
Revocation and Tracing Schemes for Stateless Receivers �

Dalit Naory Moni Naorz Jeff Lotspiech�

July 2001

Abstract

We deal with the problem of a center sending a message to a group of users such that some subset

of the users is considered revoked and should not be able to obtain the content of the message. We

concentrate on the stateless receiver case, where the users do not (necessarily) update their state from

session to session. We present a framework called the Subset-Cover framework, which abstracts a variety

of revocation schemes including some previously known ones. We provide sufficient conditions that

guarantee the security of a revocation algorithm in this class.

We describe two explicit Subset-Cover revocation algorithms; these algorithms are very flexible and

work for any number of revoked users. The schemes require storage at the receiver of logN and 1

2
log2N

keys respectively (N is the total number of users), and in order to revoke r users the required message

lengths are of r logN and 2r keys respectively. We also provide a general traitor tracing mechanism that

can be integrated with any Subset-Cover revocation scheme that satisfies a “bifurcation property”. This

mechanism does not need an a priori bound on the number of traitors and does not expand the message

length by much compared to the revocation of the same set of traitors.

The main improvements of these methods over previously suggested methods, when adapted to the

stateless scenario, are: (1) reducing the message length to O(r) regardless of the coalition size while

maintaining a single decryption at the user’s end (2) provide a seamless integration between the re-

vocation and tracing so that the tracing mechanisms does not require any change to the revocation algo-

rithm.

1 Introduction

The problem of a Center transmitting data to a large group of receivers so that only a predefined subset

is able to decrypt the data is at the heart of a growing number of applications. Among them are pay-TV

applications, multicast communication, secure distribution of copyright-protected material (e.g. music) and

audio streaming. The area of Broadcast Encryption deals with methods to efficiently broadcast informa-

tion to a dynamically changing group of users who are allowed to receive the data. It is often convenient to

think of it as a Revocation Scheme, which addresses the case where some subset of the users are excluded

from receiving the information. In such scenarios it is also desirable to have a Tracing Mechanism, which

enables the efficient tracing of leakage, specifically, the source of keys used by illegal devices, such as pirate

decoders or clones.

�An extended abstract will appear in Crypto 2001.
yIBM Almaden Research Center, 650 Harry Road, San-Jose, CA. 95120. Email: flots, dalitg@almaden.ibm.com
zDepartment of Computer Science and Applied Math, Weizmann Institute, Rehovot Israel. Work done while visiting

IBM Almaden Research Center and Stanford University. Partially supported by DARPA contract F30602-99-1-0530. Email:

naor@wisdom.weizmann.ac.il

1

One special case is when the receivers are stateless. In such a scenario, a (legitimate) receiver is not

capable of recording the past history of transmissions and change its state accordingly. Instead, its operation

must be based on the current transmission and its initial configuration. Stateless receivers are important for

the case where the receiver is a device that is not constantly on-line, such as a media player (e.g. a CD or

DVD player where the “transmission” is the current disc), a satellite receiver (GPS) and perhaps in multicast

applications.

This paper introduces very efficient revocation schemes which are especially suitable for stateless re-

ceivers. Our approach is quite general. We define a framework of such algorithms, called Subset-Cover

algorithms, and provide a sufficient condition for an algorithm in this family to be secure. We suggest two

particular constructions of schemes in this family; the performance of the second method is substantially

better than any previously known algorithm for this problem (see Section 1.1). We also provide a general

property (‘bifurcation’) of revocation algorithms in our framework that allows efficient tracing methods,

without modifying the underlying revocation scheme.

Notation: Let N be the total number of users in the system let r be the size of the revoked set R.

Copyright Protection

An important application that motivates the study of revocation and tracing mechanisms is Copyright Pro-

tection. The distribution of copyright protected content for (possibly) disconnected operations involves

encryption of the content on a media. The media (such as CD, DVD or a flash memory card) typically con-

tains in its header the encryption of the key K which encrypts the content following the header. Compliant

devices, or receivers, store appropriate decryption keys that can be used to decrypt the header and in turn

decrypt the content. A copyright protection mechanism defines the algorithm which assigns keys to devices

and encrypts the content.

An essential requirement from a copyright protection mechanism is the ability to revoke, during the

lifetime of the system, devices that are being used illegally. It is expected that some devices will be com-

promised, either via reverse engineering or due to sloppy manufacturing of the devices. As a result keys of

a number of compromised devices can then be cloned to form a decrypting unit. This copyright protection

violation can be combated by revoking the keys of the compromised devices. Note that devices are stateless

as they are assumed to have no capability of dynamically storing any information (other than the original

information that is stored at the time of manufacturing) and also since they are typically not connected to

the world (except via the media). Hence, it is the responsibility of the media to carry the current state of the

system at the time of recording in terms of revoked devices.

It is also highly desirable that the revocation algorithm be coupled with a traitors tracing mechanism.

Specifically, a well-designed copyright protection mechanism should be able to combat piracy in the form

of illegal boxes or clone decoding programs. Such decoders typically contain the identities of a number of

devices that are cooperating; furthermore, they are hard to disassemble1 . The tracing mechanism should

therefore treat the illicit decoder as a black box and simply examine its input/output relationship. A combi-

nation of a revocation and a tracing mechanism provides a powerful tool for combating piracy: finding the

identities of compromised devices, revoking them and rendering the illegal boxes useless.

Caveat. The goal of a copyright protection mechanism is to create a legal channel of distribution of

content and to disallow its abuse. As a consequence, an illegal distribution will require the establishment

1For instance, the software clone known as DeCSS, that cracked the DVD Video “encryption”, is shielded by a tamper-resistant

software tool which makes it very hard to reverse engineer its code and know its details such as receivers identities or its decoding

strategy.

2

of alternative channels and should not be able to piggyback on the legitimate channel2 . Such alternative

channels should be combated using other means and is not under the scope of the techniques developed in

this paper, thought techniques such as revocation may be a useful deterrent against rough users.

1.1 Related Work

Broadcast Encryption. The area of Broadcast Encryption was first formally studied (and the term

coined) by Fiat and Naor in [23] and has received much attention since then. To the best of our knowledge the

scenario of stateless receivers has not been considered explicitly in the past in a scientific paper. In principle

any scheme that works for the connected mode, where receivers can remember past communication, may be

converted to a scheme for stateless receivers (such a conversion may require to include with any transmission

the entire ‘history’ of revocation events). Hence, when discussing previously proposed schemes we will

consider their performance as adapted to the stateless receiver scenario.

To survey previous results we should fix our notation. An important parameter that is often considered

is t, the upper bound on the size of the coalition an adversary can assemble. The algorithms in this paper do

not require such a bound and we can think of t = r; on the other hand some previously proposed schemes

depend on t but are independent of r. The Broadcast Encryption method of [23] is one such scheme which

allows the removal of any number of users as long as at most t of them collude. There the message length is

O(t log2 t), a user must store a number of keys that is logarithmic in t and the amount of work required by

the user is Õ(r=t) decryptions.

The logical-tree-hierarchy (LKH) scheme, suggested independently by Wallner et al. [45] and Wong et.

al. [46], is designed for the connected mode for multicast re-keying applications. It revokes a single user

at a time, and updates the keys of all remaining users. If used in our scenario, it requires a transmission of

2r logN keys to revoke r users, each user should store logN keys and the amount of work each user should

do is r logN encryptions (the expected number is O(r) for an average user). These bounds are somewhat

improved in [12, 13, 32], but unless the storage at the user is extremely high they still require a transmission

of length
(r logN). The key assignment of this scheme and the key assignment of our first method are

similar; see further discussion on comparing the two methods in Section 3.1.

Luby and Staddon [31] considered the information theoretic setting and devised bounds for any revo-

cation algorithms under this setting. Their “Or Protocol” fits our Subset-Cover framework. We note in

Section 3.3 that our second algorithm (the Subset Difference method), which is not information theoretic,

beats their lower bound (Theorem 12 in [31]). Garay, Staddon and Wool [27] introduced the notion of

long-lived broadcast encryption. In this scenario, keys of compromised decoders are no longer used for

encryptions. The question they address is how to adapt the broadcast encryption scheme so as to maintain

the security of the system for the good users.

The method of Kumar et. al [30] enables one-time revocation of up to r users with message lengths of

O(r logN) and O(r2).

CPRM [18] is one of the methods that explicitly considers the stateless scenario. Our Subset Difference

method outperforms CPRM by a factor of about 25 in the number of revocations it can handle when all the

other parameters are fixed; Section 4.5 contains a detailed description and comparison.

Tracing Mechanisms. The notion of a tracing system was first introduced by Chor, Fiat and Naor in [16],

and was later refined to the Threshold Traitor model in [35], [17]. Its goal is to distribute decryption keys to

the users so as to allow the detection of at least one ‘identity’ of a key that is used in a pirate box or clone

using keys of at most t users. Black-box tracing assumes that only the outcome of the decoding box can

2For instance in the case of cable TV the pirates should be forced to create their own cable network.

3

be examined. [35], [17] provide combinatorial and probabilistic constructions that guarantee tracing with

high probability. To trace t traitors, they require each user to store O(t logN) keys and to perform a single

decryption operation. The message length is 4t. The public key tracing scheme of Boneh and Franklin [7]

provides a number-theoretic deterministic method for tracing. Note that in all of the above methods t is an

a-priori bound.

Preventing Leakage of Keys. The problem of preventing illegal leakage of keys has been attacked by a

number of quite different approaches. The legal approach, suggested by Pfitzmann [40], requires a method

that not only traces the leaker but also yields a proof for the liability of the traitor (the user whose keys are

used by an illegal decoder). Hence, leakage can be fought via legal channels by presenting this proof to

a third party. The self enforcement approach, suggested by Dwork, Lotspiech and Naor [20], aims at

deterring users from revealing their personal keys. The idea is to provide a user with personal keys that

contain some sensitive information about the user which the user will be reluctant to disclose. The trace-

and-revoke approach is to design a method that can trace the identity of the user whose key was leaked; in

turn, this user’s key is revoked from the system for future uses. The results in this paper fall into the latter

category, albeit in a slightly relaxed manner. Although our methods assure that leaked keys will become

useless in future transmissions, it may not reveal the actual identities of all leaking keys, thus somewhat

lacking self-enforcement.

Content Tracing: In addition to tracing leakers who give away their private keys there are methods that

attempt to detect illegal users who redistribute the content after it is decoded. This requires the assumption

that good watermarking techniques with the following properties are available: it is possible to insert one

of several types of watermarks into the content so that the adversary cannot create a “clean” version with

no watermarks (or a watermark it did not receive). Typically, content is divided into segments that are

watermarked separately. This setting with protection against collusions was first investigated by Boneh and

Shaw [9]. A related setting with slightly stronger assumptions on the underlying watermarking technique

was investigated in [24, 5, 42]. By introducing the time dimension, Fiat and Tassa [24] propose the dynamic

tracing scenario in which the watermarking of a segment depends on feedback from the previous segment

and which detects all traitors. Their algorithm was improved by Berkman, Parnas and Sgall [5], and a scheme

which requires no real-time computation/feedback for this model was given in Safavani-Naini and Wang

[42]. Content tracing is relevant to our scenario in that any content tracing mechanism can be combined

with a key-revocation method to ensure that the traced users are indeed revoked and do not receive new

content in the future. Moreover, the tracing methods of [24] are related to the tracing algorithm of Section

5.2.

Integration of tracing and revocation. Broadcast encryption can be combined with tracing schemes

to yield trace-and-revoke schemes 3. While Gafni et. al. [26] and Stinson and Wei [44] only consider

combinatorial constructions, the schemes in Naor and Pinkas [36] are computational constructions and hence

more general. The previously best known trace-and-revoke algorithm of [36] can tolerate a coalition of at

most t users. It requires to store O(t) keys at each user and to perform O(r) decryptions; the message

length is r keys, however these keys are elements in a group where the Decisional Diffie-Hellman problem

is difficult and therefore these keys may be longer than symmetric keys. The tracing model of [36] is not

a “pure” black-box model. Anzai et. al [2] employs a similar method for revocation, but without tracing

capabilities. Our results improve upon this algorithm both in the work that must be performed at the user

and in the lengths of the keys transmitted in the message.

3However it is not the case that every system which enables revocation and enables tracing is a trace-and-revoke scheme.

4

1.2 Summary of Results

In this paper we define a generic framework encapsulating several previously proposed revocation methods

(e.g. the “Or Protocol” of [31]), called Subset-Cover algorithms. These algorithms are based on the princi-

ple of covering all non-revoked users by disjoint subsets from a predefined collection, together with a method

for assigning (long-lived) keys to subsets in the collection. We define the security of a revocation scheme

and provide a sufficient condition (key-indistinguishability) for a revocation algorithm in the Subset-Cover

Framework to be secure. An important consequence of this framework is the separation between long-lived

keys and short-term keys. The framework can be easily extended to the public-key scenario.

