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Abstract: Attribute-based proxy re-encryption (ABPRE), which combines the notions of proxy re-encryption

(PRE) and attribute-based encryption (ABE), allows a semi-trusted proxy with re-encryption key to trans-

form a ciphertext under a particular access policy into a ciphertext under another access policy, without

revealing any information about the underlying plaintext. This primitive is very useful in applications

where encrypted data need to be stored in untrusted environments, such as cloud storage. In many practical

applications, and in order to address scenarios where users misbehave or the re-encryption keys are

compromised, an efficient revocationmechanism is necessary for ABPRE. Previously, revocationmechanism

was considered in the settings of identity-based encryption (IBE), ABE, predicate encryption (PE), and

broadcast PRE, but not ABPRE, which is what we set to do in this paper. We first formalize the concept of

revocable ABPRE and its security model. Then, we propose a lattice-based instantiation of revocable ABPRE.

Our scheme not only supports an efficient revocationmechanism but also supports polynomial-depth policy

circuits and has short private keys, where the size of the keys is dependent only on the depth of the supported

policy circuits. In addition, we prove that our scheme is selectively chosen-plaintext attack (CPA) secure in

the standard model, based on the learning with errors assumption.

Keywords: attribute-based encryption, proxy re-encryption, revocable mechanism, attribute-based proxy

re-encryption, learning with errors

MSC 2020: 11T71

1 Introduction

With the rapid spread of modern applications, such as cloud computing, the issues of data security and

privacy attract increasing attention. Hence, various cryptographic primitives have been proposed to alle-

viate these problems. An important example of such potential primitives is proxy re-encryption (PRE),

which was shown to be useful in many applications such as distributed file system [3], data storage [12]

and publish/subscribe system [36]. PRE, initially introduced by Blaze et al. [6], is an attractive crypto-

graphic primitive that allows a semi-trusted proxy with re-encryption key to efficiently convert a ciphertext

encrypted for a delegator (e.g., Alice) into another ciphertext of the same message encrypted under a

delegatee’s (e.g., Bob’s) key, without revealing the underlying plaintext and the private keys of the dele-

gator and the delegatee. However, in the traditional PRE systems, the communication model is one-to-one

(i.e., one delegator to one delegatee), which means that a message can be re-encrypted for only a single

public key. This limits their utility in many applications, where the re-encryption may be used for arbitrary

recipients. One such important application is data sharing in untrusted cloud storage. In a cloud storage

system, data owners are often interested in sharing their encrypted data with users satisfying a specific

access policy. To enable such granular data sharing requirement, Liang et al. [26] introduced the notion of
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attribute-based proxy re-encryption (ABPRE) that combines PRE with attribute-based encryption (ABE) and

presented the first ABPRE scheme based on Augment Decisional Bilinear Diffie–Hellman problem.

Attribute-based proxy re-encryption. ABPRE is an extension of PRE with additional features that allow

fine-grained and role-based access to encrypted data. Similar to the ABE system, there are two types of

ABPRE: Key-Policy ABPRE (KP-ABPRE) and Ciphertext-Policy ABPRE (CP-ABPRE). In an ABPRE system, a

semi-trusted proxy with access to a re-encryption key (generated by delegators) can transform ciphertexts

for delegators satisfying an access policy (e.g., ( ) =f x 0¹ for some policy function f and attribute x) into

ciphertexts for delegatees satisfying a new access policy (e.g., some policy function g which satisfies

( ) =g x 1). Since the introduction of ABPRE by Liang et al. [26], there have been many proposals for ABPRE

schemes on different settings based on different hardness assumptions [17,18,25,26,43], but all of these

schemes are based on classical number-theoretic assumptions, which are not quantum-resistant. The only

exception is the CP-ABPRE scheme based on learning with errors (LWE) problem proposed by Li et al. [24],

which is proven CPA secure in the selective security model. LWE problem was widely used to construct

various quantum-resistant schemes due to its simple algebraic structure and the classical (quantum)

reduction from some lattice problems (e.g., GapSVP), which were conjectured to be resistant against

quantum attacks. However, to the best of our knowledge, the problem of constructing quantum-resistant

KP-ABPRE schemes remains open.

1.1 Motivations

The ABPRE system achieves both delegation of decryption and fine-grained access control. However, in

many practical applications, an efficient revocation mechanism is necessary for ABPRE. In a KP-ABPRE

system, ciphertexts with respect to an attribute x can be decrypted by users who have policy functions f

satisfying ( ) =f x 0, but not by users who have policy functions g satisfying ( ) =g x 1. With the re-encryption

keys →rkf g produced by the policy functions f satisfying ( ) =f x 0 for policy functions g satisfying ( ) =g x 1,

the ciphertexts can be converted into the re-encrypted ciphertexts of the same messages that are decryp-

table under the policy functions g satisfying ( ) =g x 1. This all-or-nothing delegation of decryption is

undesirable from the perspective of data senders because the data senders may not want some users²

whose policy functions ′g do not satisfy ′( ′) =g x 0 for some attributes ′x to access some encrypted data.

In other words, it is desirable for data senders to be able to selectively revoke some users, without being

constrained by delegation of decryption. Moreover, when some re-encryption keys are compromised, it is

better to invalidate the re-encryption keys in order not to affect the decryption capabilities of delegators

who generate the re-encryption keys.

However, user revocation is a challenge in many one-to-many and many-to-many communication

systems. In attribute-based systems, this issue is difficult since each attribute is shared by multiple users;

that is, revocation of a single user may affect others who share the same attributes. Moreover, user revoca-

tion in attribute-based systems needs to be flexible and support different granularities. That is, it may be

required to revoke either the entire access privilege or just partial access right of the user, i.e., a subset of

her attributes. In ABPRE systems, user revocation is even more difficult since it may affect the re-encryption

keys and thus the corresponding delegators.

In general, there are two types of revocation mechanisms: indirect revocation [7], which requires the

authority to master revocation list and periodically issue key updates for non-revoked users, and direct

revocation, which does not require key updates. The latter has been discussed for ABE [4] and predicate

encryption (PE) [33]. In this paper, we focus on direct revocation on ABPRE as it is useful to have an ABPRE

scheme that supports fine-grained delegation of decryption and user revocation.



1 Hereafter, we use ( ) =f x 0 to denote the ability of decryption.

2 Or these users may become malicious in the view of the data senders.
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1.2 Our results and techniques

We first formalize the notion of revocable KP-ABPRE and its security model. Our notion supports an efficient

revocation mechanism while maintaining the functionality of KP-ABPRE. The security model takes into

account all adversarial capabilities of the standard CPA security of ABPRE. In addition, we assume that the

adversary is able to revoke users of his choice and has access to re-encryption keys generated for the

revoked users. Then, we put forward an instantiation of revocable KP-ABPRE from lattices and prove

that it is selectively CPA secure in the standard model as per our security definition. Moreover, if we do

not revoke any user (let the revocation list be an empty set), our scheme would yield the first lattice-based

KP-ABPRE scheme, which is, unlike previous KP-ABPRE schemes [17,18,25,26,43], quantum safe.

At a high level, we obtain our revocable KP-ABPRE scheme by applying the tree-based revocation

technique proposed by Naor et al. [32] to the lattice-based KP-ABE scheme of Boneh et al. [8]. In particular,

we first build a complete binary treeBT with N leaves, where N is the maximum expected number of users.

Each node γ in the binary tree is associated with an “identifier” and each target user is assigned an index

∈ [ ]I N . The secret key skf for a policy function f , which is only associated with the policy function f , is

generated using the master secret key, and the re-encryption key →( )rkf g I, for a pair ( )g I, is generated using

the secret key skf . The re-encryption key →( )rkf g I, consists of some matrices corresponding to all nodes in the

tree path from I to the root. Then, when generating a ciphertext c of message μ with respect to an attribute x

and revocation listRL, the sender generates two layers: one is associated with the attribute x, and the other

is associated with the non-revoked users (the corresponding nodes are obtained using a node selection

algorithm). With the secret key skf , we can correctly recover the underlying plaintext μ from the ciphertext c

if ( ) =f x 0. With the re-encryption key →( )rkf g I, , we can convert the ciphertext c into a re-encrypted cipher-

text →( )cf g I, , and we can correctly recover the plaintext μ from the ciphertext →( )cf g I, with the secret key skg if

RL∉I . We emphasize that RL is kept hidden in our scheme.

