positive integer.

• Variables: The line starting with .variables sig-

nifies the ordered list of identifiers for the respective

variables (lines). An identifier has to be a sequence

of letters, digits and underscores. In total, n different

identifiers have to be defined in a .variables line

(separated by spaces).

• Inputs/Outputs: The line starting with .inputs

(.outputs) signifies the ordered list of names of

the respective inputs (outputs). A name has to be a

sequence of letters, digits and underscores. In total,

n different names have to be defined in a .inputs

(.outputs) line (separated by spaces). Defining the

inputs (outputs) is optional. By default the names of

inputs (outputs) is equal to the respective identifier of

the variable.

• Constant Inputs: Constant inputs can be definied by a

line starting with .constants followed by a string

containing the values for the input constants (‘1’ for

constant one, ‘0’ for constant zero and ‘-’ if the re-

spective input line is not constant) in the order they

appear without any spaces. Defining constant inputs is

optional. By default all inputs are not constants (i.e. for

each input the value is ‘-’).

• Garbage Outputs: Garbage outputs can be definied by

a line starting with .garbage followed by a string in-

dicating whether an output is garbage or not (‘1’ if the

output is garbage and ‘-’ if the output is not garbage)

in the order they appear without any spaces. Defining

garbage outputs is optional. By default all outputs are

not garbage (i.e. for each output the value is ‘-’).

Following the header either the function or the circuit

have to be specified. Both specifications start with a line

containing the string .begin and end with a line contain-

ing the string .end.

3.2 Function Specification

A reversible function is specified by all its truth table

entries. The ith line (0 ≤ i < 2
n) of the specification gives

the respective output values (1 for one, 0 for zero and - for

don’t care) of the ith line of the truth table by a string in the

order they appear without any spaces.

Example 1 Figure 2 (a) shows a reversible function includ-

ing one constant input as well as garbage outputs and don’t



1 a b f g1 g2

0 0 0 - - -

0 0 1 - - -

0 1 0 - - -

0 1 1 - - -

1 0 0 0 - -

1 0 1 0 - -

1 1 0 0 - -

1 1 1 1 - -

(a) Function (b) Function format (c) Circuit format (d) Circuit

Figure 2. File format example

care outputs given as truth table. The respective specifi-

cation of this function in the proposed format is shown in

Figure 2 (b).

3.3 Circuit Specification

A reversible circuit is specified by all its gates. The spec-

ification lists the gates in the order they appear in the design.

In the current version we distinguish five different gates,

whose specifications are given in Table 3.

Example 2 Figure 2 (d) shows a Toffoli gate network re-

alization of the function considered in Example 1 (drawn

by Quiver introduced in Section 4.2). The respective spec-

ification of this circuit in the proposed format is shown in

Figure 2 (c).

4 Tools

In order to support researchers in evaluating their algo-

rithms and documenting their results RevLib currently pro-

vides two tools: the Benchmark Generator and the Quan-

tum Viewer (Quiver).

4.1 Benchmark Generator

The Benchmark Generator automatically creates random

reversible functions with respect to the following parame-

ters, which have to be given as input:

• the number of variables in the resulting function

• the number of constant inputs in the resulting function

• the number of garbage outputs

• the percentages of the number of don’t care outputs in

the resulting function

Gate Specification

Toffoli A (multiple control) Toffoli gate is signified

by the character t and an integer indicat-

ing the size of the gate followed by a list of

identifiers for the respective lines such that

the target line is at the end of the list. Note

that Toffoli gates include (controlled) NOT

gates as well.

Example: t3 a b c

Fredkin A (multiple control) Fredkin gate is signi-

fied by the character f and an integer indi-

cating the size of the gate followed by a list

of identifiers for the respective lines such

that the targets of the gates are at the end

of the list.

Example: f3 a b c

Peres A Peres gate is signified by the character

p and an integer indicating the size of the

gate followed by a list of identifiers for the

respective lines such that the targets of the

gates are at the end of the list.

Example: p3 a b c

V gate A V gate is signified by the character v and

an integer indicating the size of the gate

(i.e. 2) followed by a list of identifiers for

the respective lines such that the target line

is at the end of the list.

Example: v a b

V+ gate A V+ gate is signified by the characters v+

and an integer indicating the size of the gate

(i.e. 2) followed by a list of identifiers for

the respective lines such that the target line

is at the end of the list.