We provide two new instantiations of revocation schemes in the Subset-Cover Framework, with a differ-

ent performance tradeoff (summarized in Table 1.24). Both instantiations are tree-based, namely the subsets

are derived from a virtual tree structure imposed on all devices in the system5. The first requires a message

length of r logN and storage of logN keys at the receiver and constitutes a moderate improvement over

previously proposed schemes; the second exhibits a substantial improvement: it requires a message length

of 2r � 1 (in the worst case, or 1:38r in the average case) and storage of 12 log
2 N keys at the receiver. This

improvement is (provably) due to the fact that the key assignment is computational and not information the-

oretic (for the information theoretic case there exists a lower bound which exhibits its limits, see Sectio 3.3.

Furthermore, these algorithms are r-flexible, namely they do not assume an upper bound of the number of

revoked receivers.

Thirdly, we present a tracing mechanism that works in tandem with a Subset-Cover revocation scheme.

We identify the bifurcation property for a Subset-Cover scheme. Our two constructions of revocation

schemes posses this property. We show that every scheme that satisfies the bifurcation property can be

combined with the tracing mechanism to yield a trace-and-revoke scheme. The integration of the two mech-

anisms is seamless in the sense that no change is required for any one of them. Moreover, no a-priori bound

on the number of traitors is needed for our tracing scheme. In order to trace t illegal users, the first revo-

cation method requires a message length of t logN , and the second revocation method requires a message

length of 5t.

Main Contributions: the main improvements that our methods achieve over previously suggested meth-

ods, when adopted to the stateless scenario, are:

� Reducing the message length to linear in r regardless of the coalition size, while maintaining a single

decryption at the user’s end. This applies also to the case where public keys are used, without a

substantial length increase.

� The seamless integration between revocation and tracing: the tracing mechanism does not require

any change of the revocation algorithm and no a priori bound on the number of traitors, even when all

traitors cooperate among themselves.

� The rigorous treatment of the security of such schemes, identifying the effect of parameter choice on

the overall security of the scheme.

Organization of the paper. Section 2 describes the framework for Subset-Cover algorithms and a sketch

of the main theorem characterizing the security of a revocation algorithm in this family (the security is

4Note that the comparison in the processing time between the two methods treats an application of a pseudo-random generator

and a lookup operation as having the same cost, even though they might be quite different. More explicitly, the processing of both

methods consists of O(log logN) lookups; in addition, the Subset Difference method requires at most logN applications of a

pseudo-random generator.
5An alternative view is to map the receivers to points on a line and the subsets as segments.

5

Method Message Length Storage @ Receiver Processing time no. Decryptions

Complete Subtree r log N
r logN O(log logN) 1

Subset Difference 2r � 1 1
2 log

2N O(logN) 1

Figure 1: Performance Tradeoff for the Complete Subtree method and the Subset Difference method

described in details in Section 6). Section 3 describes two specific implementations of such algorithms.

Section 4 presents extensions, implementation issues, public-key methods, application to multicasting as

well as casting the recently proposed CPRM method (for DVD-audio and SD cards) in the Subset-Cover

Framework. Section 5 provides the traitors tracing extensions to Subset-Cover revocation algorithms and

their seamless integration. In Section 6 we define the ”key-indistinguishability” property and provide the

main theorem characterizing the security of revocation algorithms in the Subset-Cover framework.

2 The Subset-Cover Revocation Framework

2.1 Preliminaries - Problem Definition

LetN be the set of all users, jN j = N , and R � N be a group of jRj = r users whose decryption privileges

should be revoked. The goal of a revocation algorithm is to allow a center to transmit a message M to all

users such that any user u 2 N n R can decrypt the message correctly, while even a coalition consisting of

all members of R cannot decrypt it. The exact definition of the latter is provided in Section 6.

A system consists of three parts: (1) An initiation scheme, which is a method for assigning the receivers

secret information that will allow them to decrypt. (2) The broadcast algorithm - given a message M and

the set R of users that should be revoked outputs a ciphertext message M0 that is broadcast to all receivers.

(3) A decryption algorithm - a (non-revoked) user that receives ciphertext M0 using its secret information

should produce the original message M . Since the receivers are stateless, the output of the decryption should

be based on the current message and the secret information only.

2.2 The Framework

We present a framework for algorithms which we call Subset-Cover. In this framework an algorithm defines

a collection of subsets S1; : : : ; Sw, Sj � N . Each subset Sj is assigned (perhaps implicitly) a long-lived

key Lj; each member u of Sj should be able to deduce Lj from its secret information. Given a revoked set

R, the remaining users N n R are partitioned into disjoint subsets Si1 ; : : : ; Sim so that

N n R =
m[
j=1

Sij

and a session key K is encrypted m times with Li1 ; : : : ; Lim .

Specifically, an algorithm in the framework uses two encryption schemes:

� A method FK : f0; 1g� 7! f0; 1g� to encrypt the message itself. The key K used will be chosen fresh

for each message M - a session key - as a random bit string. FK should be a fast method and should

not expand the plaintext. The simplest implementation is to Xor the message M with a stream cipher

generated by K .

6

� A method EL to deliver the session key to the receivers, for which we will employ an encryption

scheme. The keys L here are long-lived. The simplest implementation is to make EL : f0; 1g` 7!
f0; 1g` a block cipher.

An exact discussion of security requirements of these primitives is given in Section 6. Some suggestions for

the implementation of FK and EL are given in Section 4.1. The algorithm consists of three components:

Scheme Initiation : Every receiver u is assigned private information Iu. For all 1 � i � w such that u 2 Si,
Iu allows u to deduce the key Li corresponding to the set Si. Note that the keys Li can be chosen either (i)

uniformly at random and independently from each other (which we call the information-theoretic case) or

(ii) as a function of other (secret) information (which we call the computational case), and thus may not be

independent of each other.

The Broadcast algorithm at the Center:

1. Choose a session encryption key K .

2. Given a set R of revoked receivers, the center finds a partition of the users in N n R into disjoint

subsets Si1 ; : : : ; Sim . Let Li1 ; : : : ; Lim be the keys associated with the above subsets.

3. The center encrypts K with keys Li1 ; : : : ; Lim and sends the ciphertext

h[i1; i2; : : : ; im; ELi1 (K); ELi2 (K); : : : ; ELim (K)℄; FK(M)i

The portion in square brackets preceding FK(M) is called the header and FK(M) is called the body.

The Decryption step at the receiver u, upon receiving a broadcast message

h[i1; i2; : : : ; im; C1; C2; : : : ; Cm℄;M 0i :

1. Find ij such that u 2 Sij (in case u 2 R the result is null).

2. Extract the corresponding key Lij from Iu.

3. Compute DLij
(Cj)) to obtain K .

4. Compute DK(M 0) to obtain and output M .

A particular implementation of such scheme is specified by (1) the collection of subsets S1; : : : ; Sw (2)

the key assignment to each subset in the collection (3) a method to cover the non-revoked receivers N n R
by disjoint subsets from this collection, and (4) A method that allows each user u to find its cover Sj and

compute its key LSj from Iu. The algorithm is evaluated based upon three parameters:

i. Message Length - the length of the header that is attached to FK(M), which is proportional to m, the

number of sets in the partition covering N nR.

ii. Storage size at the receiver - how much private information (typically, keys) does a receiver need

to store. For instance, Iu could simply consists of all the keys Si such that u 2 Si, or if the key

assignment is more sophisticated it should allow the computation of all such keys.

iii. Message processing time at receiver. We often distinguish between decryption and other types of

operations.

7

It is important to characterize the dependence of the above three parameters in both N and r. Specif-

ically, we say that a revocation scheme is flexible with respect to r if the storage at the receiver is not a

function of r. Note that the efficiency of setting up the scheme and computing the partition (given R) is not

taken into account in the algorithm’s analysis. However, for all schemes presented in this paper the compu-

tational requirements of the sender are rather modest: finding the partition takes time linear in jRj logN and

the encryption is proportional to the number of subsets in the partition. In this framework we demonstrate

the substantial gain that can be achieved by using a computational key-assignment scheme as opposed to an

information-theoretic one 6.

2.3 Security of the Framework: Summary

The definition of the Subset-Cover framework allows a rigorous treatment of the security of any algorithm

in this family, which is discussed in detail in Section 6. A summary of this analysis follows.

Our contribution is twofold. We first define the notion of revocation-scheme security, namely specify

the adversary’s power in this scenario and what is considered a successful break. This roughly corresponds

to an adversary that may pool the secret information of several users and may have some influence on the

choice of messages encrypted in this scheme (chosen plaintext). Also it may create bogus messages and see

how legitimate users (that will not be revoked) react. Finally, to say that the adversary has broken the scheme

means that when the users who have provided it their secret information are all revoked (otherwise it is not

possible to protect the plaintext) the adversary can still learn something about the encrypted message. Here

we define “learn” as distinguishing its encryption from random (this is equivalent to semantic security).

Second, we state the security assumptions on the primitives used in the scheme (these include the en-

cryptions primitives EL and FK and the key assignment method in the subset-cover algorithm.) We identify

a critical property that is required from the key-assignment method: a subset-cover algorithm satisfies the

”key-indistinguishability” property if for every subset Si its key Li is indistinguishable from a random

key given all the information of all users that are not in Si. Note that any scheme in which the keys to

all subsets are chosen independently (trivially) satisfies this property. To obtain our security theorem, we

require two different sets of properties from EL and FK , since FK uses short lived keys whereas EL uses

long-lived ones. Specifically, EL is required to be semantically secure against chosen ciphertext attacks

in the pre-processing mode, and FK to be chosen-plaintext, one-message semantically secure (see Sec-

tion 6 for details). We then proceed to show in Theorem 11 that if the subset-cover algorithm satisfies the

key-indistinguishability property and if EL and FK satisfy their security requirements, then the revocation

scheme is secure under the above definition.

3 Two Subset-Cover Revocation Algorithms

We describe two schemes in the Subset-Cover framework with a different performance tradeoff, as summa-

rized in table 1.27. Each is defined over a different collection of subsets. Both schemes are r-flexible, namely

they work with any number of revocations. In the first scheme, the key assignment is information-theoretic

whereas in the other scheme the key assignment is computational. While the first method is relatively simple,

the second method is more involved, and exhibits a substantial improvement over previous methods.

In both schemes the subsets and the partitions are obtained by imagining the receivers as the leaves in a

6Note that since the assumptions on the security of the encryption primitives are computational, a computational key-assignment

method is a natural.
7Recently a method exhibiting various tradeoffs between the measures (bandwidth, storage and processing time) was pro-

posed [34]. In particular it is possible to reduce the device storage down to log2 n= logD by increasing processing time to D log n.

8

rooted full binary tree with N leaves (assume that N is a power of 2). Such a tree contains 2N � 1 nodes

(leaves plus internal nodes) and for any 1 � i � 2N � 1 we assume that vi is a node in the tree. We

denote by ST (R) the (directed) Steiner Tree induced by the set R of vertices and the root, i.e. the minimal

subtree of the full binary tree that connects all the leaves in R (ST (R) is unique). The systems differ in the

collections of subsets they consider.

3.1 The Complete Subtree Method

The collection of subsets S1; : : : ; Sw in our first scheme corresponds to all complete subtrees in the full

binary tree with N leaves. For any node vi in the full binary tree (either an internal node or a leaf, 2N � 1
altogether) let the subset Si be the collection of receivers u that correspond to the leaves of the subtree rooted

at node vi. In other words, u 2 Si iff vi is an ancestor of u. The key assignment method is simple: assign

an independent and random key Li to every node vi in the complete tree. Provide every receiver u with the

logN + 1 keys associated with the nodes along the path from the root to leaf u.

For a given set R of revoked receivers, let u1; : : : ; ur be the leaves corresponding to the elements in R.

The method to partition N n R into disjoint subsets is as follows. Let Si1 ; : : : ; Sim be all the subtrees of

the original tree that “hang” off ST (R), that is, all subtrees whose roots v1; : : : ; vm are adjacent to nodes

of outdegree 1 in ST (R), but they are not in ST (R). It follows immediately that this collection covers all

nodes in N n R and only them.