In terms of efficiency, our scheme supports polynomial-depth policy function and has short secret key,

where the size of the key depends only on the depth of the supported policy function. Specifically, we

obtain the following results: the size of the public parameters is ( )O N , the size of keys (including the re-

encryption key) is ( )O Nlog , the ciphertext has size ( )O r log
N

r
, where r is the number of revoked users, and

the re-encrypted ciphertext has size ( )O r Nlog log
N

r
. Indeed, the secret key is a single ×m m2 2 low-norm

matrix. Since = ( )m n qΘ log and qlog grows linearly with the depth of the policy circuit d, the size of the

secret key grows as ( )O d2 , which is independent of the size of the supported policy function.

1.3 Related work

Chen et al. [14] proposed the first lattice-based directly revocable IBE scheme, building upon the lattice-

based IBE scheme in ref. [1]. Takayasu andWatanabe [39] proposed the first lattice-based directly revocable

IBE with bounded decryption key exposure resistance (DKER), which is a security notion introduced for

revocable IBE to guarantee that an exposure of a user’s decryption key at some period of time will not

compromise the confidentiality of ciphertexts that are encrypted for different time periods. Recently, Kat-

sumata et al. [21] proposed the first lattice-based indirectly revocable IBE with DKER without relying on the

key re-randomization property, which was used in the previous constructions [23,34,42] based on number-

theoretic assumptions, e.g., bilinear maps and multilinear maps.

The first lattice-based indirectly revocable CP-ABE scheme was proposed by Wang et al. [40], which

combines lattice-based revocable IBE [14] with the lattice-based CP-ABE scheme [41]. Based on the lattice-

based revocable IBE of Chen et al. [14], Yang et al. [44] also proposed a lattice-based indirectly revocable

CP-ABE scheme. In ref. [44], the authors adopted the threshold decryption technique of ref. [5] to recover

the key, which makes their scheme support flexible threshold access control. Recently, Meng [29] pointed
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out some security issues of the aforementioned two schemes and proposed two lattice-based directly

revocable CP-ABE schemes, which support flexible threshold access policies on multi-valued attributes.

By applying the tree-based revocation technique of Naor et al. [32] to the LWE-based PE scheme

proposed by Agrawal et al. [2], Ling et al. [27] proposed the first lattice-based directly revocable PE scheme

and its server-aided variant [28], where most of the computations of the users are delegated to an untrusted

server. The functionality of the untrusted server in ref. [28] is to help the key generation center (KGC)

achieve user revocation and reduce the users’ computational burden by converting the ciphertext into a

“partially decrypted ciphertext.” However, the semi-trusted proxy in our revocable ABPRE system is used to

achieve fine-grained delegation of decryption and help the data senders (not KGC) realize user revocation.

Recently, Ge et al. [16] applied the revocation mechanism proposed for identity-based broadcast

encryption (IBBE) by Susilo et al. [38] to identity-based broadcast proxy re-encryption (IB-BPRE) and

proposed the first revocable IB-BPRE scheme based on bilinear pairings. BPRE was originally proposed

by Chu [15] to handle the one-to-many communication model, so that the system does not need to generate

a re-encryption key for each delegatee in a specific group, but only needs to generate a broadcast re-

encryption key. This notion is similar to ABPRE, which focuses on many-to-many communication model.

1.4 Organization

The rest of the paper is organized as follows: in Section 2, we give the required background on lattices,

including LWE, lattice trapdoors, matrix embeddings, and the complete subtree (CS)method. The definition

of revocable KP-ABPRE including its syntax and security model are provided in Section 3. In Section 4, we

propose our revocable KP-ABPRE scheme in the standard model based on the LWE problem and give a full

security proof. Finally, we conclude the paper with several open problems in Section 5.

2 Preliminaries

We use lower-case bold letter to denote vector x and upper-case bold letter to denote matrix A. The ith

component of any set r is represented by ri. Throughout the paper, we consider truncated discrete Gaussian

distribution ��σ, m and we let [ ] ≜ { … }n n1, , . Let AT (resp. xT) be the transpose of A (resp. x). For any vector

�∈b m, we use ∥ ∥b to denote its ℓ2 length, i.e., ∥ ∥ ≔ ∑ =b bi
m

i1
2 . The norm of any matrix �∈ ×A m k is

represented by ∥ ∥A which denotes the ℓ2 length of its longest column vector, we use ∥ ∥A GS to denote the

norm of its Gram–Schmidt (GS) orthogonalization, and we define ∥ ∥ ≔ ∥ ∥∥ ∥=A Aesup e2 1 . Then, we have

∥ ∥ ≤ ∥ ∥ ≤ ∥ ∥ ≤ ⋅∥ ∥mA A A AGS 2 and ∥ ∥ ≤ ∥ ∥ ⋅∥ ∥AB A B2 2 2 for any �∈ × ′B k k .

2.1 Lattice background

An m-dimensional integer lattice Λ is a discrete additive subgroup of �m. A q-ary integer lattice and a

“shifted” integer lattice are defined as follows.

Definition 2.1. For ≥q 2, �∈ ×A q
n m, and �∈u q

n, we define

�

�

( ) = { ∈ = }
( ) = { ∈ = }

⊥ q

q

A x Ax

A x Ax u

Λ : 0 mod .

Λ : mod .

q
m

q
mu

Note that if ∈ ( )y AΛq
u , then ( ) = ( ) +⊥A A yΛ Λq q

u .
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Lemma 2.2. [8,19,31] Given positive integers n, >q 2, and >m n. Given �∈ ×A q
n m and a short basis TA for

lattice ( )⊥ AΛq , for any ≥ ∥ ∥ ⋅ ( )σ ω mT logA GS , �∈u q
n and �∈ ×D q

n m, we have

1. �[ ]← ∣∥ ∥ > ⋅ ≤ (− / )( ) m σ mx xPr exp 2σ A,Λq
u .

2. There exists a probabilistic polynomial time (PPT) algorithm ( )SamplePre σA T D, , ,A which outputs a

matrix ∈ ( )X AΛq
D distributed statistically close to � ( )σ A,Λq

D .

3. �[ ]← ∣∥ ∥ > ⋅ ≤ (− / )( ) m σ mR RPr exp 2σ A,Λ 2
2

q
D .

4. [ ← {− } ∣∥ ∥ > ] ≤ (− / )× m mS SPr 1, 1 20 exp 2m m
2 .

Lemma 2.3. [1] Given >q 2 and > ( + ) + ( )m n q ω n1 log log . For some polynomial = ( )k k n , choose three

uniformly random matrices ∈ {− } ×U 1, 1 m k, �∈ ×A q
n m, and �∈ ×B q

n k. For all vectors �∈r q
m, the distributions

( )A AU U r, , T and ( )A B U r, , T are statistically indistinguishable.

Definition 2.4. If [∣ ∣ > ] ≤← − ( )e BPr 2e χ
nΩ̃

n
, the distribution ensemble �{ } ∈χn n is called B-bounded over inte-

gers LWE.

LWE. Given n, ≥q 1, ≥ ( )m O n qlog , and a distribution = ( )χ χ n over�, the LWEn q m χ, , , problem is defined to

distinguish between the following two distributions:

( + ) ( )A A s e A u, and , ,T

where �∈ ×A q
n m, �∈s q

n, ∈ χe m, �∈u q
m are independently sampled.

Lemma 2.5. [11, 35] Given = ( ) ≤q q n 2n and B-bounded distribution = ( )χ χ n where = ( ) / ≥B B n q B, 2n
ε

, for all

>ε 0, we have that the LWEn q m χ, , , problem is as hard as the quantum hardness of SIV Pγ and the classical

hardness of GapSV Pγ where = ( )γ 2 nΩ ε

.

2.2 Lattice trapdoors and matrix embeddings

Gadgetmatrix. For integers ≥q 2 and ≥n 1, Micciancio and Peikert [30] defined a special matrix (known as

gadget matrix) as �≔ ⊗ ∈ ×G I gn q
n M for = ⌈ ⌉M n qlog and �≔ ( … ) ∈⌈ ⌉− ⌈ ⌉g 1, 2, , 2 q

q
qlog 1 log , and defined the

inversion function as � → { }− × ×G : 0, 1q
n M M M1 . Hence, given any matrix �∈ ×A q

n M, we have ⋅ ( ) =−G G A A1 ,

where ∥ ( )∥ ≤− MG A1
2 (by Claim 2.3 in ref. [8]). In addition, �∈ ×G q

n M can be extended to a matrix  �∈ × ′G q
n M

for ′ >M M (e.g., by padding zero) and the corresponding inversion function −G 1
is defined in a similar way.