Example: v+ a b

Figure 3. Specification of gates



 1

 10

 100

 1000

 10000

 0  1  2  3  4  5  6  7  8

D
is
tr
ib
u
ti
o
n

Depth

all

rand500

Figure 4. Distribution of random functions

• the number of instances to be generated

The Benchmark Generator is implemented in C++ and

executable versions for Linux, Windows, and Mac OS are

available. The functions generated with this tool are repre-

sentative with respect to all functions with the same prop-

erties. This was verified by a comparison of all completely

specified functions containing 3 variables (40320 in total)

with 500 random generated functions applying the same

properties. The result is shown in Figure 4. Here, the distri-

bution of the functions with respect to the number of gates

in the resulting minimal Toffoli networks is compared. As

can be seen from the diagram the randomly generated func-

tions show the same distribution as the complete set of 3-

variable functions does.

4.2 Quantum Viewer

The Quantum Viewer (Quiver) is an application to aid the

visualization of reversible quantum circuits. It displays an

image of a circuit (given in the proposed specification) and

saves this image as a bitmap file. A screenshot of Quiver

is given in Figure 2 (d). Currently Toffoli, Fredkin, Peres,

V, and V+ gates are supported. Further gate types (or se-

quences of gates listed above) can be added easily.

Features of the Quiver are:

• displaying the gate count

• calculating the quantum cost of the circuit based on the

decomposition proposed in [2]

• viewing the output of a circuit in truth-table form

• verifying the output of a circuit against a reversible

function specification or a function specification in pla

Quiver is implemented in C++ and executable version for

Linux, Windows, and Mac OS are available.

Table 1. Gate counts of synthesis approaches

BENCHMARK HEUR EXACT

D SRC. D SRC.

alu-v0 18 [8] 7 [6]

decod24-v0 11 [8] 6 [6]

3 17 6 [8] 6 [6]

hwb4 17 [12] 11 [6]

4 49 16 [8] 12 [6]

5 Discussion

In this section some examples are given, which illustrate

why a collection of reversible functions and there respective

realizations is useful for research in the area of reversible

logic. Thereby, we only show the general idea with a small

set of benchmarks.

First, the results of several approaches – heuristic as well

as exact ones – for synthesis of networks containing multi-

ple control Toffoli gates [12, 8, 6, 18] are considered. Some

outcomes are given in Table 1. HEUR denotes the number

of gates a network, obtained by heuristic approaches, con-

tains while EXACT denotes the respective number for the

exact realization. The sources of the results are given in

column SRC.

As expected, the heuristic approaches are not able to de-

termine the exact network for a given function in each case.

However, the direct comparison to the minimal realization

allows a better evaluation of the algorithms. For exam-

ple, the function 3 17 is handled well by the heuristic ap-

proaches. In contrast the network obtained for alu is more

than a factor of two larger than the minimal one.

Another point is that – using RevLib – the concrete net-

works generated by the approaches are available (this is of-

ten not possible in the respective publications due to page

limitations). Analyzing these networks may lead to further

reductions. As an example Figure 5 shows a circuit repre-

senting the function alu obtained by the heuristic approach

proposed in [8]. Here, only output f is of interest since all

remaining ones are garbage outputs. If the concrete real-

ization is available an easy reduction is possible, because

the last eleven Toffoli gates (marked by a dashed rectangle)

only influence the garbage outputs and thus can be removed.

Finally, the effect of applying different gate libraries is

considered. Some result are shown in Table 2. Column T

denotes the gate count of the exact networks containing

multiple control Toffoli networks only. The next columns

list the gate counts when multiple control Toffoli and Fred-

kin gates (T+F), multiple control Toffoli and Peres gates

(T+P) and multiple control Toffoli, Fredkin and Peres gates

(T+F+P) are used, respectively. Obviously, the use of dif-

ferent libraries results in different minimal circuits. With



Figure 5. Realization of alu

the help of a large set of realizations – as RevLib provides –

such effects can be observed more easily.

6 Conclusion

In this paper we introduced RevLib

(www.revlib.org), an online resource for reversible

functions and reversible circuits. RevLib provides a

wide range of reversible functions and their realizations.