The cover size: The Steiner tree ST (R) has r leaves. An internal node is in ST (R) iff it is on some path

to a point in R, therefore there are at most r logN nodes in ST (R). A finer analysis takes into account

double counting of the nodes closer to the root and the fact that a node of outdegree 2 in ST (R) does not

produce a subset, and shows that the number of subsets is at most r log(N=r). The analysis is as follows:

note that the number of sets is exactly the number of degree 1 nodes in ST (R). Assume by induction on

the tree height that this is true for trees of depth i, i.e. that in a subtree with r leaves the maximum number

of nodes of degree 1 is at most r � (i � log r). Then consider a tree of depth i + 1. If all the leaves are

contained in one subtree of depth i, then by induction the total number of nodes of degree 1 is at most

r � (i� log r)+1 � r � (i+1� log r). Otherwise, the number of nodes of degree 1 is the number of nodes of

degree 1 in the left subtree (that has r1 � 1 leaves) plus the number of nodes of degree 1 in the right subtree

(that has r2 � 1 leaves) and r = r1 + r2. By induction, this is at most r1 � (i� log r1) + r2 � (i� log r2) =
r � i� (r1 log r1 + r2 log r2) � r � (i+1� log r) since (r1 log r1 + r2 log r2) � r(log r� 1). Note that this

is also the average number of subsets (where the r leaves are chosen at random).

The Decryption Step: Given a message

h[i1; : : : ; im; ELi1 (K); ELi2 (K); : : : ; ELim (K)℄; FK(M)℄i

a receiver u needs to find whether any of its ancestors is among i1; i2; : : : im; note that there can be only one

such ancestor, so u may belong to at most one subset.

There are several ways to facilitate an efficient search in this list8. First consider a generic method that

works whenever each receiver is a member of relatively few subsets Si: the values i1; i2; : : : im are put in

a hash table and in addition a perfect hash function h of the list is transmitted as well (see [15] for a recent

survey of such functions). The length of the description of h can be relatively small compared to the length

of the list i.e. it can be o(m logw). The receiver u should check for all i such that u 2 Si whether i is in the

list by computing h(i). In our case this would mean checking logN values.

8This is relevant when the data is on a disk or buffered, rather than being broadcast, since broadcast results in scanning the list

anyhow

9

Furthermore, suppose that we are interested in using as few bits as possible to represent the collection

of subsets used fi1; i2; : : : img. The information-theoretic bound on the number of bits needed is dlog�wm
�e,

which is roughly m logw=m, using Stirling’s approximation. (Note that when m �p
w this represents a

factor 2 compression compared to storing fi1; i2; : : : img explicitly.) However we are interested in a succinct

representation of the collection that allows efficient lookup in this list. It turns out that with an additive factor

of O(m+ log logw) bits it is possible to support an O(1) lookup, see [10, 39]; the results they provide are

even slightly better, but this bound is relatively simple to achieve.

It turns out that we can do even better for the complete subtree method, given the special structure. For

each node u, the desired ancestor ij in the list is the one with which u and ij have the longest common

prefix. Searching for this can be done by log logN comparisons given the right preprocessing of the data,

see [33].

Summarizing, in the complete subtree method (i) the message header consists of at most r logNr indices

and encryptions of the session key (ii) receivers have to store logN keys and (iii) processing a message

requires O(log logN) operations plus a single decryption operation.

Security: The key assignment in this method is information theoretic, that is keys are assigned randomly

and independently. Hence the “key-indistinguishability” property of this method follows from the fact that

no u 2 R is contained in any of the subsets i1; i2; : : : im, as stated above.

Theorem 1 The Complete Subtree Revocation method requires (i) message length of at most r logNr keys

(ii) to store logN keys at a receiver and (iii) O(log logN) operations plus a single decryption operation to

decrypt a message. Moreover, the method is secure in the sense of Definition 10.

Comparison to the Logical Key Hierarchy (LKH) approach : Readers familiar with the LKH method

of [45, 46] may find it instructive to compare it to the Complete Subtree Scheme. The main similarity lies in

the key assignment - an independent label is assigned to each node in the binary tree. However, these labels

are used quite differently - in the multicast re-keying LKH scheme some of these labels change at every

revocation. In the Complete Subtree method labels are static; what changes is a single session key.

Consider an extension of the LKH scheme which we call the clumped re-keying method: here, r revoca-

tions are performed at a time. For a batch of r revocations, no label is changed more than once, i.e. only the

“latest” value is transmitted and used. In this variant the number of encryptions is roughly the same as in the

Complete Subtree method, but it requires logN decryptions at the user, (as opposed to a single decryption

in our framework). An additional advantage of the Complete Subtree method is the separation of the labels

and the session key which has a consequence on the message length; see discussion about Prefix-Truncation

in Section 4.1.

3.2 The Subset Difference Method

The main disadvantage of the Complete Subtree method is that N n R may be partitioned into a number

of subsets that is too large. The goal is now to reduce the partition size. We show an improved method

that partitions the non-revoked receivers into at most 2r � 1 subsets (or 1:25r on average), thus getting rid

of a logN factor and effectively reducing the message length accordingly. In return, the number of keys

stored by each receiver increases by a factor of 1
2 � logN . The key characteristic of the Subset-Difference

method, which essentially leads to the reduction in message length, is that in this method any user belongs

to substantially more subsets than in the first method (O(N) instead of logN). The challenge is then to

devise an efficient procedure to succinctly encode this large set of keys at the user, which is achieved by

using a computational key assignment.

10

...

Sij

Vi

... ...

Vj

Figure 2: The Subset Difference Method: Subset Si;j contains all marked leaves (non-black).

The subset description

As in the previous method, the receivers are viewed as leaves in a complete binary tree. The collection

of subsets S1; : : : ; Sw defined by this algorithm corresponds to subsets of the form “a group of receivers

G1 minus another group G2”, where G2 � G1. The two groups G1; G2 correspond to leaves in two full

binary subtrees. Therefore a valid subset S is represented by two nodes in the tree (vi; vj) such that vi is an

ancestor of vj . We denote such subset as Si;j . A leaf u is in Si;j iff it is in the subtree rooted at vi but not in

the subtree rooted at vj , or in other words u 2 Si;j iff vi is an ancestor of u but vj is not. Figure 2 depicts

Si;j . Note that all subsets from the Complete Subtree Method are also subsets of the Subset Difference

Method; specifically, a subtree appears here as the difference between its parent and its sibling. The only

exception is the full tree itself, and we will add a special subset for that. We postpone the description of the

key assignment till later; for the time being assume that each subset Si;j has an associated key Li;j .

The Cover

For a given set R of revoked receivers, let u1; : : : ; ur be the leaves corresponding to the elements in R.

The Cover is a collection of disjoint subsets Si1;j1 ; Si2;j2 : : : ; Sim;jm which partitions N n R. Below is an

algorithm for finding the cover, and an analysis of its size (number of subsets).

Finding the Cover: The method partitions N nR into disjoint subsets Si1;j1 ; Si2;j2 : : : ; Sim;jm as follows:

let ST (R) be the (directed) Steiner Tree induced by R and the root. We build the subsets collection itera-

tively, maintaining a tree T which is a subtree of ST (R) with the property that any u 2 N nR that is below

a leaf of T has been covered. We start by making T be equal to ST (R) and then iteratively remove nodes

from T (while adding subsets to the collection) until T consists of just a single node:

1. Find two leaves vi and vj in T such that the least-common-ancestor v of vi and vj does not contain

any other leaf of T in its subtree. Let vl and vk be the two children of v such that vi a descendant of

vl and vj a descendant of vk. (If there is only one leaf left, make vi = vj to the leaf, v to be the root

of T and vl = vk = v.)

11

2. If vl 6� vi then add the subset Sl;i to the collection; likewise, if vk 6� vj add the subset Sk;j to the

collection.

3. Remove from T all the descendants of v and make it a leaf.

An alternative description of the cover algorithm is as follows: consider maximal chains of nodes with

outdegree 1 in ST (R). More precisely, each such chain is of the form [vi1 ; vi2 ; : : : vi` ℄ where (i) all of

vi1 ; vi2 ; : : : vi`�1
have outdegree 1 in ST (R) (ii) vi` is either a leaf or a node with outdegree 2 and (iii) the

parent of vi1 is either a node of outdegree 2 or the root. For each such chain where ` � 2 add a subsets Si1;i`
to the cover. Note that all nodes of outdegree 1 in ST (R) are members of precisely one such chain.

The cover size: Lemma 2 shows that a cover can contain at most 2r�1 subsets for any set of r revocations.

Furthermore, if the set of revoked leaves is random, then the average number of subsets in a cover is 1:25r.

Lemma 2 Given any set of revoked leavesR, the above method partitions N nR into at most 2r�1 disjoint

subsets.

Proof: Every iteration increases the number of subsets by at most two (in step 2) and reduces the number of

the Steiner leaves by one (in Step 3), except the last iteration that may not reduce the number of leaves but

adds only one subset. Starting with r leaves, the process generates the total of 2r � 1 subsets. Moreover,

every non-revoked u is in exactly one subset, the one defined by the first chain of nodes of outdegree 1 in

ST (R) that is encountered while moving from u towards the root. This encounter must hit a non-empty

chain, since the path from u to the root cannot join ST (R) in an outdegree 2 node, since this implies that

u 2 R. 2

The next lemma is concerned with covering more general sets than those obtained by removing users.

Rather it assumes that we are removing a collection of subsets from the Subset Difference collection. It is

applied later in Sections 4.2 and 5.2.

Lemma 3 Let S = Si1 ; Si2 ; : : : Sim be a collection of m disjoint subsets from the underlying collection

defined by the Subset Difference method, and U = [mj=1Sij . Then the leaves in N n U can be covered by at

most 3m� 1 subsets from the underlying Subset Difference collection.

Proof: The proof is by induction on m. When m = 1, S contains a single set. Let this set be Sa;b, which is

the set that is represented by two nodes in the tree (va; vb). Denote by v and v0 the parent and the sibling

of vb respectively (it is possible that va � v), and by r the root of the tree. Then the leaves in N n U are

covered by the following two sets Sr;a and S;0 . If va � v then the cover consists of a single set, Sr;0 .

To handle the case where m > 1, we need the following definition. We say that a set Sx;y is nested

within the set Sa;b if the tree node vx is contained in the subtree rooted at vb. Note that if two subsets Sa;b
and Sa0;b0 are disjoint but not nested, then the subtrees rooted at va and va0 must be disjoint9 . Consider the

following two cases:

1. All sets in S are maximal with respect to the nesting property. Let Sij = Saj ;bj be the jth set in S . A

cover for N n U is constructed by first covering all the subtrees rooted at the vbj ’s, and then covering

the rest of the leaves that are not contained in any one of the subtrees rooted at vaj . That is, for each

set Saj ;bj in S , construct the set S;0 where v and v0 are the parent and the sibling of vbj respectively

for the total of m sets. To cover the rest, treat the nodes va1 ; : : : ; vam as m revoked leaves and apply

Lemma 2 to cover this tree. This requires 2m � 1 additional sets, hence the number of sets required

to cover N n U in this case is 3m� 1.

9The only exception is the case where b and b0 are siblings and are both children of a. This is a degenerate case, and the two

subsets should be replaced by a new subset consisting of the tree below a0

12

2. S = S1 [S2 such that jS1j = k � 1 and there exists a maximal set Sa;b 2 S2 with respect to the

nesting property such that all sets in S1 are nested within Sa;b. Let U 0 be the subtree rooted at va. The

idea is to first cover the leaves in N n U that are not in U0 and then cover the ones in N n U that are

in U 0. The first part of the cover can be obtained by applying the lemma recursively on the original

tree with S2 where Sa;b is replaced with the subset consisting of the tree below va. The second part

is obtained by applying the lemma recursively on the tree rooted at vb with S1. By the induction

hypothesis, this requires the total number of 3(m� k)� 1 + 3k � 1 = 3m� 2 sets.

2

Average-case analysis: The analysis of Lemma 2 is a worst-case analysis and there are instances which

actually require 2r � 1 sets. However, it is a bit pessimistic in the sense that it ignores the fact that a chain

of nodes of outdegree 1 in ST (R) may consist only of the end point, in which case no subset is generated.

This corresponds to the case where vl � vi or vr � vj in Step 2. Suppose that the revoked set R is selected

at random from all subsets of cardinality r of N , then what is the expected number of subsets generated?

The question is how many outdegree 1 chains are empty (i.e. contain only one point). We can bound it from

above as follows: consider any chain for which it is known that there are k members beneath it. Then the

probability that the chain is not empty is at most 2�(k�1). For any 1 � k � r there can be at most r=k
chains such that there are k leaves beneath it, since no such chain can be ancestor of another chain with k
descendants. Therefore the expected number of non-empty chains is bounded by

rX
k=1

r

k
� 1

2k�1
� 2r

1X
k=1

1

k
� 1

2k
� 2 ln 2 � r � 1:38 � r:

Simulation experiments have shown a tighter bound of 1:25r for the random case. So the actual number of

subsets used by the Subset Difference scheme is expected to be slightly lower than the 2r � 1 worst case

result.