Definition 2.6. (G-trapdoor, [30]) Let �∈ ×A q
n m and �∈ ×G q

n w be a gadget matrix, where ≥ ≥m w n. A

matrix �∈ ( − )×R m w w satisfying






=A

R

I
HG

w

is called a G-trapdoor for A, where �∈ ×H q
n n viewed as the tag of the trapdoor is invertible.

Based on the notion of G-trapdoor, Micciancio and Peikert [30] gave the following lemma showing that

a good basis for ( )⊥ AΛq can be obtained from the G-trapdoor R.
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Lemma 2.7. [30] Given a matrix �∈ ×A q
n m along with aG-trapdoor �∈ ( − )×R m w w and a tag �∈ ×H q

n n. Let

�∈ ×S w w be any basis for ( )⊥ GΛq . Then the matrix













= − −S
I R

0 I

I 0

W S

m w

w

m w
A

is a basis for ( )⊥ AΛq , where �∈ ×( − )W w m w is an arbitrary solution to = − ( ∣ )− − qGW H A I 0 modm w
T1 and

∥ ∥ ≤ ∥ ∥ ⋅(∥ ∥ + )S S R 1A GS GS 2 .

Throughout the paper we need the following algorithms which show the properties of lattice trapdoors.

Lemma 2.8. [1,13] Given ≥n 1, ≥q 2, ′ ≥m m m n¯ , , ˜ , and = ( )m n qΘ log , we have the following polynomial-

time algorithms:

• There is a PPT algorithm ( )TrapGen q1 , 1 ,n m that outputs a matrix �∈ ×A q
n m distributed statistically close to

uniform and a short basis �∈ ×T m m
A for ( )⊥ AΛq where ( )∥ ∥ ≤ O n qT logA GS .

• There is a PPT algorithm SampleBasisLeft(A, B, TA, s) that, given matrices �∈ ×A B, q
n m, a short basis TA

for lattice ( )⊥ AΛq and ≥ ∥ ∥ ⋅ ( )s ω mT logA GS , outputs a basis ( ∣ )TA B for ( ∣ )⊥ A BΛq distributed statistically close

to �( )( ∣ )⊥s
m

A B,Λq
.

• There is a PPT algorithm ( )SampleBasisRight sA G S T, , , ,G that, given matrices �∈ ×A G, q
n m, a low-norm

matrix �∈ ×S m m, a short basis TG for lattice ( )⊥ GΛq and ≥ ⋅(∥ ∥ + )⋅ ( )s ω mS5 1 log2 , outputs a basis

( ∣ + )TA AS G for ( ∣ + )⊥ A AS GΛq distributed statistically close to �( )( ∣ + )⊥s
m

A AS G,Λq
.

• There exists a PPT algorithm SampleLeft(A, B, TA, D, τ) that, given matrices �∈ ×A D, q
n m, �∈ ×B q

n m̄, a

short basis TA for lattice ( )⊥ AΛq and ≥ ∥ ∥ ⋅ ( ( + ))τ ω m mT log ¯A GS , outputs a matrix �∈ ( + )×R q
m m m¯ distributed

statistically close to � ( ∣ )τ A B,Λq
D . Furthermore, for any random matrices �′ ′ ∈ × ′B D, q

n m and ≥ ∥ ∥ ⋅τ TA GS

( ( + ′))ω m mlog . Let 
�

�← ( + ′)× ′R s, m m m and compute  = ( ∣ ′)⋅D A B R. Then, the distribution  ( )A D R, , is sta-

tistically close to the distribution ( ′ ′)A D R, , , where ′ ← SampleLeftR (A, ′ ′B T D, ,A , τ).

• There exists a PPT algorithm SampleRight(A, G, R, TG, D, τ) that, on input matrices �∈ ×A G, q
n m, a low-

norm matrix �∈ ×R m m, a basis TG for lattice ( )⊥ GΛq , a random matrix �∈ ×D q
n m̃, and a parameter

≥ ⋅(∥ ∥ + )⋅ ( )τ ω mR5 1 log2 , outputs a matrix �∈ ×E q
m m2 ˜ distributed statistically close to � ( )τ F,Λq

D where

≔ ( ∣ + )F A AR G .

• There is a publicly known basis TG for ( )⊥ GΛq where �∈ ×G q
n m is a gadget matrix and ∥ ∥ ≤T 5G GS .

In fact, the above SampleBasisRight algorithm can be obtained from Lemma 2.7, and SampleRight

algorithm can be obtained by combining Lemma 2.7 with SamplePre algorithm of Lemma 2.2. We will show

how to obtain a variant of SampleRight algorithm which we call ExtSampleRight. Looking ahead, the

security proof of our scheme relies on the following ExtSampleRight algorithm.

Lemma 2.9. Given ≥n 1, ≥q 2, ′ ≥m n, and = ( )m n qΘ log . Let matrices �∈ ×A G, q
n m, two low-normmatrices

�∈ ×R R, m m
1 2 , a basis TG for lattice ( )⊥ GΛq with∥ ∥ ≤T 5G GS , a randommatrix �∈ × ′D q

n m , and a parameter ≥σ
⋅ (∥ + ∥ + )⋅ ( )ω mR R5 1 log 31 2 2 . Then there exists a PPT algorithm ( + )ExtSampleRight σA G R R T D, , , , ,G1 2

that outputs a matrix �∈ × ′E q
m m3 distributed statistically close to � ( )σ F,Λq

D , where ≔ ( ∣ + ∣ + )F A AR G AR G1 2 ,

≔ ( ∣ ∣ + )F A AR AR G1 2 or ≔ ( ∣ + ∣ )F A AR G AR1 2 .
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Proof. It suffices to prove the case when ≔ ( ∣ + ∣ + )F A AR G AR G1 2 . Since

















−( + )
=F

R R

I

I

I G2 ,m

m

n

1 2

thematrix − ( + )R R1 2 is aG-trapdoor forFand I2 n is the tag.ByLemma2.7,we cangenerateabasis �∈ ×S q
m m

F
3 3

for ( )⊥ FΛq with∥ ∥ ≤ ⋅(∥ + ∥ + )S R R5 1F GS 1 2 2 .With thebasisSF, sample �∈ ← ( )× ′ σE SamplePre F S D, , ,q
m m

F
3 ,

which is distributed statistically close to� ( )σ F,Λq
D , as required. □

Remark 2.10. It is not hard to see that the aforementioned lemma can be extended to the case when

≔ ( ∣ + ∣⋯∣ + )ν νF A AR G AR Gt t1 1 for any �∈ ∈ [ ]ν i t,i and ≥t 1 as long as +⋯+ ≠ν ν 0t1 holds.

Matrix embeddings. Boneh et al. [8] proposed an ABE scheme for arithmetic circuits by introducing an

approach of embedding circuits into LWE matrices. This method has subsequently been used for a number

of other LWE-based constructions such as PE [20], constrained PRFs [10], private puncturable PRFs [9], and

watermarking for PRFs [22]. Below we summarize the properties of the matrix embeddings.

Lemma 2.11. [8,20] Given parameters ( )λ n m q χ, , , , , where λ is a security parameter and χ is a B-bounded

distribution. For any matrices �… ∈ℓ ×B B, , q
n m

1 , any Boolean circuit { } → { }ℓf : 0, 1 0, 1 of depth ≤ d, and any

∈ { }ℓx 0, 1 , if

= ( + ) + ∀ ∈ [ℓ]ic B x G s ei i i
T

i

for some vector �∈s q
n and ← χei

m for ∈ [ℓ]i , then there exist algorithms (Evalpk, Evalct, Evalsim).

• ( ( … )) →ℓfEval B B B, , ,pk f1 : On input a circuit f and ℓ matrices ( … )ℓB B, ,1 , output a matrix Bf .

• ( {( )} ) →∈[ℓ]fEval B x c c, , ,ct i i i i f : On input a circuit f , ℓ matrices ( … )ℓB B, ,1 , length ℓ string x, and ℓ vectors
( … ℓc c, ,1 ), output a vector cf , satisfying

= ( + ( ) ) +fc B x G s e ,f f
T

f

where = ( ( … ))ℓfB Eval B B, , ,f pk 1 and ∥ ∥ ≤ ⋅ ( + )B m me 1f
d with all but negligible probability.