Therefore, a standardized format has been introduced for

specifying the respective functions and circuits. Further-

more, tools have been proposed helping researchers in

evaluating their approaches and documenting their results.

Some of the benefits of RevLib have been discussed.

Researchers are welcome to submit their own functions and

circuits to RevLib.

Acknowledgements

We would like to thank Dmitri Maslov for his sugges-

tions. Furthermore, we would like to thank Nathan Scott

for his help in implementing the Quiver.

This work was supported by the German Academic Ex-

change Service (DAAD), which enabled the close contact

between the authors.

References

[1] A. Agrawal and N. K. Jha. Synthesis of reversible logic. In

Design, Automation and Test in Europe, pages 1384–1385,

2004.

[2] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,

N. H. Margolus, P. W. Shor, T. Sleator, J. A. Smolin, and

H. Weinfurter. Elementary gates for quantum computation.

APS Physical Review A, 52(5):3457–3467, 1995.

[3] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVinchenzo,

N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. We-

infurter. Elementary gates for quantum computation. APS

Physical Review A, 52:3457–3467, 1995.

[4] F. Brglez and R. Drechsler. Design of experiments in CAD:

Context and new data sets for ISCAS’99. In Int’l Symp. Circ.

and Systems, volume VI, pages 424–427, 1999.

[5] E. F. Fredkin and T. Toffoli. Conservative logic. Inter-

national Journal of Theoretical Physics, 21(3/4):219–253,

1982.

Table 2. Gate counts for different libraries
Benchmark T T+F T+P T+F+P

3 17 6 5 5 5

mod5d2 8 8 6 6

hwb4 11 9 8 8

rd32-v0 4 4 2 2

alu-v0 6 4 6 4

[6] D. Große, X. Chen, G. Dueck, and R. Drechsler. Exact

SAT-based Toffoli Network Synthesis. In Great Lakes Symp.

VLSI, pages 96–101, 2007.

[7] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact

synthesis of elementary quantum gate circuits for reversible

functions with don’t cares. In Int’l Symp. on Multi-Valued

Logic, 2008.

[8] P. Gupta, A. Agrawal, and N. Jha. An algorithm for syn-

thesis of reversible logic circuits. IEEE Trans. on CAD,

25(11):2317–2330, 2006.

[9] H. H. Hoos and T. Stützle. SATLIB: An Online Resource for

Research on SAT. In I. P. Gent, H. v. Maaren, T. Walsh, edi-

tors, SAT 2000, pages 283–292, 2000. SATLIB is available

online at www.satlib.org.

[10] W. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski.

Optimal synthesis of multiple output Boolean functions us-

ing a set of quantum gates by symbolic reachability analysis.

IEEE Trans. on CAD, 25(9):1652–1663, 2006.

[11] D. Maslov and G. W. Dueck. Reversible cascades with min-

imal garbage. IEEE Trans. on CAD of Integrated Circuits

and Systems, 23(11):1497–1509, 2004.

[12] D. Maslov, G. W. Dueck, and D. M. Miller. Toffoli network

synthesis with templates. IEEE Trans. on CAD, 24(6):807–

817, 2005.

[13] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation

based algorithm for reversible logic synthesis. In Design

Automation Conf., pages 318–323, 2003.

[14] A. Peres. Reversible logic and quantum computers. APS

Physical Review A, (32):3266–3276, 1985.

[15] G. Reinelt. TSPLIB - A Traveling Salesman Problem Li-

brary. In ORSA Journal on Computing, volume 3, pages

376–384, 1991. TSPLIB is available online at www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/.

[16] V. Shende, A. Prasad, I. Markov, and J. Hayes. Synthesis of

reversible logic circuits. IEEE Trans. on CAD, 22(6):710–

722, 2003.

[17] T. Toffoli. Reversible computing. In W. de Bakker and J. van

Leeuwen, editors, Automata, Languages and Programming,

page 632. Springer, 1980. Technical Memo MIT/LCS/TM-

151, MIT Lab. for Comput. Sci.

[18] R. Wille and D. Große. Fast exact Toffoli network synthesis

of reversible logic. In Int’l Conf. on CAD, pages 60–64,

2007.

[19] R. Wille, H. M. Le, G. W. Dueck, and D. Große. Quantified

synthesis of reversible logic. In Design, Automation and Test

in Europe, 2008.