Key assignment to the subsets

We now define what information each receiver must store. If we try and repeat the information-theoretic

approach of the previous scheme where each receiver needs to store explicitly the keys of all the subsets it

belongs to, the storage requirements would expand tremendously: consider a receiver u; for each complete

subtree Tk it belongs to, u must store a number of keys proportional to the number of nodes in the subtree

Tk that are not on the path from the root of Tk to u. There are logN such trees, one for each height 1 �
k � logN , yielding a total of

PlogN
k=1 (2k � k) which is O(N) keys. We therefore devise a key assignment

method that requires a receiver to store only O(logN) keys per subtree, for the total of O(log2N) keys.

While the total number of subsets to which a user u belongs is O(N), these can be grouped into logN
clusters defined by the first subset i (from which another subset is subtracted). The way we proceed with

the keys assignment is to choose for each 1 � i � N � 1 corresponding to an internal node in the full

binary tree a random and independent value LABELi. This value should induce the keys for all legitimate

subsets of the form Si;j . The idea is to employ the method used by Goldreich, Goldwasser and Micali [28]

to construct pseudo-random functions, which was also used by Fiat and Naor [23] for purposes similar to

ours.

Let G be a (cryptographic) pseudo-random sequence generator (see definition below) that triples

the input, i.e. whose output length is three times the length of the input; let GL(S) denote the left third of

the output of G on seed S, GR(S) the right third and GM (S) the middle third. We say that G : f0; 1gn 7!
f0; 1g3n is a pseudo-random sequence generator if no polynomial-time adversary can distinguish the output

13

Vi1

u

Vi

Vi2

Vik

Vi3

LABELi

LABELi,j = G_R(G_L(G_L(LABELi)))

...... ...

S=LABELi

G_L(S)

G_L(G_L(S))

_L(S)))

G_R(S)

G_R(G_L(G_L(S)))

Li,j= G_M (LABELi,j)

Figure 3: Key Assignment in the Subset Difference Method. Left: generation of LABELi;j and the key Li;j .
Right: leaf u receives the labels of vi1 ; : : : vik that are induced by the label LABELi of vi.

of G on a randomly chosen seed from a truly random string of similar length. Let "4 denote the bound on

the distinguishing probability.

Consider now the subtree Ti (rooted at vi). We will use the following top-down labeling process: the

root is assigned a label LABELi. Given that a parent was labeled S, its two children are labeled GL(S)
and GR(S) respectively. Let LABELi;j be the label of node vj derived in the subtree Ti from LABELi.
Following such a labeling, the key Li;j assigned to set Si;j is GM of LABELi;j . Note that each label induces

three parts: GL - the label for the left child, GR - the label for the right child, and GM the key at the node.

The process of generating labels and keys for a particular subtree is depicted in Figure 3. For such a labeling

process, given the label of a node it is possible to compute the labels (and keys) of all its descendants. On the

other hand, without receiving the label of an ancestor of a node, its label is pseudo-random and for a node j,

given the labels of all its descendants (but not including itself) the key Li;j is pseudo-random (LABELi;j ,
the label of vj , is not pseudo-random given this information simply because one can check for consistency

of the labels). It is important to note that given LABELi, computing Li;j requires at most logN invocations

of G.

We now describe the information Iu that each receiver u gets in order to derive the key assignment

described above. For each subtree Ti such that u is a leaf of Ti the receiver u should be able to compute Li;j
iff j is not an ancestor of u. Consider the path from vi to u and let vi1 ; vi2 ; : : : vik be the nodes just “hanging

off” the path, i.e. they are adjacent to the path but not ancestors of u (see Figure 3). Each j in Ti that is not

an ancestor of u is a descendant of one of these nodes. Therefore if u receives the labels of vi1 ; vi2 ; : : : vik
as part of Iu, then invoking G at most logN times suffices to compute Li;j for any j that is not an ancestor

of u.

As for the total number of keys (in fact, labels) stored by receiver u, each tree Ti of depth k that contains

14

u contributes k � 1 keys (plus one key for the case where there are no revocations), so the total is

1 +
logN+1X
k=1

k � 1 = 1 +
(logN + 1) logN

2
=

1

2
log2N +

1

2
logN + 1

Decryption Step: At decryption time, a receiver u first finds the subset Si;j such that u 2 Si;j , and

computes the key corresponding to Li;j . Using the techniques described in the complete subtree method for

table lookup structure, this subset can be found in O(log logN). The evaluation of the subset key takes now

at most logN applications of a pseudo-random generator. After that, a single decryption is needed.

Security

In order to prove security we have to show that the key-indistinguishability condition (Definition 8 of Section

6) holds for this method, namely that each key is indistinguishable from a random key for all users not in

the corresponding subset. Theorem 11 of Section 6 proves that this condition implies the security of the

algorithm.

Observe first that for any u 2 N , u never receives keys that correspond to subtrees to which it does

not belong. Let Si denote the set of leaves in the subtree Ti rooted at vi. For any set Si;j the key Li;j
is (information theoretically) independent of all Iu for u 62 Si. Therefore we have to consider only the

combined secret information of all u 2 Sj . This is specified by at most logN labels - those hanging on

the path from vi to vj plus the two children of vj - which are sufficient to derive all other labels in the

combined secret information. Note that these labels are logN strings that were generated independently by

G, namely it is never the case that one string is derived from another. Hence, a hybrid argument implies

that the probability of distinguishing Li;j from random can be at most "4= logN , where "4 is the bound on

distinguishing outputs of G from random strings.

Theorem 4 The Subset Difference method requires (i) message length of at most 2r � 1 keys (ii) to store
1
2 log

2N + 1
2 logN + 1 keys at a receiver and (iii) O(logN) operations plus a single decryption operation

to decrypt a message. Moreover, the method is secure in the sense of Definition 10.

3.3 Lower Bounds

Generic lower bound

Any ciphertext in a revocation system when r users are revoked should clearly encode the original message

plus the revoked subset, since it is possible to test which users decrypt correctly and which incorrectly

using the preassigned secret information only (that was chosen independently of the transmitted message).

Therefore we have a “generic” lower bound of log
�N
r

� � r logN bits on the length of the header (or extra

bits). Note that the subset difference method approaches this bound - the number of extra bits there is

O(r � key-size).

Lower bounds for the information-theoretic case

If the keys to all the subsets are chosen independently (and hence u explicitly receives in Iu all Li such that

u 2 Si) then Luby and Staddon’s lower bound for the “Or Protocol” [31] can be applied. They used the

Sunflower Lemma (see below) to show that any scheme which employs m subsets to revoke r users must

have at least one member with at least
(Nr)

1=m

mr keys. This means that if we want the number of subsets m

15

to be at most r, then the receivers should store at least
(N=r3) keys (as
�N
r

� �
�
N
r

�r
). In the case where

r � N , our (non-information-theoretic) Subset Difference method does better than this lower bound.

Note that when the number of subsets used in a broadcast is O(r logN) (as it is in the Complete Sub-

tree method) then the above bound becomes useless. We now show that even if one is willing to use this

many subsets (or even more), then at least
(logN) keys should be stored by the receivers. We recall the

Sunflower Lemma of Erdos and Rado (see [21]).

Definition 5 Let S1; S2; : : : ; S` be subsets of some underlying finite ground set. We say that they are a

sunflower if the intersections of any pair of the subsets are equal, in other words, for all 1 � i < j � ` we

have Si \ Sj =
T`
i=1 Si:

The Sunflower Lemma says that in every set system there exists a sufficiently large sunflower: in a collection

of N subsets each of size at most k there exists a sunflower consisting of at leastN
1=k

k subsets.

Consider now the sets T1; T2; : : : TN of keys the receivers store. I.e. Tu = fLiju 2 Sig. If for all u we

have that jTuj � k, then there exists a sunflower of N
1=k

k subsets. Pick one u such that Tu is in the sunflower

and make R = fug. This means that in order to cover the other members of the sunflower we must use at

least N1=k

k � 1 keys, since no Si can be used to cover two of the other members of the sunflower (otherwise

Si must also have the revoked u as a member). This means, for instance, that if k =
p
logN then just to

revoke a single user requires using at least 2
p

logNp
logN

� 1 subsets.

4 Further Discussions

4.1 Implementation Issues

Implementing EL and FK

One of the issues that arises in implementing a Subset-Cover scheme is how to implement the two crypto-

graphic primitives EL and FK . The basic requirements from EL and FK were outlined above in Section 2.

However, it is sometimes desirable to chose an encryption F that might be weaker (uses shorter keys) than

the encryption chosen for E. The motivation for that is twofold: (1) to speed up the decoding process at

the receiver (2) to shorten the length of the header. Such a strategy makes sense, for example, for copyright

protection purposes. There it may not make sense to protect a specific ciphertext so that breaking it is very

expensive; on the other hand we do want to protect the long lived keys of the system with a strong encryption

scheme.

Suppose that F is implemented by using a stream cipher with a long key, but sending some of its bits

in the clear; thus K corresponds to the hidden part of the key and this is the only part that needs to be

encrypted in the header. (One reason to use F in such a mode rather than simply using a method designed

with a small key is to prevent a preprocessing attack against F .) This in itself does not shorten the header,

since it depends on the block-length of E (assuming E is implemented by block-cipher). We now provide

a specification for using E, called Prefix-Truncation, which reduces the header length as well, in addition

to achieving speedup, without sacrificing the security of the long-lived keys. Let Pre�xiS denote the first

i bits of a string S. Let EL be a block cipher and U be a random string whose length is the length of

the block of EL. Let K be a relatively short key for the cipher FK (whose length is, say, 56 bits). Then,

[Pre�xjKjEL(U)℄ � K provides an encryption that satisfies the definition of E as described in Section 6.

The Prefix-Truncated header is therefore:

16

h[i1; i2; : : : ; im;U ; [Pre�xjKjELi1 (U)℄�K; : : : ; [Pre�xjKjELim (U)℄�K ℄; FK(M)i
Note that this reduces the length of the header down to about m � jKj bits long (say 56m) instead of

m � jLj. In the case where the key length of E is marginal, then the following heuristic can be used to

remove the factor m advantage that the adversary has in a brute-force attack which results from encrypting

the same string U with m different keys. Instead, encrypt the string U � ij , namely

h[i1; i2; : : : ; im;U ; [Pre�xjKjELi1 (U � i1)℄�K; : : : ; [Pre�xjKjELim (U � im)℄�K ℄; FK(M)i

All-Or-Nothing Encryptions for FK

As before, we can imagine cases where the key used by FK is only marginally long enough. Moreover, in a

typical scenario like copyright protection, the message M is long (e.g. M may be a title on a CD or a DVD

track). In such cases, it is possible to extract more security from the long message for a fixed number of key

bits using the All-Or-Nothing encryption mode originally suggested by [41]. These techniques assure that

the entire ciphertext must be decrypted before even a single message block can be determined. The concrete

method of [41] results in a penalty of a factor of three in the numbers encryptions/decryptions required by

a legitimate user; however, for a long message that is composed of l blocks, a brute-force attack requires a

factor of l more time than a similar attack would require otherwise. Other All-Or-Nothing methods can be

applied as well.

The drawback of using an All-Or-Nothing mode is its latency, namely the entire message M must be

decoded before the first block of plaintext is known. This makes the technique unusable for applications that

cannot tolerate such latency.

Frequently Refreshed Session Keys

Suppose that we want to prevent an illegal redistribution channel that will use some low bandwidth means

to send K , the session key (a low bandwidth label or a bootlegged CD). A natural approach to combat such

channel is to encode different parts of the message M with different session keys, and to send all different

session keys encrypted with all the subset keys. That is, send l > 1 different session keys all encrypted with

the same cover, thus increasing the length of the header by a factor of l. This means that in order to have

only a modest increase in the header information it is important that m, the number of subsets, will be as

small as possible. Note that the number of decryptions that the receiver needs to perform in order to obtain

its key Lij which is used in this cover remains one.

Storage at the Center

In both the Complete Subtree and Subset Difference methods, a unique label is associated with each node

in the tree. Storing these labels explicitly at the Center can become a serious constraint. However, these

labels can be generated at the center by applying a pseudo-random function on the name of the node without

affecting the security of the scheme. This reduces the storage required by at the Center to the single key of

the pseudo-random function.

Furthermore, it may be desirable to distribute the center between several servers with the objective of

avoiding a single or few points of attack. In such a case the distributed pseudo-random functions of [37]

may be used to define the labels.

17

Reducing Keys at the Receiver

A further optimization is a tradeoff between the number of labels at the receiver and the message length.

One approach is to restrict the collection of subsets only to ”shallow” subsets, namely sets Si;j such that

vi is at least at depth h from the root, where h is the tradeoff parameter. As a result, the cover size may

increase by at most 2h (additively), but the number of labels at the receiver is reduced to
PlogN+1�h

k=1 k�1 =
1
2(logN � h)2 + 1

2 (logN � h+ 1).

4.2 Hierarchical Revocation

Suppose that the receivers are grouped in a hierarchical manner, and that it is desirable to revoke a group

that consists of the subordinates of some entity, without paying a price proportional to the group size (for

instance all the players of a certain manufacturer). Both methods of Section 3 lend themselves to hierarchical

revocation naturally, given the tree structure. If the hierarchy corresponds to the tree employed by the

methods, then to revoke the receivers below a certain node counts as just a single user revocation.