• ( {( )} ) →∗ ∗
∈[ℓ]

∗fEval S x A S, , ,sim i i i f : On input a circuit f , ℓ matrices �… ∈∗
ℓ
∗ ×S S, , q

m m
1 , a matrix �∈ ×A q

n m, and

length ℓ string ∗x , output a matrix �∈∗ ×S f q
m m, satisfying

− ( ) =∗ ∗fAS x G B ,f f

where = ( ( − … − ))∗ ∗
ℓ
∗
ℓ
∗fB Eval AS x G AS x G, , ,f pk 1 1 .Moreover, if … ∈ {− }∗

ℓ
∗ ×S S, , 1, 1 m m

1 , then∥ ∥ ≤ ⋅∗ mS 20f 2

( + )m 1 d with all but negligible probability.

2.3 The CS method

The CS method, introduced by Naor et al. [32], has been extensively used to realize user revocation. The CS

algorithm first builds a complete binary treeBT and employs the following notation: If γ is a non-leaf node,

then γL and γR denote the left and right children of γ, respectively; if ′γ is a leaf node, the setPath( ′)γ denotes

all nodes on the path from ′γ to the root (including ′γ and the root). The CS algorithm runs a node selection

algorithm called the KUNodes algorithm as described in Algorithm 1 that, taking as input BT and a

revocation listRL, outputs a set of nodesY . As shown in ref. [32], the setY generated byKUNodes BT RL( ),

has a size at most r log
N

r
, where RL= ∣ ∣r .
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Algorithm 1: KUNodes algorithm

Input: BT, RL.
Output: Y .

RL← ∅ ∀ ∈X Y γ1. , ; , set Path← ∪ ( )X X γ .

∀ ∈γ X2. :

If ∉γ XL , set ← ∪ { }Y Y γL ;

If ∉γ XR , set ← ∪ { }Y Y γR .

3. If = ∅Y , set root← ∪ { }Y Y .

4. Return Y .

3 Revocable key-policy ABPRE

We introduce the notion of revocable KP-ABPRE and its game-based definition of security. Let � be a

message space, � be an attribute space, and � be an index space. A revocable KP-ABPRE scheme for a

family of functions � �= { → { }}f : 0, 1 contains polynomial-time algorithms (Setup, KeyGen, Enc, Dec,

ReKeyGen, ReEnc, and ReDec), which is defined as follows:

• Setup(1λ). Take as input a security parameter λ, output a state information ST, a public key pk, and a

master secret key msk.

• KeyGen(msk f, ). Take as input msk and a function �∈f , output a secret key skf .

• Enc( RLmpk μ x, , , ). Take as input mpk, a message �∈μ , an attribute �∈x , and a revocation list

RL �⊆ , output a ciphertext c. We call it “fresh” ciphertext.

• Dec(sk c x, ,f ). Take as input skf , c, and ∈ { }ℓx 0, 1 , output a message �∈μ if ( ) =f x 0, and ⊥ otherwise.
• ReKeyGen ST( )sk g I, , ,f . Take as input skf , a stateST, a function �∈g , and an index �∈I , output a re-

encryption key →( )rkf g I, , and an updated state ST.
• ReEnc ( )→( )rk c x, ,f g I, . Take as input a re-encryption key →( )rkf g I, , a ciphertext c, and �∈x , output a re-

encrypted ciphertext →( )cf g I, if ( ) =f x 0.³ Otherwise, output⊥. Note that the ciphertext c with respect to x

is invalid for the re-encryption key →( )rkf g I, if ( ) =f x 1.

• ReDec ( )→( )sk c,g f g I, . Take skg (which, like skf , was generated by the KeyGen algorithm) and a re-

encrypted ciphertext →( )cf g I, as input, output a message �′ ∈μ or ⊥ otherwise.

Correctness. There are two cases for the correctness of the revocable KP-ABPRE scheme: one case for fresh

ciphertext, and the other case for re-encrypted ciphertext. We say the correctness of the revocable KP-

ABPRE scheme is guaranteed if the following holds:

• For all ST( ) ← ( )pk msk Setup, , 1λ , all ← ( )sk msk fKeyGen ,f for �∈f , all message �∈μ , all RL �⊆ ,

and all attribute �∈x , we have

RL[ ( ( ) ) = ] = − ( )sk pk μ x x μ λDec EncPr , , , , , 1 neglf

if ( ) =f x 0.

• For all ST( ) ← ( )pk msk Setup, , 1λ , all ← ( ) ← ( )sk msk f sk msk gKeyGen KeyGen, , ,f g for �∈f g, , all

message �∈μ , all RL �⊆ , and all attribute �∈x , we have

[ ( ( )) = ] = − ( )→( )sk rk c x μ λReDec ReEncPr , , , 1 neglg f g I,



3 Note that we can check if ( ) =f x 0.
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if ( ) =f x 0 and RL∉I , where RL= ( )c pk μ xEnc , , , and ST← ( )→( )rk sk g IReKeyGen , , ,f g I f, . Otherwise,

we have

[ ( ( )) = ⊥] = − ( )→( )sk rk c x λReDec ReEncPr , , , 1 negl .g f g I,

Definition 3.1. [Multi/Single-hop]. A revocable KP-ABPRE scheme is multi-hop if a semi-trusted proxy can

perform further re-encryption procedures on any re-encrypted ciphertext. Otherwise, it is single-hop.

3.1 Security definition

Since revocable ABPRE is ABPRE with revocation mechanism, we adapt the CPA security of ABPRE given in

ref. [26] to obtain the CPA security for revocable KP-ABPRE. We consider the CPA security in the selective

model, where the adversary � is required to declare the challenge attribute ∗x and revocation list RL∗

beforehand. We define the following game � ( )Expt 1λCPA that describes the interaction between a challenger

and a PPT adversary � .

1. Setup: � announces an attribute �∈∗x and a revocation list RL �⊆∗ . The challenger computes

ST( ) ← ( )pk msk Setup, , 1λ and returns pk to � .

2. Query phase 1: The challenger and � proceed as follows:

–Key query�KeyGen:� sends a function �∈f to the challenger, the challenger replies with skf by runn-

ing ← ( )sk msk fKeyGen ,f .

–Re-encryption key query �ReKeyGen: � sends a pair � � �( ) ∈ × ×f g I, , to the challenger, the chal-

lenger returns ⊥ if ST∈I . Otherwise, the challenger returns a re-encryption key →( )rkf g I, by running

ST← ( )→( )rk sk g IReKeyGen , , ,f g I f, and updates the state ST ST← ∪ { }I .
–Re-encryption query �ReEnc: � sends ( )c x f g I, , , , to the challenger, where ( ) =f x 0, the challenger

returns a re-encrypted ciphertext →( )cf g I, by running ← ( )→( ) →( )c rk c xReEnc , ,f g I f g I, , if ST∈I . Otherwise,

the challenger computes a re-encryption key →( )rkf g I, as in �ReKeyGen, updates the state ST ST← ∪ { }I ,
and returns a re-encrypted ciphertext →( )cf g I, by running ← ( )→( ) →( )c rk c xReEnc , ,f g I f g I, , .

3. Challenge query:� submits a pair of messages ( )μ μ,0 1 , the challenger chooses a uniformly random bit

← { }b 0, 1 and returns RL← ( )∗ ∗ ∗c pk μ xEnc , , , .

4. Query phase 2: The same as Query phase 1.

5. For simplicity, we use legal to denote the event, where �KeyGen is subject to the condition: ( ) =∗f x 1,

�ReKeyGen is subject to the condition: ( ) =∗f x 1 or RL( ( ) = ∈ )∗ ∗f x I0, , and �ReEnc is subject to the con-

dition: ( ≠ ( ) = )∗ ∗x x f x, 1 or RL( ( ) = ∈ )∗ ∗f x I0, .