By applying Lemma 3 we get that in the Subset Difference Method we can remove any collection of m
subsets and cover the rest with 3m� 1 subsets. Hence, the hierarchical revocation can be performed by first

constructing m sets that cover all revoked devices, and then covering all the rest with 3m � 1, yielding the

total of 4m sets.

4.3 Public Key methods

In some scenarios it is desireable to use a revocation scheme in a public-key mode, i.e. when the party that

generates the ciphertext is not necessarily trustworthy and should not have access to the decryption keys

of the users, or when ciphertexts may be generated by a number of parties. Any Subset-Cover revocation

algorithm can be used in this mode: the Center (a trusted entity) generates the private-keys corresponding to

the subsets and hands each user the private keys it needs for decryption. The (not necessarily trusted) party

that generates the ciphertext should only have access to public-keys corresponding to the subsets which we

call “the public-key file”. That is, E is a public key cryptosystem whereas F is as before. In principal, any

public key encryption scheme with sufficient security can be used for E. However, not all yield a system

with a reasonable efficiency. Below we discuss the problems involved, and show that a Diffie-Hellman type

scheme best serves this mode.

Public Key Generation: Recall that the Subtree Difference method requires that subset keys are derived

from labels. If used in a public-key mode, the derivation yields random bits that are then used to generate

the private/public key pair. For example, if RSA keys are used, then the random strings that are generated

by the Pseudo Random Generator G can be used as the random bits which are input to the procedure which

generates an RSA key. However, this is rather complicated, both in terms of the bits and time needed.

Therefore, whenever the key assignment is not information-theoretic it is important to use a public-key

scheme where the mapping from random bits to the keys is efficient. The Diffie-Hellman type scheme

provides an efficient mapping.

Size of Public Key File: The problem is that the public key file might be large, proportional to w, the

number of subsets. In the Complete Subtree method w = 2N � 1 and in the Subtree Difference method it

is N logN . An interesting open problem is to come up with a public-key cryptosystem where it is possible

to compress the public-keys to a more manageable size. For instance, an identity-based cryptosystem would

be helpful for the information-theoretic case where keys are assigned independently. A recent proposal that

fits this requirement is [8].

18

Prefix-Truncated Headers: We would like to use the Prefix-Truncation, described in Section 4.1, with

public-key cryptosystem to reduce the header size without sacrificing security of long-term keys. It can

not be employed with an arbitrary public key cryptosystem (e.g. RSA). However, a Diffie-Hellman public

key system which can be used for the Prefix-Truncation technique can be devised in the following manner.

Interestingly, in such a system the length of public-key encryption is hardly longer than the private-key case.

LetG be a group with a generator g and let the subset keys be L1 = y1; L2 = y2; : : : ; Lw = yw elements

in G. Let gy1 ; gy2 ; : : : ; gyw be their corresponding public keys. Define h as a pairwise-independent function

h : G 7! f0; 1gjKj that maps elements which are randomly distributed overG to randomly distributed strings

of the desired length (see e.g. [38] for a discussion of such functions). Given the subsets Si1 ; : : : ; Sim to be

used in the header, the encryption E can be done by picking a new element x from G, publicizing gx, and

encrypting K as ELij (K) = h(g
xyij)�K . That is, the header now becomes

h[i1; i2; : : : ; im; gx; h; h(gxyi1)�K; : : : ; h(gxyim)�K ℄; FK(M)i
Interestingly, in terms of the broadcast length such system hardly increases the number of bits in the

header as compared with a shared-key system - the only difference is gx and the description of h. Therefore

this difference is fixed and does not grow with the number of revocations. Note however that the scheme

as defined above is not immune to chosen-ciphertext attacks, but only to chosen plaintext ones. Coming up

with public-key schemes where prefix-truncation is possible that are immune to chosen ciphertext attacks of

either kind is an interesting challenge10 .

4.4 Applications to Multicast

The difference between key management for the scenario considered in this paper and for the Logical Key

Hierarchy for multicast is that in the latter the users (i.e. receivers) may update their keys [46, 45]. This

update is referred to as a re-keying event and it requires all users to be connected during this event and

change their internal state (keys) accordingly. However, even in the multicast scenario it is not reasonable

to assume that all the users receive all the messages and perform the required update. Therefore some

mechanism that allows individual update must be in place. Taking the stateless approach gets rid of the need

for such a mechanism: simply add a header to each message denoting who are the legitimate recipients by

revoking those who should not receive it. If the number of revocations is not too large this may yield a more

manageable solution. This is especially relevant when there is a single source for sending messages or when

public-keys are used.

Backward secrecy: Note that revocation in itself lacks backward secrecy in the following sense: a con-

stantly listening user that has been revoked from the system records all future transmission (which it can’t

decrypt anymore) and keeps all ciphertexts. At a later point it gains a valid new key (by re-registering)

which allows decryption of all past communication. Hence, a newly acquired user-key can be used to de-

crypt all past session keys and ciphertexts. The way that [46, 45] propose to achieve backward secrecy is

to perform re-keying when new users are added to the group (such a re-keying may be reduced to only one

way chaining, known as LKH+), thus making such operations non-trivial. We point out that in the subset-

cover framework and especially in the two methods we proposed it may be easier: At any given point of the

system include in the set of revoked receivers all identities that have not been assigned yet. As a result, a

newly assigned user-key cannot help in decrypting an earlier ciphertext. Note that this is feasible since we

assume that new users are assigned keys in a consecutive order of the leaves in the tree, so unassigned keys

are consecutive leaves in the complete tree and can be covered by at most logN sets (of either type, the

10Both the scheme of Cramer and Shoup [14] and the random oracle based scheme [25] require some specific information for

each recipient; a possible approach with random oracles is to follow the lines of [43].

19

Complete-Subtree method or the Subtree-Difference method). Hence, the unassigned leaves can be treated

with the hierarchical revocation technique, resulting in adding at most logN revocations to the message.

4.5 Comparison to CPRM

CPRM/CPPM (Content Protection for Recordable Media and Pre-Recorded Media) is a technology devel-

oped and licensed by the “4C” group - IBM, Intel, MEI (Panasonic) and Toshiba [18]. It defines a method

for protecting content on physical media such as recordable DVD, DVD Audio, Secure Digital Memory

Card and Secure CompactFlash. A licensing Entity (the Center) provides a unique set of secret device

keys to be included in each device at manufacturing time. The licensing Entity also provides a Media Key

Block (MKB) to be placed on each compliant media (for example, on the DVD). The MKB is essentially

the Header of the ciphertext which encrypts the session key. It is assumed that this header resides on a

write-once area on the media, e.g. a Pre-embossed lead-in area on the recordable DVD. When the compliant

media is placed in a player/recorder device, it computes the session key from the Header (MKB) using its

secret keys; the content is then encrypted/decrypted using this session key.

The algorithm employed by CPRM is essentially a Subset-Cover scheme. Consider a table with A rows

and C columns. Every device (receiver) is viewed as a collection of C entries from the table, exactly one

from each column, that is u = [u1; : : : ; uC ℄ where ui 2 f0; 1; : : : ; A � 1g. The collection of subsets

S1; : : : ; Sw defined by this algorithm correspond to subsets of receivers that share the same entry at a given

column, namely Sr;i contains all receivers u = [u1; : : : ; uC ℄ such that ui = r. For every 0 � i � A� 1 and

1 � j � C the scheme associates a key denoted by Li;j . The private information Iu that is provided to a

device u = [u1; : : : ; uC ℄ consists of C keys Lu1;1; Lu2;2; : : : ; LuC ;C .

For a given set R of revoked devices, the method partitions N n R as follows: Si;j is in the cover iff

Si;j
TR = ;. While this partition guarantees that a revoked device is never covered, there is a low proba-

bility that a non-revoked device u 62 R will not be covered as well and therefore become non-functional11 .

The CPRM method is a Subset-Cover method with two exceptions: (1) the subsets in a cover are not

necessarily disjoint and (2) the cover is not always perfect as a non-revoked device may be uncovered. Note

that the CPRM method is not r-flexible: the probability that a non-revoked device is uncovered grows with

r, hence in order to keep it small enough the number of revocations must be bounded by A.

For the sake of comparing the performance of CPRM with the two methods suggested in this paper,

assume that C = logN and A = r. Then, the message is composed of r logN encryptions, the storage at

the receiver consists of logN keys and the computation at the receiver requires a single decryption. These

bounds are similar to the Complete Subtree method; however, unlike CPRM, the Complete Subtree method

is r-flexible and achieves perfect coverage. The advantage of the Subset Difference Method is much more

substantial: in addition to the above, the message consists of 1:25r encryptions on average, or of at most

2r � 1 encryptions, rather than r logN .

For example, in DVD Audio, the amount of storage that is dedicated for its MKB (the header) is 3 MB.

This constrains the maximum allowed message length. Under a certain choice of parameters, such as the

total number of manufactured devices and the number of distinct manufacturers, with the current CPRM

algorithm the system can revoke up to about 10,000 devices. In contrast, for the same set of parameters

and the same 3MB constraint, a Subset-Difference algorithm achieves up to 250,000 (!) revocations, a

factor of 25 improvement over the currently used method. This major improvement is partly due to fact that

hierarchical revocation can be done very effectively, a property that the current CPRM algorithm does not

have.

11This is similar to the scenario considered in [27]

20

5 Tracing Traitors

It is highly desirable that a revocation mechanism could work in tandem with a tracing mechanism to yield

a trace and revoke scheme. We show a tracing method that works for many schemes in the subset-cover

framework. The method is quite efficient. The goal of a tracing algorithm is to find the identities of those

that contributed their keys to an illicit decryption box (or more than one box) and revoke them; short of

identifying them we should render the box useless by finding a “pattern” that does not allow decryption

using the box, but still allows broadcasting to the legitimate users. Note that this is a slight relaxation of the

requirement of a tracing mechanism, say in [35] (which requires an identification of the traitor’s identity)

and in particular it lacks self enforcement [20]. However as a mechanism that works in conjunction with the

revocation scheme it is a powerful tool to combat piracy.

The model

Suppose that we have found an illegal decryption-box (decoder, or clone) which contains the keys associated

with at most t receivers u1; : : : ; ut known as the “traitors”.

We are interested in “black-box” tracing, i.e. one that does not take the decoder apart but by providing it

with an encrypted message and observing its output (the decrypted message) tries to figure out who leaked

the keys. A pirate decoder is of interest if it correctly decodes with probability p which is at least some

threshold q, say q > 0:5. We assume that the box has a “reset button”, i.e. that its internal state may be

retrieved to some initial configuration. In particular this excludes a “locking” strategy on the part of the

decoder which says that in case it detects that it is under test, it should refuse to decode further. Clearly

software-based systems can be simulated and therefore have the reset property.

The result of a tracing algorithm is either a subset consisting of traitors or a partition into subsets that

renders the box useless i.e. given an encryption with the given partition it decrypts with probability smaller

than the threshold q while all good users can still decrypt.

In particular, a “subsets based” tracing algorithm devises a sequence of queries which, given a black-box

that decodes with probability above the threshold q, produces the results mentioned above. It is based on

constructing useful sets of revoked devices R which will ultimately allow the detection of the receiver’s

identity or the configuration that makes the decoder useless. A tracing algorithm is evaluated based on (i)

the level of performance downgrade it imposes on the revocation scheme (ii) number of queries needed.

5.1 The Tracing Algorithm

Subset tracing: An important procedure in our tracing mechanism is one that given a partition S =
Si1 ; Si2 ; : : : Sim and an illegal box outputs one of two possible outputs: either (1) that the box cannot

decrypt with probability greater than the threshold when the encryption is done with partition S or (ii) Finds

a subset Sij such that Sij contains a traitor. Such a procedure is called subset tracing. We describe it in

detail in Section 5.1.1.

Bifurcation property: Given a subset-tracing procedure, we describe a tracing strategy that works for

many Subset-Cover revocation schemes. The property that the revocation algorithm should satisfy is that

for any subset Si; 1 � i � w, it is possible to partition Si into two (or constant) roughly equal sets, i.e. that

there exists 1 � i1; i2 � w such that Si = Si1 [Si2 and jSi1 j is roughly the same as jSi2 j. For a Subset

Cover scheme, let the bifurcation value be the relative size of the largest subset in such a split.

Both the Complete Subtree and the Subtree Difference methods satisfy this requirement: in the case of

the Complete Subtree Method each subset, which is a complete subtree, can be split into exactly two equal

21

Vj

L

Vi

L R

L R

Vi

Vj

Figure 4: Bifurcating a Subset Difference set Si;j , depicted in the left. The black triangle indicates the

excluded subtree. L and R are the left and the right children of vi. The resulting sets SL;j and Si;L are

depicted to the right.

parts, corresponding to the left and right subtrees. Therefore the bifurcation value is 1=2. As for the Subtree

Difference Method, each subset Si;j can be split into two subsets each containing between one third and two

thirds of the elements. Here, again, this is done using the left and right subtrees of node i. See Figure 4. The

only exception is when i is a parent of j, in which case the subset is the complete subtree rooted at the other

child; such subsets can be perfectly split. The worst case of (1=3; 2=3) occurs when i is the grandparent of

j. Therefore the bifurcation value is 2=3.

The Tracing Algorithm: We now describe the general tracing algorithm, assuming that we have a good

subset tracing procedure. The algorithm maintains a partition Si1 ; Si2 ; : : : Sim . At each phase one of the

subsets is partitioned, and the goal is to partition a subset only if it contains a traitor.

Each phase initially applies the subset-tracing procedure with the current partition S = Si1 ; Si2 ; : : : Sim .

If the procedure outputs that the box cannot decrypt with S then we are done, in the sense that we have

found a way to disable the box without hurting any legitimate user. Otherwise, let Sij be the set output by

the procedure, namely Sij contains a traitor.

If Sij contains only one possible candidate - it must be a traitor and we permanently revoke this user;

this doesn’t hurt a legitimate user. Otherwise we split Sij into two roughly equal subsets and continue with

the new partitioning. The existence of such a split is assured by the bifurcation property.

Analysis: Since a partition can occur only in a subset that has a traitor and contains more than one element,

it follows that the number of iterations can be at most t loga N , where a is the inverse of the bifurcation

value (a more refined expression is t(logaN � log2t), the number of edges in a binary tree with t leaves and

depth loga N .)

5.1.1 The Subset Tracing Procedure

The Subset Tracing procedure first tests whether the box decodes a message with the partition S = Si1 ; Si2 ; : : : Sim

with sufficient probability greater than the threshold, say > 0:5. If not, then it concludes (and outputs) that

the box cannot decrypt with S . Otherwise, it needs to find a subset Sij that contains a traitor.

22

Let pj be the probability that the box decodes the ciphertext

h[i1; i2; : : : ; im; ELi1
(RK); ELi2

(RK); : : : ; ELij
(RK); ELij+1

(K); : : : ; ELim (K)℄; FK(M)i

where RK is a random string of the same length as the key K . That is, pj is the probability of decoding

when the first j subsets are noisy and the remaining subsets encrypt the correct key. Note that p0 = p and

pm = 0, hence there must be some 0 < j � m for which jpj�1 � pjj � p
m .

Claim 6 Let " be an upper bound on the sum of the probabilities of breaking the encryption scheme E and

key assignment method. If pj�1 is different from pj by more than ", then the set Sij must contain a traitor.

Proof: From the box’s point of view, a ciphertext that contains j � 1 noisy subsets is different from a ci-

phertext that contains j noisy subsets only if the box is able to distinguish between ELij (K) and ELij
(RK).

Since this cannot be due to breaking the encryption scheme or the key assignment method alone, it follows

that the box must contain Lij . 2

We now describe a binary-search-like method that efficiently finds a pair of values pj; pj�1 among

p0; : : : ; pm satisfying jpj�1 � pjj � p
m . Starting with the entire interval [1;m℄, the search is repeatedly nar-

rowed down to an arbitrary interval [a; b℄. At each stage, the middle value pa+b
2

is computed (approximately)

and the interval is further halved either to the left half or to the right half, depending on difference between

pa+b
2

and the endpoint values pa and pb of the interval and favoring the interval with the larger difference.

The method is outlined below; it outputs the index j.

SubsetTracing(a; b; pa; pb)

If (a == b� 1)
return b

Else

c =da+b2 e
Find p
If jp � paj � jpb � paj

SubsetTracing(a; ; pa ; p)
Else

SubsetTracing(; b; p ; pb)

Efficiency: Let the probability of error be � and the range error be Æ. Subset tracing is comprised of logm
steps. At each step it should decide with probability at least 1� � the following:

� If
jp�paj
jpb�paj >

1
2(1 + Æ), decide ”jp � paj > jpb � pj”

� If
jp�paj
jpb�paj <

1
2(1� Æ), decide ”jp � paj < jpb � pj”

� Otherwise, any decision is acceptable.

In order to distinguish these two cases apply Claim 7 below. Since the Claim is applied logm times, choose

Æ = 1
logm . At each step with probability at least 1 � " the interval jpb � paj shrinks by at least a factor of

1
2(1� Æ), so at the ith step the interval length is (with probability at least i � �) larger than (12 (1� Æ))i; hence

23

the smallest possible interval when i = Æ = 1
logm is of length � � 1

em , with probability at least " logm.

It follows that a subset tracing procedure that works with success probability of (1 � " logm) requires at

most O(m2 log 1
" log

3m) ciphertext queries to the decoding box over the entire procedure. Note that a total

probability of success bounded away from zero is acceptable, since it is possible to verify that the resulting

pj�1; pj differ, and hence � can be O(1= logm).

Claim 7 Let pa; pb be the two probabilities at the end-points of an interval [a; b℄ such that jpa � pbj � �,

and let X be a random variable such that Prob[X = 1℄ = p where p is unknown. We would like to

sample the decoding box and decide “jp � paj > jpb � pj” or “jp � paj < jpb � pj” according to the

definition given above. The number of samples (i.e. ciphertext queries) required to reach this conclusion

with error at most " is O(log(1")=(�
2Æ2)).

Proof: Let Xa, Xb and X be f0; 1g variables satisfying P [Xa = 1℄ = pa, P [Xb = 1℄ = pb and P [X =
1℄ = p. The variant of Chernoff bounds described in [1], Corollary A.7 [p. 236], states that for a sequence of

mutually independent random variables Y1; : : : ; Yn satisfying P [Yi = 1� p℄ = p and P [Yi = �p℄ = 1� p
it holds that P [jPn

i Yij > t℄ < 2e�2t2=n for t > 0. Suppose we want to estimate pa by sampling na
times from the distribution of Xa. Let p0a be estimation that results from this sampling. Applying the

above Chernoff’s bound we can conclude that P [jp0a � paj > t℄ < 2e�2n(t+pa)2 . Hence, by choosing

na =
ln 2

"
2(t+pa)2

, the estimated p0a obtained from sampling na times satisfies P [jp0a � paj > t℄ < ". Clearly,

by sampling n =
ln 2

"
2t2 > na times the �-bounded error is also achieved. Analogously, this analysis holds for

the process of sampling from Xb and X, where p0b and p0 are the estimations that result from sampling the

distributions Xb and X.

In order to decide whether “jp � paj > jpb � pj” or “jp � paj < jpb � pj”:

� Sample n =
ln 2

"

2(�Æ
4
)2

times from each of the distributions Xa, Xb and X and compute p0a; p0b; p
0
, the

estimations for pa; pb; p respectively.

� If p0 >
p0
a+p0

b
2 then decide “jp � paj > jpb � pj”

� If p0 <
p0
a+p0

b
2 then decide “jp � paj < jpb � pj”

The number of samples conducted by this procedure is 3n = O(log(1")=(�
2Æ2)). We now have to

show that this decision is in accordance with the definition above. Note that the Chernoff bound implies

that with probability 1 � � we have (i) p0a 2 (pa � �Æ
4 ; pa + �Æ

4); (ii) p0b 2 (pb � �Æ
4 ; pb +

�Æ
4) and (iii)

p0 2 (p � �Æ
4 ; p +

�Æ
4):

If
jp�paj
jpb�paj >

1
2(1 + Æ) then by substituting � � pb � pa we get that p > pb+pa

2 + �Æ
2 . Combining

this with the above, p0 � p � �Æ
4 > pb+pa

2 + �Æ
4 � p0

a+p0
b

2 so the correct decision is reached. Similarly, if
jp�paj
jpb�paj <

1
2(1� Æ). 2

Noisy binary search: A more sophisticated procedure is to treat the Subset-Tracing procedure as noisy

binary search, as in [22]. They showed that in a model where each answer is correct with some fixed

probability (say greater than 2=3) that is independent of history it is possible to perform a binary search

in O(logN) queries. Each step might require backtracking; in the subset-tracing scenario, the procedure

backtracks if the condition jpa � pbj � (12)
i does not hold at the ith step (which indicates an error in an

earlier decision). Estimating the probability values within an accuracy of 1
m while guaranteeing a constant

24

probability of error requires only O(m2) ciphertexts queries. This effectively means that we can fix Æ and

� to be constants (independent of m). Therefore, we can perform the noisy binary search procedure with

O(m2 logm) queries.

5.2 Improving the Tracing Algorithm

The basic traitors tracing algorithm described above requires t log(N=t) iterations. Furthermore, since at

each iteration the number of subsets in the partition increases by one, tracing t traitors may result with

up to t log(N=t) subsets and hence in messages of length t log(N=t). This bound holds for any Subset-

Cover method satisfying the Bifurcation property, and both the Complete Subtree and the Subset Difference

methods satisfy this property. What is the bound on the number of traitors that the algorithm can trace?

Recall that the Complete Subtree method requires a message length of r log(N=r) for r revocations,

hence the tracing algorithm can trace up to r traitors if it uses the Complete Subtree method. However, since

the message length of the Subset Difference method is at most 2r � 1, only 2r�1
logN=r traitors can be traced

if Subset Difference is used. We now describe an improvement on the basic tracing algorithm that reduces

the number of subsets in the partition to 5t � 1 for the Subset Difference method (although the number of

iterations remains t log(N=t)). With this improvement the algorithm can trace up to r=5 traitors.

Note that among the t logN=t subsets generated by the basic tracing algorithm, only t actually contain a

traitor. The idea is to repeatedly merge those subsets which are not known to contain a traitor.12 Specifically,

we maintain at each iteration a frontier of at most 2t subsets plus 3t� 1 additional subsets. In the following

iteration a subset that contains a traitor is further partitioned; as a result, a new frontier is defined and the

remaining subsets are re-grouped.

Frontier subsets: Let Si1 ; Si2 ; : : : Sim be the partition at the current iteration. A pair of subsets (Sij1 ; Sij2)
is said to be in the frontier if Sij1 and Sij2 resulted from a split-up of a single subset at an earlier iteration.

Also neither (Sij1 nor Sij2) was singled out by the subset tracing procedure so far. This definition implies

that the frontier is composed of k disjoint pairs of buddy subsets. Since buddy-subsets are disjoint, and since

each pair originated from a single subset that contained a traitor (and therefore has been split), k � t.

We can now describe the improved tracing algorithm which proceeds in iterations. Every iteration starts

with a partition S = Si1 ; Si2 ; : : : Sim . Denote by F � S the frontier of S. An iteration consists of the

following steps, by the end of which a new partition S0 and a new frontier F 0 is defined.

� As before, use the Subset Tracing procedure to find a subset Sij that contains a traitor. If the tracing

procedure outputs that the box can not decrypt with S then we are done. Otherwise, split Sij into Sij1
and Sij2 .

� F 0 = F [Sij1 [Sij2 (Sij1 and Sij2 are now in the frontier). Furthermore, if Sij was in the frontier F
and Sik was its buddy-subset in F then F0 = F 0 n Sik (remove Sik from the frontier).

� Compute a cover C for all receivers that are not covered by F0. Define the new partition S0 as the

union of C and F 0.

To see that the process described above converges, observe that at each iteration the number of new

small frontier sets always increases by at least one. More precisely, at the end of each iteration construct

a vector of length N describing how many sets of size i, 1 � i � N , constitute the frontier. It is easy to

12This idea is similar to the second scheme of [24], Section 3:3. However, in [24] the merge is straightforward as their model

allows any subset. In our model only members from the Subset Difference are allowed, hence a merge which produces subsets of

this particular type is non-trivial.

25

see that these vectors are lexicographically increasing. The process must stop when or before all sets in the

frontier are singletons.

By definition, the number of subsets in a frontier can be at most 2t. Furthermore, they are paired into at

most t disjoint buddy subsets. As for non-frontier subsets (C), Lemma 3 shows that covering the remaining

elements can be done by at most jF j � 3t � 1 subsets (note that we apply the lemma so as to cover all

elements that are not covered by the buddy subsets, and there are at most t of them). Hence the partition at

each iteration is composed of at most 5t� 1 subsets.

5.3 Tracing Traitors from Many Boxes

As new illegal decoding boxes, decoding clones and hacked keys are continuously being introduced during

the lifetime of the system, a revocation strategy needs to be adopted in response. This revocation strategy

is computed by first revoking the identities (leaves) of all the receivers that need to be excluded, resulting

in some partition S0. Furthermore, to trace traitors from possibly more than one black box and make all

of these boxes non-decoding, the tracing algorithm needs to be run in parallel on all boxes by providing

all boxes with the same input. The initial input is the partition S0 that results from direct revocation of

all known identities. As the algorithm proceeds, when the first box detects a traitor in one of the sets it

re-partitions accordingly and the new partition is now input to all boxes simultaneously. The output of this

simultaneous algorithm is a partition (or ”revocation strategy”) that renders all revoked receivers and illegal

black boxes invalid.