6. Output:� returns a bit ∈ { }b̃ 0, 1 ,	 outputs ′ =b b̃ if legal, and a uniformly random bit ′b otherwise.� ’s

advantage in winning the experiment � ( )Expt 1λCPA is defined

� ( ) = ∣ [ ′ = ] − / ∣b bAdv 1 Pr 1 2 .λCPA

In the above game, the restrictions prevent the adversary to trivially win the game by decrypting the

challenge ciphertext ∗c . It is not hard to prove that for �KeyGen and �ReKeyGen. Recall that the ciphertext c

with respect to x is invalid for the re-encryption key →( )rkf g I, if ( ) =f x 1. Thus, given any query ( )c x f g I, , , , ,

the challenger can check if ( ) =f x 0, so it is reasonable to assume that ( ) =f x 0, because the challenger can

reject the query if ( ) =f x 1. Now that ( ) =f x 0, we have ≠ ∗x x or RL( = ∈ )∗ ∗x x I, . This is because if = ∗x x ,

then ( ) =∗f x 0 and hence the adversary can obtain a re-encrypted ciphertext →( )
∗cf g I, from the challenge

ciphertext ∗c with respect to ∗x , which means that she can trivially win the game by decrypting →( )
∗cf g I, using

the secret key skg if RL∉ ∗I , where ( ) =∗g x 1. Since ( ) =f x 0, the condition RL( = ∈ )∗ ∗x x I, is equivalent to
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RL( ( ) = ∈ )∗ ∗f x I0, . We remark that the condition ( ≠ ( ) = )∗ ∗x x f x, 1 is a little strong, since we do not have

( ) =∗f x 1 from ≠ ∗x x and ( ) =f x 0.

A stronger notion is the adaptive security model, where � announces the challenge attribute ∗x and

revocation list RL∗ after she sees the public key.

Definition 3.2. (Selectively CPA). We say a revocable key-policy ABPRE scheme is selectively CPA secure in

the standard model, if � wins the experiment � ( )Expt 1λCPA only with negligible advantage.

4 Revocable KP-ABPRE from LWE

In this section, we construct a revocable KP-ABPRE scheme based on the LWE problem, building upon the

selectively secure LWE-based ABE [8]. To satisfy the correctness requirement that the decryption algorithm

outputs ⊥ with all but negligible probability when RL∈I , like ref. [27], we define the encoding function

encode { } → { }: 0, 1 0, 1 k for = ( )k ω λlog , such that for each ∈ { }μ 0, 1 , we have encode( ) = ( … ) ∈μ μ, 0, , 0

{ }0, 1 k. Given a family of functions � = { { } → { }}ℓf : 0, 1 0, 1 of depth ≤ d (represented as Boolean circuits),

an attribute space � = { }ℓ0, 1 , a message space � = { }0, 1 , and an index space � = [ ]N , our revocable

KP-ABPRE construction that works for any ℓ = ( )d λ, poly is described as follows:

• Setup( ℓ N L1 , , ,λ ). Take as input the security parameter λ, the maximum length of the attributes ℓ, and the

maximum expected number of users N , the setup algorithm proceeds as follows:

1. Generate ( ) → ( )m qGenTrap A T1 , , ,n
A .

2. Sample a uniformly random matrix �∈ ×D q
n k.

3. Sample ℓ uniformly random matrices �… ∈ℓ ×B B, , q
n m

1 .

4. Build a complete binary treeBT with N leaf nodes, and choose uniformly random matrix �∈ ×Uγ q
n m as

the “identifier” for each node BT∈γ .

5. Initialize the state ST = ∅, which records the assigned indices so far.

Output a state ST, a public key BT≔ ( … )ℓpk A D B B, , , , ,1 , and a master secret key ≔ ( )msk TA .

• KeyGen �( ∈ )msk f, . Take as input msk and a function �∈f , compute = ( ( … ))ℓfB Eval B B, , ,f pk 1 and

generate an extended trapdoor �∈( ∣ ) ×T m m
A B

2 2
f

by running

← ( )( ∣ ) sT SampleBasisLeft A B T, , , .fA B Af

Output a secret key ≔ ( ∣ )sk Tf A Bf .

• Enc RL( )pk μ x, , , . Take as input pk, a message ∈ { }μ 0, 1 , an attribute ∈ { }ℓx 0, 1 , and a revocation list

RL ⊆ [ ]N , the encryption algorithm does:

1. Choose uniformly at random a vector �∈s q
n, two error vectors ∈ ∈χ χe e,m k

0 1 , and matrices

∈ {± } ×S S, 1γ i
m m

ˆ for each KUNodes BT RL∈ ( )γ̂ , and ∈ [ℓ]i .

2. Set

�

�

= ( ∣ + ∣⋯∣ + ) ∈
= ( ∣ ∣⋯∣ ) ⋅ ∈

ℓ ℓ
×(ℓ+ )

ℓ
(ℓ+ )

H A B x G B x G

e I S S e

,

,

q
n m

m
T

q
m

1 1
1

1 0
1

and compute �= + ∈ (ℓ+ )c H s eT
q

m
0

1 .

3. For each node KUNodes BT RL∈ ( )γ̂ , , compute �= + ∈c U s S eˆ γ γ
T

γ
T

q
m

ˆ ˆ ˆ 0 . Set KUNodes BT RL{ }= ∈ ( )c ĉγ γ1 ˆ ˆ , .

4. Compute encode �= + + ⌊ / ⌋⋅ ( ) ∈q μc D s e 2T
q
k

2 1 .

Output a ciphertext = ( )c c c c, ,0 1 2 .
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• Dec(sk c x, ,f ). Parse = ( )c c c c, ,0 1 2 and = ( … )ℓc c c c, , ,in0 0
1

0 . If ( ) =f x 1, output ⊥. Otherwise, the decryp-

tion algorithm does:

1. Run (( ∣ ) )( ∣ ) σSamplePre A B T D, , ,f A B 1f
to generate a low-norm matrix �∈ ×Rf

m k2 such

that ( ∣ )⋅ =A B R Df f .

2. Compute �= ( {( )} ) ∈∈[ℓ]fc Eval B x c, , ,f ct i i
i

i q
m

0 .

3. Compute = − ( ∣ )w c R c cf
T

in f2 . Output ′ =μ 1 if ∣⌊ / ⌋ − ∣ < /q qw2 41 . Otherwise, output ′ =μ 0.

• ReKeyGen( STsk g I, , ,f ). Take as input a secret key skf , a stateST, a function �∈g , and an index ∈ [ ]I N ,

the re-encryption key generation algorithm does:

1. If ST∈I , output ⊥. Otherwise, update ST ST← ∪ { }I .
2. Compute = ( ( … ))ℓgB Eval B B, , ,g pk 1 and = ( ( … ))ℓfB Eval B B, , ,f pk 1 .

3. For each node Path∈ ( )γ I , generate a low-normmatrix �∈ ×Rγ
m m3 2 such that ( ∣ ∣ )⋅ = ( ∣ )A B U R A Bf γ γ g by

running ← (( ∣ ) ( ∣ ) )( ∣ ) σR SampleLeft A B U T A B, , , ,γ f γ gA B 2f
.

Output a re-encryption key Path≔ ( { } )→( ) ∈ ( )rk f g I R, , ,f g I γ γ I, and an updated state ST.
• ReEnc( →( )rk c x, ,f g I, ). Parse Path= ( { } )→( ) ∈ ( )rk f g I R, , ,f g I γ γ I, , = ( )c c c c, ,0 1 2 , = ( … )ℓc c c c, , ,in0 0

1
0 , and =c1

KUNodes BT RL{ } ∈ ( )ĉγ γˆ ˆ , . The re-encryption algorithm proceeds as follows:

1. Compute �= ( {( )} ) ∈∈[ℓ]fc Eval B x c, , , .f ct i i
i

i q
m

0

2. For all Path KUNodes BT RL∈ ( ) ∈ ( )γ I γ, ˆ , , compute �( )= ⋅ ∣ ∣ ∈c R c c ĉγ γ γ
T

in f γ q
m

, ˆ ˆ
2 .

Output a re-encrypted ciphertext = ( )→( )c c c˜,f g I, 2 , where Path KUNodes BT RL{ }= ∈ ( ) ∈ ( )c c˜ γ γ γ I γ, ˆ , ˆ , .

• ReDec( →( )sk c,g f g I, ). Take as input = ( ∣ )sk Tg A Bg and = ( )→( )c c c˜,f g I, 2 , where Path KUNodes BT RL{ }= ∈ ( ) ∈ ( )c c˜ γ γ γ I γ, ˆ , ˆ , .

The re-decryption algorithm does:

1. Compute = ( ( … ))ℓgB Eval B B, , ,g pk 1 and run (( ∣ ) )( ∣ ) σSamplePre A B T D, , ,g A B 1g
to generate a low-norm

matrix �∈ ×Rg
m k2 such that ( ∣ )⋅ =A B R Dg g .