6 Security of the Framework

In this section we discuss the security of a Subset-Cover algorithm. Intuitively, we identify a critical property

that is required from the key-assignment method in order to provide a secure Subset-Cover algorithm. We

say that a subset-cover algorithm satisfies the ”key-indistinguishability” property if for every subset Si its

key Li is indistinguishable from a random key given all the information of all users that are not in Si.
We then proceed to show that any subset-cover algorithm that satisfies the key-indistinguishability property

provides a secure encryption of the message.

We must specify what is a secure revocation scheme, i.e. describe the adversary’s power and what is

considered a successful break. We provide a sufficient condition for a Subset-Cover revocation scheme A
to be secure. We start by stating the assumptions on the security of the encryption schemes E and F . All

security definitions given below refer to an adversary whose challenge is of the form: distinguish between

two cases ‘i’ and ‘ii’.

6.1 Assumptions on the Primitives

Recall that the scheme employs two cryptographic primitives FK and EL. The security requirements of

these two methods are different, since FK uses short lived keys whereas EL uses long-lived ones. In both

cases we phrase the requirements in terms of a the probability of success in distinguishing an encryption

of the true message from an encryption of a random message. It is well known that such formulation is

equivalent to semantic security (that anything that can be computed about the message given the ciphertext

is computable without it), see [29, 28, 4]13.

13One actually has to repeat such an equivalence proof for the adversaries in question.

26

The method FK for encrypting the body of the message should obey the following property: consider

any feasible adversary B that chooses a message M and receives for a randomly chosen K 2 f0; 1g̀ one

of the following (i) FK(M) (ii) FK(RM) for a random message RM of length jM j. The probability that B
distinguishes the two cases is negligible and we denote the bound by "1, i.e.

jPr[B outputs ‘i’ jFK(M)℄� Pr[B outputs ‘i’ jFK(RM)℄j � "1:

Note that implementing FK by a pseudo-random generator (stream-cipher) where K acts as the seed

and whose output is Xored bit-by bit with the message satisfies this security requirement.

The long term encryption method EL should withstand a more severe attack, in the following sense:

consider any feasible adversary B that for a random key L gets to adaptively choose polynomially many

inputs and examine EL’s encryption and similarly provide ciphertexts and examine EL’s decryption. Then B
is faced with the following challenge: for a random plaintext x (which is provided in the clear) it receives one

of (i) EL(x) or (ii) EL(Rx) where Rx is a random string of length jxj. The probability that B distinguishes

the two cases is negligible and we denote the bound by "2, i.e.

jPr[B outputs ‘i’ jEL(x)℄� Pr[B outputs ‘i’jEL(Rx)℄j � "2:

Note that the above specification indicates that E should withstand a chosen-ciphertext attack in the pre-

processing mode in the terminology of [19] or CCA-I in [3]. Possible implementation of EL can be done via

pseudo-random permutations (which model block-ciphers). See more details on the efficient implementation

of F and E in Section 4.1.

Key Assignment: Another critical cryptographic operation performed in the system is the key assignment

method, i.e. how a user u derives the keys Li for the sets Si such that u 2 Si. We now identify an important

property the key assignment method in a subset-cover algorithm should possess that will turn out to be

sufficient to provide security for the scheme:

Definition 8 Let A be a Subset-Cover revocation algorithm that defines a collection of subsets S1; : : : ; Sw.

Consider a feasible adversary B that

1. Selects i, 1 � i � w

2. Receives the Iu’s (secret information that u receives) for all u 2 N n Si
We say that A satisfies the key-indistinguishability property if the probability that B distinguishes Li from a

random key RLi of similar length is negligible and we denote this by "3, i.e.

jPr[B outputs ‘i’ jLi℄� Pr[B outputs ‘i’ jRLi ℄j � "3:

Note that all “information theoretic” key assignment schemes, namely schemes in which the keys to all

the subsets are chosen independently, satisfy Definition 8 with "3 = 0.

The next lemma is a consequence of the key-indistinguishability property and will be used in the proof

of Theorem 11, the Security Theorem.

Lemma 9 For any 1 � i � w let Si1 ; Si2 : : : ; Sit be all the subsets that are contained in Si; LetLi1 ; : : : ; Lit
be their corresponding keys. For any adversary B that selects i, 1 � i � w, and receives Iu for all

u 2 N n Si, if B attempts to distinguish the keys Li1 ; : : : ; Lit from random keys RLi1
; : : : ; RLit

(of similar

lengths) then
���Pr[B outputs ‘i’ jLi1 ; : : : ; Lit ℄� Pr[B outputs ‘i’ jRLi1

; : : : ; RLit
℄
��� � t � "3:

27

Proof: Let us rename the subsets Si1 ; Si2 : : : ; Sit as S1; S2; : : : St and order them according to their size;

that is for all j = 1; : : : ; t; Sj � Si and jS1j � jS2j � : : : jStj. We will now use a hybrid argument:

consider an “input of the jth type” as one where the first j keys are the true keys and the remaining t � j
keys are random keys. 81 � j � t, let pj be the probability that B outputs ’i’ when challenged with an input

of the jth type, namely

pj = Pr[B outputs ‘i’ jL1; : : : ; Lj; RLj+1 ; : : : ; RLt ℄

Suppose that the lemma doesn’t hold, that is jpt � p0j > t � "3. Hence there must be some j for which

jpj � pj�1j > "3. We now show how to create an adversary B0 that can distinguish between RLj and Lj

with probability > "3, contradicting the key-indistinguishability property. The actions of B0 result from a

simulation of B:

� When B selects Si, B0 selects the subset Sj � Si from the above discussion (that is, the j for which

jpj�pj�1j > "3). It receives Iu for all u 2 N nSj and hence can provide B with Iu for all u 2 N nSi.
� When B0 is given a challenge X and needs to distinguish whether X isRLj or Lj , it creates a challenge

to B that will be L1; : : : ; Lj ; RLj+1 ; : : : ; RLt or L1; : : : ; Lj�1; RLj ; RLj+1 ; : : : ; RLt . Note that due

their order S1; : : : ; Sj�1 6� Sj; since B0 received Iu for all u 2 N nSj it knows the keys L1; : : : ; Lj�1,

while RLj+1 ; : : : ; RLt are chosen at random. The jth string in the challenge is simply X (the one B0
received as a challenge.) B0 response is simply B’s answer to the query.

The advantage that B0 has in distinguishing between RLj and Lj is exactly the advantage B0 has in dis-

tinguishing between L1; : : : ; Lj ; RLj+1 ; : : : ; RLt and L1; : : : ; Lj�1; RLj ; RLj+1 ; : : : ; RLt , which is by as-

sumption larger than "3, contradicting the key-indistinguishability property. 2

6.2 Security Definition of a Revocation Scheme

To define the security of a revocation scheme we first have to consider the power of the adversary in this

scenario (and make pessimistic assumption on its ability). The adversary can pool the secret information of

several users, and it may have some influence on the the choice of messages encrypted in this scheme (chosen

plaintext). Also it may create bogus messages and see how legitimate users (that will not be revoked) react.

Finally to say that the adversary has broken the scheme means that when the users who have provided it their

secret information are all revoked (otherwise it is not possible to protect the plaintext) the adversary can still

learn something about the encrypted message. Here we define “learn” as distinguishing its encryption from

random (again this is equivalent to semantic security).

Definition 10 consider an adversary B that gets to

1. Select adaptively a set R of receivers and obtain Iu for all u 2 R. By adaptively we mean that B may

select messages M1;M2 : : : and revocation set R1;R2; : : : (the revocation sets need not correspond

to the actual corrupted users) and see the encryption of Mi when the revoked set is Ri. Also B can

create a ciphertext and see how any (non-corrupted) user decrypts it. It then asks to corrupt a receiver

u and obtains Iu. This step is repeated jRj times (for any u 2 R).

2. Choose a message M as the challenge plaintext and a set R of revoked users that must include all the

ones it corrupted (but may contain more).

28

B then receives an encrypted message M0 with a revoked set R. It has to guess whether M0 = M or

M 0 = RM where RM is a random message of similar length. We say that a revocation scheme is secure if,

for any (probabilistic polynomial time) adversary B as above, the probability that B distinguishes between

the two cases is negligible.

6.3 The Security Theorem

We now state and prove the main security theorem, showing that the key-indistinguishability property is

sufficient for a scheme in the subset-cover framework to be secure in the sense of Definition 10. Precisely,

Theorem 11 Let A be a Subset-Cover revocation algorithm where the key assignment satisfies the key-

indistinguishability property (Definition 8) and where E and F satisfy the above requirements. Then A is

secure in the sense of Definition 10 with security parameter Æ � "1+2mw("2+4w"3), where w is the total

number of subsets in the scheme and m is the maximum size of a cover.

Proof: Let A be a Subset-Cover revocation algorithm with the key indistinguishability property. Let B be

an adversary that behaves according to Definition 10, where Æ is the probability that B distinguishes between

an encryption of M and an encryption of a random message of similar length.

Recall that the adversary adaptively selects a set of receivers R and obtains Iu for all u 2 R. B then

selects a challenge message M . Let S = Si1 ; Si2 ; : : : Sim be the cover of N n R defined by A. As a

challenge, B then receives an encrypted message and is asked to guess whether it encrypts M or a random

message RM of the same length as M . We consider B’s behavior in case not all the encryptions are proper.

Let a “ciphertext of the jth type” be one where the first j subsets are noisy and the remaining subsets encode

the correct key. In other words the body is the encryption using FK and the header is:

[i1; i2; : : : ; im; ELi1
(R1

K); ELi2
(R2

K); : : : ; ELij
(Rj

K); ELij+1
(K); : : : ; ELim (K)℄

where K is a random key and fRiKg are random strings of the same length as the key K . Let �j be the

advantage that for a ciphertext of the jth type B distinguishes between the cases where FK(M) or FK(RM)
are the body of the message. I.e.

�j = jPr[B outputs ‘i’ jbody is FK(M)℄ � Pr[B outputs ‘i’ jbody is FK(RM)℄j ;

where the header is of the jth type.

The assumption that B can break the revocation system implies that �0 = Æ. We also know that

�m � "1, the upper bound on the probability of breaking FK , since in ciphertexts of the mth type the

encryptions ELij in the header contain no information on the key K used for the body so K looks random

to B. Hence there must be some 0 < j � m such that

j�j�1 ��jj � Æ � "1
m

:

For this j it must be the case that for either M or RM the difference in the probability that B outputs ‘i’

between the case when the header is of the jth type and when it is of the (j � 1)th type (and the same

message is in the body) is at least Æ�"12m .

A ciphertext of the (j � 1)th type is noticeably different from a ciphertext of the jth type only if it

is possible to distinguish between ELij (K) and ELij (RK). Therefore, the change in the distinguishing

advantage j�j�1 ��j j � Æ�"1
m can be used to either break the encryption EL or to achieve an advantage

29

in distinguishing the keys. We will now show how B can be used to construct an adversary B0 that either

breaks EL or breaks the key-indistinguishability property, as extended by Lemma 9. This in turn is used to

derive bounds on Æ.

Formally, we now describe an adversary B0 that will use B as follows.

� B0 picks at random 1 � i � w and asks to obtain Iu for all u 62 Si; this is a guess that Sij = Si.

� B0 receives either L0; L1; : : : ; Lt or RL0 ; RL1 ; : : : ; RLt where L0 = Li, the key of the subset Si, and

L1; : : : ; Lt are defined as the keys in Lemma 9. It attempts to distinguish between the case where the

input corresponds to true keys and the case where the input consists of random keys.

� B0 simulates B as well as the Center that generates the ciphertexts and uses B’s output:

– When the Center is faced with the need to encrypt (or decrypt) using the key of subset Sj such

that Sj 6� Si, then it knows at least one u 2 Sj; from Iu it is possible to obtain Lj and encrypt

appropriately. If Sj � Si then B0 uses the key that was provided to it (either Lj or RLj).

– When B decides to corrupt a user u, if u 62 Si, then B0 can provide it with Iu. If u 2 Si then the

guess that ij = i was wrong and we abort the simulation.

– When the Center needs to generate the challenge ciphertext M for B, B0 finds a cover for R, the

set of users corrupted by B. If ij 6= i, then the guess was wrong and the simulation is aborted.

Otherwise a random key K is chosen and a body of a message encrypted with K is generated

where the encrypted message is either M or RM (depending to whom the difference between

�j and �j�1 is due) and one of two experiments is performed:

Experiment j: Create a header of ciphertext of the jth type.