2. For all pairs ( )γ γ, ˆ , compute �= − ∈w c R c .γ γ g
T

γ γ q
k

, ˆ 2 , ˆ

3. If there exists a pair ( )γ γ, ˆ such that encode





⋅ = ( ′)μw
q γ γ
2

, ˆ for some ′ ∈ { }μ 0, 1 , output ′μ . Otherwise,

output ⊥.

Remark 4.1. We remark that the above construction is single-hop, as the further re-encryption procedure

cannot establish a new revocation mechanism on the original re-encrypted ciphertext. Indeed, the re-

encryption procedure needs to establish a complete binary tree BT which associates the re-encryption

key with the ciphertext and the ciphertext contains information that can only be disclosed by non-revoked

users, so further re-encryption of any re-encrypted ciphertext implies that we should establish a new

complete binary tree BT′ to associate the re-encryption key with the original re-encrypted ciphertext.

Since the original re-encrypted ciphertext contains a private vector �∈s q
n and information of the non-

revoked node inBT and the re-encryption key, a new revocation mechanism cannot be linked to the original

re-encrypted ciphertext.

4.1 Parameters and correctness

Parameters. We set the parameters to meet the correctness and security requirements as follows: =λ n,

ℓ = ( )N d n, , poly , = ( )k ω nlog , =m n q2 log , and / > ( + ) + /q B m4 1 d3 11 2; to apply Lemma 2.8 (item 3) in the

security proof, we set = (( + ) )+s ω m 1 d 1 ; we set = (( + ) ⋅ ( ))+σ ω m m1 log 2d
1

1 to satisfy the requirement of

SamplePre algorithm; and to apply Lemma 2.9 in the security proof, we set = (( + ) ⋅ ( ))+ /σ ω m m1 log 3d
2

3 2 .
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Correctness. Given an honestly generated ciphertext = ( )c c c c, ,0 1 2 of message ∈ { }μ 0, 1 , with respect to

some attribute ∈ { }ℓx 0, 1 and RL ⊆ [ ]N , where = { … }ℓc c c c, , ,in0 0
1

0 , and KUNodes BT RL{ }= ∈ ( )c ĉγ γ1 ˆ ˆ , . Then, we

consider the following two cases.

• Let ≔ ( ∣ )sk Tf A Bf be a correctly generated secret key. When ( ) =f x 0, we have = +c B s ef f
T

f by =cf

( {( )} )∈[ℓ]fEval B x c, , ,ct i i
i

i0 (see Lemma 2.11), where ∥ ∥ ≤ ⋅ ( + )Bm me 20 1f
d. Consequently,

( ∣ ) = ( ∣ ) + ′ ∥ ′ ∥ ≤ ⋅ ( + ) +Bm m B mc c A B s e e, where 20 1 .in f f
T

f f
d

Since ( ∣ )⋅ =A B R Df f where ∥ ∥ ≤ ⋅σ mkR 2f 2 1 with overwhelming probability. Therefore, we have

encode encode− ⋅( ∣ ) = ( + + ⌊ / ⌋⋅ ( )) − ( + ′ ) = − ′ + ⌊ / ⌋⋅ ( )q μ q μc R c c D s e D s R e e R e2 2 ,f
T

in f
T T

f
T

f f
T

f2 1 1

where ∥ − ′ ∥ ≤ + ⋅( ( + ) + ) ≤ ⋅ ( + ) < /+B m mkσ Bm m B m B m qe R e 2 20 1 1 4f
T

f
d d

1 1
2 3 with overwhelming

probability, which thereby ensures correct decryption of ∈ { }μ 0, 1 .

• Let ≔ ( ∣ )sk Tg A Bg be a correctly generated secret key. Given a re-encryption key ≔ (→( )rk f g I, , ,f g I,

Path{ } )∈ ( )Rγ γ I and an updated state ST such that ( ∣ ∣ )⋅ = ( ∣ )A B U R A Bf γ γ g for each node Path∈ ( )γ I , where

∥ ∥ ≤ mσR 6γ 2 2 with overwhelming probability, and a re-encrypted ciphertext = ( )→( )c c c˜,f g I, 2 , where

{ }=c c˜ γ γ, ˆ and ( )= ⋅ ∣ ∣c R c c ĉγ γ γ
T

in f γ, ˆ ˆ for all Path KUNodes BT RL∈ ( ) ∈ ( )γ I γ, ˆ , . Again, when ( ) =f x 0, we

have = +c B s ef f
T

f by the correctness of algorithm Evalct of Lemma 2.11, where ∥ ∥ ≤ ⋅ ( + )Bm me 20 1f
d.

Since RL is kept hidden, we cannot check whether it holds that RL∉I directly. Therefore, we consider

two cases:

1. When RL∉I , there exists ( )γ γ, ˆ for Path KUNodes BT RL∈ ( ) ∈ ( )γ I γ, ˆ , corresponding to the same node

in BT which satisfies

( )∣ ∣ ⋅ = ( ∣ )A B U R A B .f γ γ gˆ

Therefore, for such a pair ( )γ γ, ˆ , we have

( ) ( ) ( ) ( )= ⋅ ∣ ∣ = ⋅ ∣ ∣ + ⋅ ∣ ∣ = ( ∣ ) + ⋅ ∣ ∣s sc R c c c R A B U R e e S e A B R e e S eˆ ,γ γ γ
T

in f γ γ
T

f γ
T

γ
T

f γ
T

g
T

γ
T

f γ
T

, ˆ ˆ ˆ 0 ˆ 0 0 ˆ 0 (1)

where ( )∥ ⋅ ∣ ∣ ∥ ≤ ⋅( + ⋅ ( + ) + )mσ B m Bm m BmR e e S e 6 20 1 20γ
T

f γ
T d

0 ˆ 0 2 . Then, since ( ∣ )⋅ =A B R Dg g

where ∥ ∥ ≤ ⋅σ mkR 2g 2 1 with overwhelming probability, we have

encode

encode

( ( ))
( )

( )

= −
= − ⋅ ( ∣ ) + ⋅ ∣ ∣

= + + ⌊ / ⌋⋅ ( ) − − ⋅ ∣ ∣

= ⌊ / ⌋⋅ ( ) + − ⋅ ∣ ∣

s

q μ

q μ

w c R c

c R A B R e e S e

D s e D s R R e e S e

e R R e e S e

2

2 ,

γ γ g
T

γ γ

g
T

g
T

γ
T

f γ
T

T T
g
T

γ
T

f γ
T

g
T

γ
T

f γ
T

, ˆ 2 , ˆ

2 0 ˆ 0

1 0 ˆ 0

1 0 ˆ 0

where ( )∥ − ⋅ ∣ ∣ ∥ ≤ + ⋅( + ⋅ ( + ) + )

≤ ⋅ ( + ) < /

/

+ /

B k km σ σ B m Bm m Bm

B m q

e R R e e S e 2 3 20 1 20

1 4

g
T

γ
T

f γ
T d

d

1 0 ˆ 0
3 2

1 2

3 11 2

with

overwhelming probability, which thereby ensures correct decryption of ∈ { }μ 0, 1 .

2. When RL∈I , there does not exist such ( )γ γ, ˆ for Path KUNodes BT RL∈ ( ) ∈ ( )γ I γ, ˆ , corresponding to

the same node in BT which satisfies

( )∣ ∣ ⋅ = ( ∣ )A B U R A B .f γ γ gˆ

In other words, the re-decryption algorithm taking as input the secret key skg cannot obtain the above

equation (1). This implies that wγ γ, ˆ for each pair ( )γ γ, ˆ is indistinguishable from uniform due to the

security of our scheme (which we will show in the next section). Therefore, the probability that the last







− ⋅k w1 coordinates of
q γ γ
2

, ˆ are all 0 is at most =−( − ) − ( )2 2k ω λ1 log , which is negligible in λ. Therefore,

the re-decryption algorithm outputs ⊥ with all but negligible probability.
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Therefore, for any = ( )d npoly , we have > ⋅ ( + ) + /m2 4 1n d3 11 2ε

by setting = ( ) /n O d˜ ε1 for < <ε0 1, and hence

we have to rely on sub-exponential LWE with = ⋅q B 2n
ε

, which is at least as hard as SIV Pγ andGapSV Pγ for

= ( )γ 2 nΩ ε

by Lemma 2.5.

4.2 Security proof

We show that our revocable KP-ABPRE scheme is selectively CPA secure in the standard model.

Theorem 4.2. Given the three algorithms ( )Eval Eval Eval, ,pk ct sim for � , the revocable KP-ABPRE scheme

above is selectively CPA secure in the standard model as defined in Definition 3.2, assuming the hardness of

the LWEn m q χ, , , problem.

Proof. In this proof, we adopt a game-based approach, where a number of sequential games are evaluated.

The first game is the real security game as defined in Definition 3.2, and � has advantage zero in the last

game. The LWE problem will be used to show the indistinguishability between Games 2 and 3. In the

following, we build the games to prove that� wins the selective security game with negligible advantage.

• Game 0. This is the real selective security game between the challenger and the adversary � .

• Game 1. This is the same as Game 0 except that we change how the public matrices B U,i γ for each ∈ [ℓ]i

and each BT∈γ are generated. In this game, upon receiving the challenge attribute ∈ { }∗ ℓx 0, 1 and

revocation list RL ⊆ [ ]∗ N , the challenger does:

1. Choose uniformly at random ℓ matrices … ∈ {− }∗
ℓ
∗ ×S S, , 1, 1 m m

1 and set = −∗ ∗B AS x Gi i i for ∈ [ℓ]i .

2. Build a complete binary tree BT, choose uniformly at random ∈ {− } ×S 1, 1γ
m m for each BT∈γ , and set

the identifier

KUNodes BT RL






=

∈ ( )
−

∗γ
U

AS

AS G

, if , ,

, otherwise.
γ

γ

γ

In addition, at the challenge query, the challenger computes ∗S ei
T

0 for ∈ [ℓ]i to generate the challenge

ciphertext ∗c0 and S eγ
T

0 for BT∈γ to generate the challenge ciphertext ∗c1, for some ∈ χe m
0 .

• Game 2. This is the same as Game 1 except that we change how A is generated. In this game, the

challenger samples a uniformly random matrix �∈ ×A q
n m. The challenger has no trapdoor of ( )⊥ AΛq ,

but she can answer all �KeyGen, �ReKeyGen, and �ReEnc, as follows.

Note that (by Definition 3.2) only functions satisfying ( ) =∗f x 1 are allowed for �KeyGen. To produce a

secret key for such functions f , the challenger does:

• Compute = ( ( … ))ℓfB Eval B B, , ,f pk 1 .

• Run ← ( {( )} )∗ ∗ ∗
∈[ℓ]fS Eval S x A, , ,f sim i i i (see Lemma 2.11) such that − ( ) =∗ ∗fAS x G Bf f . By definition of

Evalsim, we have ∥ ∥ ≤ ⋅ ( + )∗ m mS 20 1f
d

2 .

• Generate a secret key ≔ ← ( )( ∣ )
∗sk sT SampleBasisRight A G S T, , , ,f fA B Gf

. BydefinitionofSampleBasisRight

of Lemma 2.8, item 3,we have that ( ∣ )TA Bf is distributed as required. Indeed, since∥ ∥ ≤ ⋅ ( + )∗ m mS 20 1f
d

2 , we

have that ≥ ⋅(∥ ∥ + )⋅ ( )∗s ω mS5 1 logf 2 as needed for SampleBasisRight.

Moreover, note that (by Definition 3.2) only pairs � �( ) ∈ × × [ ]f g I N, , satisfying ( ) =∗f x 1 or

RL( ( ) = ∈ )∗ ∗f Ix 0, are allowed for �ReKeyGen. To generate a re-encryption key for such ( )f g I, , , the chal-

lenger takes as input BT({ } { } )∗
∈[ℓ] ∈S S,i i γ γ , a state ST, functions �∈f g, , an index ∈ [ ]I N , the challenge

attribute ∈ { }∗ ℓx 0, 1 and revocation listRL ⊆ [ ]∗ N , and returns⊥ if ST∈I . Otherwise, the challenger outputs

the updated state ST ST← ∪ { }I and computes a re-encryption key Path≔ ( { } )→( ) ∈ ( )rk f g I R, , ,f g I γ γ I, , as

follows:
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• Case 1: When ( ) =∗f x 1. In this case, from the secret key generation procedure above, we have

= − ( ) = −∗ ∗ ∗fB AS x G AS Gf f f , where = ( ( … ))ℓfB Eval B B, , ,f pk 1 and = ( {( )} )∗ ∗ ∗
∈[ℓ]fS Eval S x A, , ,f sim i i i

with ∥ ∥ ≤ ⋅ ( + )∗ m mS 20 1f
d

2 . Whenever RL∈ ∗I or RL∉ ∗I , sample

�∈ ← ( + ( ∣ ) )× ∗ σR ExtSampleRight A G S S T A B, , , , ,γ q
m m

f γ gG
2 3

2 such that ( ∣ ∣ )⋅ = ( ∣ )A B U R A Bf γ γ g for each

Path∈ ( )γ I , where ≥ ⋅(∥ + ∥ + )⋅ ( )∗σ ω mS S5 1 log 3f γ 2 by Lemma 2.9, as required. Thus, the challenger

obtains a re-encryption key Path≔ ( { } )→( ) ∈ ( )rk f g I R, , ,f g I γ γ I, .

• Case 2: When RL( ( ) = ∈ )∗ ∗f Ix 0, . In this case, we have = − ( ) =∗ ∗ ∗fB AS x G ASf f f , so we do not have a

trapdoor for lattice ( )⊥ GΛq . Instead, since RL∈ ∗I , which implies thatPath KUNodes BT RL( ) ∩ ( ) = ∅∗I , and

hence we have = −U AS Gγ γ for each Path∈ ( )γ I . Then, similar to Case 1, the challenger samples

�∈ ← ( + ( ∣ ) )× ∗ σR ExtSampleRight A G S S T A B, , , , ,γ q
m m

f γ gG
2 3

2 such that ( ∣ ∣ )⋅ = ( ∣ )A B U R A Bf γ γ g for each

Path∈ ( )γ I . Hence, the challenger obtains a re-encryption key Path≔ ( { } )→( ) ∈ ( )rk f g I R, , ,f g I γ γ I, .

With the above ability of generating skf for functions f that satisfies ( ) =∗f x 1 and the ability of

generating →( )rkf g I, for pairs � �( ) ∈ × × [ ]f g I N, , that satisfies ( ) =∗f x 1 or RL( ( ) = ∈ )∗ ∗f Ix 0, , the chal-

lenger can answer all queries raised by the adversary � as follows:

• Key generation query �KeyGen: � sends a function �∈f to the challenger, the challenger generates a

secret key skf for the function f as described above and returns it to � .

• Re-encryption key generation query �ReKeyGen: � sends a pair � �( ) ∈ × × [ ]f g I N, , to the chal-

lenger. The challenger generates a re-encryption key →( )rkf g I, for the pair ( )f g I, , as described above

and returns it to � .

• Re-encryption query �ReEnc: � sends (( ) ′ )f g I c x, , , , to the challenger where ( ) =f x 0, subject to the

condition: ( ≠ ( ) = )∗ ∗fx x x, 1 or RL( ( ) = ∈ )∗ ∗f Ix 0, , the challenger computes a re-encryption key →( )rkf g I,

as in�ReKeyGen and returns a re-encrypted ciphertext ′→( )c f g I, by running ′ ← ( ′ )→( ) →( )rk xc ReEnc c, ,f g I f g I, , .

• Game 3. This is the same as Game 2 except that we choose a uniformly random vector ∗c from �(ℓ+ )q
m2 as

the challenge ciphertext. In this case, since the challenge ciphertext ∗c is independent of the bit ∈ { }b 0, 1 ,

� ’s advantage is zero. □

To prove Theorem 4.2, we will first prove the following lemmas, which show the statistical indistin-

guishability or computational indistinguishability under the LWE assumption between any two consecutive

games.

Lemma 4.3. Game 0 is statistically indistinguishable from Game 1 in the view of � .

Proof. Recall that in Game 0, the public matrices B U,i γ for all BT∈ [ℓ] ∈i γ, are uniformly randommatrices

in � ×q
n m, whereas in Game 1, for each BT∈ [ℓ] ∈i γ, , we have = − = −∗ ∗ ρB AS x G U AS G,i i i γ γ γ , where

∈ {− }∗ ×S S, 1, 1i γ
m m and ∈ { }ρ 0, 1γ . By Lemma 2.3, given uniformly random matrices { } ∈[ℓ]Bi i and BT{ } ∈Uγ γ

in � ×q
n m, for each ∈ [ℓ]i and each BT∈γ , the distribution of ( − )∗ ∗ ∗A AS x G S e, ,i i i

T
0 is statistically indistin-

guishable from the distribution of ( )∗A B S e, ,i i
T

0 and the distribution of ( + )ρA AS G S e, ,γ γ γ
T

0 is statistically

indistinguishable from the distribution of BT( { } )∈A U S e, ,γ γ γ
T

0 . Hence, the public parameters BT( … )ℓA B B, , , ,1

in Games 0 and 1 are statistically indistinguishable. In other words, Game 0 is statistically indistinguishable

from Game 1. □

Lemma 4.4. Game 1 is statistically indistinguishable from Game 2 in the view of � .