Experiment j � 1: Create a header of ciphertext of the (j � 1)th type.

Provide as challenge to B the created header and body.

� If the simulation was aborted, output ‘i’ or ‘ii’ at random. Otherwise provide B’s output.

Denote by P j
L (and P j�1

L resp.) the probability that in experiment j (experiment j � 1) in case the input

to B0 are the true keys the simulated B outputs ’i’; denote by PjR (and P j�1
R resp.) the probability that in

experiment j (experiment j � 1) in case the input to B0 are random keys the simulated B outputs ’i’. We

claim that the differences between all these 4 probabilities can be bounded:

Claim 12 jP j
L � P j�1

L j � Æ�"1
2wm

Proof: In case the input to B0 are the true keys, the resulting distribution that the simulated B experiences is

what it would experience in a true execution (where the difference between a jth ciphertext and (j � 1)th

ciphertext are at least Æ�"12m). The probability that the guess was correct is 1=w and this is independent of the

action of B, so we can experience a difference of at least Æ�"12wm between the two cases. 2

Claim 13 jP j
R � P j�1

R j � "2

Proof: Since otherwise we can use B0 to attack E: whenever there is a need to use the key corresponding

to the set Si, ask for an encryption using the random key. Similarly use the K in the challenge for E as the

one in the challenge of B0. 2

Claim 14 jP j
R � P j

Lj � w � "3 and jP j�1
R � P j�1

L j � w � "3

30

Proof: If any of the two inequalities does not hold, then we can use B0 as an adversary for Lemma 9 and

contradict the safety of the key assignment (we know that t � w). 2

From these three claims and applying the inequality ja� bj� j�dj � ja� j+ jb�dj we can conclude

that
Æ � "1
2wm

� "2 � 2w � "3
and hence the overall security parameter of A satisfies Æ � "1 + 2mw("2 + 2w"3).

2

Weaker notions of security It is interesting to deal with the case where the encryption provided by F is not

so strong. To combat copyright piracy it may not make sense to protect a specific ciphertext so that breaking

it is very expensive; on the other hand we do want to protect the long lived keys of the system. The security

definition (Definition 10) can easily be adapted to the case where distinguishing FK(M) from FK(RM)
cannot be done in some time T1 where T1 is not too large (this may correspond to using a not very long

key K): the challenge following the attack is to distinguish FK(M) from FK(RM) it time less than T 0
1 not

much smaller than T1. Essentially the same statement and proof of security as Theorem 11 hold. The fact

that retrieving K does not have to be intractable, just simply expensive, means that K does not necessarily

have to be long; see discussion on the implications on the total message length in Section 4.1.

It is also possible to model the case where the protection that FK provides is not indistinguishability (e.g.

FK encrypts only parts of the message M that are deemed more important). In this case we should argue that

the header does not provide more information regarding M than does FK(M). More precisely, suppose that

M is a distribution on messages M and let B be an adversary that attacks the system as in Definition 10 but

is given as a challenge a valid encryption of a message M 2RM and attempts to compute some function of

M (e.g. M defines a piece of music and the function is to map it to sounds). A scheme is considered secure

if for any M and B there is a B0 that simply receives FK(M) without the header and (i) performs an amount

of work proportional to B after receiving the challenge and (ii) whose output is indistinguishable from B’s

output; the distinguisher should have access to M . Here again for any subset cover algorithm where E and

the key assignment algorithm satisfy the requirements of Section 6.1 the resulting scheme will satisfy the

relaxed definition.

Acknowledgements

We thank Omer Horvitz for many comments regarding the paper and the implementation of the system. We

thank Ravi Kumar, Nelly Fazio and Florian Pestoni for useful comments.

References

[1] N. Alon and J. Spencer, The Probabilistic Method, John Wiley & Sons, 1992.

[2] J. Anzai, N. Matsuzaki and T. Matsumoto, A Quick Group Key Distribution Sceheme with ”Entity Re-

vocation”, Advances in Cryptology - Asiacrypt ’99, Lecture Notes in Computer Science 1716, Springer,

1999, pp. 333–347.

[3] M. Bellare, A. Desai, D. Pointcheval, P. Rogaway: Relations Among Notions of Security for Public-Key

Encryption Schemes, Advances in Cryptology - CRYPTO’98, Lecture Notes in Computer Science 1462,

Springer, 1998, pp. 26–45.

31

[4] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, A Concrete Security Treatment of Symmetric En-

cryption: Analysis of the DES Modes of Operation, Proc. of 38th IEEE Symposium on Foundations of

Computer Science, 1997, pp. 394–403.

[5] O. Berkman, M. Parnas and J. Sgall, Efficient Dynamic Traitor Tracing, Proc. of the 11th ACM-SIAM

Symp. on Discrete Algorithms (SODA), pp. 586–595, 2000.

[6] M. Blum and S. Micali, How to Generate Cryptographically Strong Sequences of Pseudo Random Bits,

SIAM J. Compt., Vol. 13, pp. 850–864, 1984.

[7] D. Boneh and M. Franklin, An efficient public key traitor tracing scheme. Advances in Cryptology -

Crypto ’99, Lecture Notes in Computer Science, Vol. 1666, Springer-Verlag, pp. 338–353, 1999.

[8] D. Boneh and M. Franklin, Identity Based Encryption. Manuscript, 2001.

[9] D. Boneh, and J. Shaw, Collusion Secure Fingerprinting for Digital Data, IEEE Transactions on

Information Theory, Vol 44, No. 5, pp. 1897–1905, 1998.

[10] A. Brodnick and J. I. Munro, Membership in Constant Time and Almost-Minimum Space. SIAM J.

Comput. 28(5), 1999, pp. 1627–1640.

[11] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, A. Sahai, Exposure-Resilient Functions and All-or-

Nothing Transforms. EUROCRYPT 2000, pp. 453–469.

[12] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, Multicast Security: A Taxonomy

and Some Efficient Constructions, Proc. of INFOCOM ’99, Vol. 2, pp. 708–716, New York, NY, March

1999.

[13] R. Canetti, T. Malkin, K. Nissim, Efficient Communication-Storage Tradeoffs for Multicast Encryp-

tion, EUROCRYPT 1999: pp. 459–474.

[14] R. Cramer and V. Shoup, A Practical Public Key Cryptosystem Provably Secure Against Adaptive

Chosen Ciphertext Attack. Advances in Cryptology - CRYPTO 1999, Lecture Notes in Computer Science

1462, Springer, pp. 13–25.

[15] Z. J. Czech, G. Havas and B. S. Majewski, Perfect Hashing, Theoretical Computer Science 182, 1997,

1–143.

[16] B. Chor, A. Fiat and M. Naor, Tracing traitors Advances in Cryptology - CRYPTO ’94, Lecture Notes

in Computer Science, Vol. 839, Springer, pp. 257–270, 1994.

[17] B. Chor, A. Fiat, M. Naor and B. Pinkas, Tracing traitors, IEEE Transactions on Information Theory,

Vol. 46, No. 3, May 2000.

[18] Content Protection for Recordable Media. Available:

http://www.4centity.com/4centity/tech/cprm

[19] D. Dolev, C. Dwork and M. Naor, Nonmalleable Cryptography, SIAM J. Computing 30(2), 2000, pp.

391–437.

[20] C. Dwork, J. Lotspiech and M. Naor, Digital Signets: Self-Enforcing Protection of Digital Information,

28th Symposium on the Theory of Computation (1996), pp. 489– 498.

32

[21] P. Erdos and R. Rado, Intersection Theorems for Systems of Sets. Journal London Math. Soc. 35

(1960), pp. 85–90.

[22] U. Feige, P. Raghavan, D. Peleg, E. Upfal, Computing with Noisy Information. SIAM J. Comput.

23(5): 1001-1018 (1994)

[23] A. Fiat and M. Naor, Broadcast Encryption, Advances in Cryptology - CRYPTO ’93, Lecture Notes

in Computer Science 773, Springer, 1994, pp. 480—491.

[24] A. Fiat and T. Tassa, Dynamic Traitor Tracing Advances in Cryptology - CRYPTO ’99, Lecture Notes

in Computer Science, Vol. 1666, 1999, pp. 354–371.

[25] E. Fujisaki and T. Okamoto, Secure Integration of Asymmetric and Symmetric Encryption Schemes,

Advances in Cryptology - CRYPTO 1999, Lecture Notes in Computer Science, Vol. 1666, 1999, pp.

537–554.

[26] E. Gafni, J. Staddon and Y. L. Yin, Efficient Methods for Integrating Traceability and Broadcast

Encryption, Advances in Cryptology - CRYPTO 1999, Lecture Notes in Computer Science, vol. 1666,

Springer, 1999, pp. 372–387.

[27] J.A. Garay, J. Staddon and A. Wool, Long-Lived Broadcast Encryption. Advances in Cryptology -

CRYPTO’2000, Lecture Notes in Computer Science, vol 1880, pp. 333–352, 2000.

[28] O. Goldreich, S. Goldwasser and S. Micali, How to Construct Random Functions. JACM 33(4):

792–807 (1986)

[29] S. Goldwasser and S. Micali. Probabilistic Encryption, Journal of Computer and System Sciences,

Vol. 28, April 1984, pp. 270–299.

[30] R. Kumar, R. Rajagopalan and A. Sahai, Coding Constructions for blacklisting problems without Com-

putational Assumptions. Advances in Cryptology - CRYPTO ’99, Lecture Notes in Computer Science,

vol 1666, 1999, pp. 609–623.

[31] M. Luby and J. Staddon, Combinatorial Bounds for Broadcast Encryption. Advances in Cryptology -

EUROCRYPT ’98, Lecture Notes in Computer Science, vol 1403, 1998, pp. 512–526.

[32] D. McGrew, A. T. Sherman, Key Establishment in Large Dynamic Groups Using One-Way Function

Trees, submitted to IEEE Transactions on Software Engineering (May 20, 1998).

[33] Moni Naor, String Matching with Preprocessing of Text and Pattern, ICALP 1991 Proceeding, Lecture

Notes in Computer Science, Vol. 510, Springer, 1991, pp. 739–750.

[34] M. Naor, Tradeoffs in Subset-Cover Revocation Schemes, manuscript, 2001.

[35] M. Naor and B. Pinkas, Threshold traitor tracing, Advances in Cryptology - Crypto ’98, Lecture Notes

in Computer Science, Vol. 1462, pp. 502–517.

[36] M. Naor and B. Pinkas, Efficient Trace and Revoke Schemes, Financial Cryptography ’2000, Lecture

Notes in Computer Science, Springer.

[37] M. Naor, B. Pinkas and O. Reingold, Distributed Pseudo-random Functions and KDCs, Advances

in Cryptology -EUROCRYPT 1999, Lecture Notes in Computer Science, vol. 1592 Springer, 1999, pp.

327–346.

33

[38] M. Naor and O. Reingold, Number-theoretic Constructions of Efficient Pseudo-random Functions,

Proc. of 38th IEEE Symposium on Foundations of Computer Science, 1997, 458–467.

[39] R. Pagh, Low redundancy in static dictionaries with O(1) lookup time, Proceedings of ICALP ’99,

Lecture Notes in Computer Science 1644, Springer, 1999, pp. 595–604.

[40] B. Pfitzmann, Trials of Traced Traitors, Information Hiding Workshop, First International Workshop,

Cambridge, UK. Lecture Notes in Computer Science, Vol. 1174, Springer, 1996, pp. 49–64.

[41] R. L. Rivest, All-or-Nothing Encryption and the Package Transform. Proc. 4th Fast Software Encryp-

tion International Workshop, 1997, Lecture Notes in Computer Science, Vol. 1267, Springer, 1997, pp.

210–218.

[42] R. Safavi-Naini and Y. Wang, Sequential Traitor Tracing Advances in Cryptology - CRYPTO 2000,

Lecture Notes in Computer Science, vol 1880, pp. 316–332, 2000.

[43] V. Shoup and R. Gennaro, Securing threshold cryptosystems against chosen ciphertext attack, Ad-

vances in Cryptology - EUROCRYPT ’98, Lecture Notes in Computer Science, Vol. 1403, 1998, pp.

1–16.

[44] D.R. Stinson and R. Wei, Key Preassigned Traceability Schemes for Broadcast Encryption, Proc.

Fifth Annual Workshop on Selected Areas in Cryptography, Lecture Notes in Computer Science, Vol.

1556 (1999), pp. 144–156.

[45] D.M. Wallner, E.J. Harder and R.C. Agee, Key Management for Multicast: Issues and Architectures,

Internet Request for Comments 2627, June, 1999. Available:

ftp.ietf.org/rfc/rfc2627.txt

[46] C. K. Wong, M. Gouda and S. Lam, Secure Group Communications Using Key Graphs, SIGCOMM

1998.

34