Proof. Recall that in Game 1, the matrix A is generated via ( )m qGenTrap 1 , ,n , whereas in Game 2, it is chosen

uniformly at random from � ×q
n m. By Lemma 2.8 (item 1), the matrix A in Games 1 and 2 are statistically

indistinguishable. Since there is a trapdoor TA for lattice ( )⊥ AΛq in Game 1, so the challenger generates the

matrix ( ∣ )TA Bf as the secret key = ( ∣ )sk Tf A Bf by running SampleBasisLeft algorithm, and generates the
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matrices Path{ } ∈ ( )Rγ γ I to obtain the re-encryption key Path= ( { } )→( ) ∈ ( )rk f g I R, , ,f g I γ γ I, by running SampleLeft

algorithm. However, in Game 2, the challenger does not have such a trapdoor, but instead she used a publicly

known trapdoor TG for lattice ( )⊥ GΛq to generate these private matrices by running SampleBasisRight and

ExtSampleRight algorithms. The properties of these sampling algorithms (see Lemmas 2.8 and 2.9) guar-

antee that the distributions of these private matrices in Games 1 and 2 are statistically indistinguishable.

In summary, the public parameters and answers to all queries in Game 1 are statistically indistinguish-

able from those in Game 2, so we conclude that Game 1 is statistically indistinguishable from Game 2. □

Lemma 4.5. Game 2 is computationally indistinguishable from Game 3 in the view of � , assuming the

hardness of the LWEn m q χ, , , problem.

Proof. To prove this, we build an algorithm
 to solve the LWE problem if� can distinguish Games 2 and 3

with non-negligible advantage.

LWE instance. 
 obtains an LWE instance: � �( ) ∈ ×× ×A D, q
n m

q
n k and � �( ) ∈ ×w w, q

m
q
k

0 1 . We have that

� �( ) ∈ ×w w, q
m

q
k

0 1 are either random or

= + = +w A s e w D s eandT T
0 0 1 1 (2)

for some random vector �∈s q
n and ← ←χ χe e,m k

0 1 .

Public parameters. 
 sets pk as in Game 2, that is, sample uniformly at random matrices �∈ ×A ,q
n m

�∈ ×D q
n k and generate public matrices = − = −∗ ∗ ρB AS x G U AS G,i i i γ γ γ for each BT∈ [ℓ] ∈i γ, , where ∈∗S S,i γ

{− } ×1, 1 m m and ∈ { }ρ 0, 1γ .

Query 1. 
 answers � ’s all queries (�KeyGen, �ReKeyGen, and �ReEnc) as in Game 2.

Challenge ciphertext. Upon receiving ∈ { }μ μ, 0, 10 1 , 
 samples a random bit ← { }b 0, 1 and creates the

challenge ciphertext = ( )∗ ∗ ∗ ∗c c c c, ,0 1 2 by letting

encode
KUNodes BT RL

�

�

�

{ }
= ( ∣ ∣⋯∣ ) ∈
= = ∈
= + ⌊ / ⌋⋅ ( ) ∈

∗ ∗
ℓ
∗ (ℓ+ )

∗
∈ ( )

∗

∗

q μ

c I S S w

c c c S w

c w

,

ˆ , where ˆ ,

2 .

m
T

q
m

γ γ γ γ
T

q
m

b q
k

0 1 0
1

1 ˆ ˆ , ˆ ˆ 0

2 1

(3)

Then,
 returns ∗c to� . Next, we show two cases: the first is the case where LWE instance is pseudorandom

(i.e., equation (2) holds), and the second is where the LWE challenge is random.

1. We show that ∗c is distributed as in Game 2 if the LWE instance is pseudorandom. First, we have

�= + ∈∗c A s eT
q
m

0 0 , which is distributed exactly as in Game 2. Letting

= ( ∣ + ∣⋯∣ + ) = ( ∣ − + ∣⋯∣ − + ) = ( ∣ ∣⋯∣ )∗
ℓ ℓ
∗ ∗ ∗ ∗

ℓ
∗
ℓ
∗

ℓ
∗ ∗

ℓ
∗H A B x G B x G A AS x G x G AS x G x G A AS AS1 1 1 1 1 1

then, ∗c0 given in equation (3) satisfies:

�

= ( ∣ ∣⋯∣ )
= ( ∣ ∣⋯∣ ) ⋅( + )
= ( ∣ ∣⋯∣ ) ⋅ + ( ∣ ∣⋯∣ ) ⋅
= + ∈

∗ ∗
ℓ
∗

∗
ℓ
∗

∗
ℓ
∗ ∗

ℓ
∗

ℓ

c I S S w

I S S A s e

A AS AS s I S S e

H s e ,

m
T

m
T T

T
m

T

T
q
m

1 1 0

1 0

1 1 0

where �( ∣ ∣⋯∣ ) ⋅ ∈∗
ℓ
∗ (ℓ+ )I S S em
T

q
m

1 0
1 , and hence we conclude that ∗c1 is distributed exactly as in Game 2.

Moreover, for each KUNodes BT RL∈ ( )∗γ̂ , we have

�= = ⋅( + ) = + ∈c S w S A s e U s U eˆ ,γ γ
T

γ
T T

γ
T

γ
T

q
m

ˆ ˆ 0 ˆ 0 ˆ ˆ 0
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and hence for KUNodes BT RL{ }=∗ ∈ ( )∗c ĉγ γ2 ˆ ˆ , we conclude that ∗c2 is distributed exactly as in Game 2. Finally, we

have that encode �= + + ⌊ / ⌋⋅ ( ) ∈q μc D s e 2T
q
k

3 1 which is distributed exactly as in Game 2. In summary,

we conclude that ∗c is distributed as in Game 2.

2. We show that ∗c is distributed as in Game 3 if the LWE instance is random. First, since � �( ) ∈ ×w w, q
m

q
k

0 1

are uniformly random matrices, encode= + ⌊ / ⌋⋅ ( )∗ q μc w 2 b2 1 is uniform random over�q
k, and is therefore

distributed exactly as in Game 3. Moreover, by applying the leftover hash lemma [37], we conclude that
∗c0 and ĉγ̂ for each KUNodes BT RL∈ ( )∗γ̂ , defined in equation (3) are uniform random over �(ℓ+ )q

m1 and

�q
m, respectively. Therefore, we conclude that ∗c is distributed as in Game 3.

Query 2. The same as Query 1.

Output. � gives a guess as to whether it interacts with Game 2 or with Game 3, and 
 outputs � ’s guess.

As stated above, � ’s view is as in Game 2 if the LWE instance is pseudorandom, and� ’s view is as in

Game 3 if the LWE instance is random. Therefore,
 ’s advantage in solving LWE problem is identical to� ’s

advantage in distinguishing Games 2 and 3. Under the LWEn m q χ, , , assumption, we conclude that Game 2 is

computationally indistinguishable from Game 3. □

Overall, since � ’s advantage is zero in Game 3, the theorem holds. This completes the proof.

5 Conclusion

We introduced the notion of revocable KP-ABPRE, which supports an efficient revocation mechanism while

maintaining the functionality of KP-ABPRE. We instantiated this notion from lattices by proposing a lattice-

based revocable KP-ABPRE scheme. Our scheme is the first revocable KP-ABPRE scheme that supports

polynomial-depth Boolean circuits and has short private keys that are solely dependent on the depth of the

supported policy circuits. In addition, our scheme would yield the first lattice-based KP-ABPRE scheme by

letting the revocation list be an empty set. However, our scheme is single-hop and can only be proven CPA

secure in a selective manner. Therefore, one of the possible immediate extensions to this work is to

construct a multi-hop lattice-based revocable KP-ABPRE construction. Another possible extension is to

investigate how we can provide adaptively CPA security in the standard model from LWE with a polyno-

mial-time reduction.
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