
Viewpoint

Revolutionizing Medical Data Sharing Using Advanced
Privacy-Enhancing Technologies: Technical, Legal, and Ethical
Synthesis

James Scheibner1,2, BComp, LLB, PhD; Jean Louis Raisaro3,4, BSc, MSc, PhD; Juan Ramón Troncoso-Pastoriza5,

BSc, MSc, MPhil, PhD; Marcello Ienca1, BA, MA, MSc, PhD; Jacques Fellay3,6,7, MD, PhD; Effy Vayena1, BA, MSc,

PhD; Jean-Pierre Hubaux5, Dr-Eng
1Health Ethics and Policy Laboratory, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zürich,
Switzerland
2College of Business, Government and Law, Flinders University, Adelaide, Australia
3Precision Medicine Unit, Lausanne University Hospital, Lausanne, Switzerland
4Data Science Group, Lausanne University Hospital, Lausanne, Switzerland
5Laboratory for Data Security, School of Computer and Communication Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
6School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
7Host-Pathogen Genomics Laboratory, Swiss Institute of Bioinformatics, Lausanne, Switzerland

Corresponding Author:
James Scheibner, BComp, LLB, PhD
College of Business, Government and Law
Flinders University
Ring Road, Bedford Park
Adelaide, 5042
Australia
Phone: 61 (08) 8201 3196
Email: james.scheibner@flinders.edu.au

Abstract

Multisite medical data sharing is critical in modern clinical practice and medical research. The challenge is to conduct data sharing
that preserves individual privacy and data utility. The shortcomings of traditional privacy-enhancing technologies mean that
institutions rely upon bespoke data sharing contracts. The lengthy process and administration induced by these contracts increases
the inefficiency of data sharing and may disincentivize important clinical treatment and medical research. This paper provides a
synthesis between 2 novel advanced privacy-enhancing technologies—homomorphic encryption and secure multiparty computation
(defined together as multiparty homomorphic encryption). These privacy-enhancing technologies provide a mathematical guarantee
of privacy, with multiparty homomorphic encryption providing a performance advantage over separately using homomorphic
encryption or secure multiparty computation. We argue multiparty homomorphic encryption fulfills legal requirements for medical
data sharing under the European Union’s General Data Protection Regulation which has set a global benchmark for data protection.
Specifically, the data processed and shared using multiparty homomorphic encryption can be considered anonymized data. We
explain how multiparty homomorphic encryption can reduce the reliance upon customized contractual measures between
institutions. The proposed approach can accelerate the pace of medical research while offering additional incentives for health
care and research institutes to employ common data interoperability standards.
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Introduction

The current biomedical research paradigm has been
characterized by a shift from intrainstitutional research toward
multiple collaborating institutions operating at an
interinstitutional, national or international level for multisite
research projects; however, despite the apparent breakdown of
research barriers, there remain differences between ethical and
legal requirements at all jurisdictional levels [1]. There are
numerous organizational strategies that have been used to
resolve these issues, particularly for international academic
consortia.

For example, the International Cancer Genome Consortium
endeavors to amass cancer genomes paired with noncancerous
sequences in a cloud environment, known as pancancer analysis
of whole genomes. The International Cancer Genome
Consortium’s data access compliance office was unable to
establish an international cloud under the Pancancer Analysis
of Whole Genomes Project because of conflicts between United
States and European Union data privacy laws [2]. These
conflicts will be likely exacerbated with the Court of Justice of
the European Union (CJEU) invalidating the United
States–European Union Privacy Shield agreement. This decision
will prevent private research organizations from transferring
personal data from the European Union to the United States
without organizational safeguards [3]. In addition, the
COVID-19 pandemic has made sharing data for clinical trials
and research imperative. However, a series of COVID-19 papers
retracted due to data unavailability emphasizes the need for data
sharing to encourage oversight [4]. Furthermore, within the
European Union there is the potential for differences in how
countries regulate the processing of health-related personal data
[5]. There are also different grounds to justify processing of
health-related data under separate branches of EU law. The
Clinical Trials Regulation and the European Union General
Data Protection Regulation (GDPR) require different standards
of consent for processing health-related data, depending on
whether those data are collected as part of a clinical trial protocol
or not. The effect of this difference is that data collected for one
purpose, such as a trial protocol, may not be made available for

a secondary research purpose if appropriate consent has not
been obtained [6]. Finally, given study restrictions it may be
impossible to share data between institutions or jurisdictions
[7]. Although reforms to EU data protection law have been
proposed to encourage scientific data sharing [8], at present the
best available solutions remain contractual and technological
measures.

In this paper, we describe how traditional data-sharing
approaches relying upon conventional privacy-enhancing
technologies are limited by various regulations governing
medical use and data sharing. We describe two novel
privacy-enhancing technologies, homomorphic encryption and
secure multiparty computation, that extend the capacity of
researchers to conduct privacy-preserving multisite research.
We then turn to analyze the effects of regulation on using these
novel privacy-enhancing technologies for medical and research
data sharing. In particular, we argue these privacy-enhancing
technologies guarantee anonymity as defined under the EU
GDPR and are, therefore, key enablers for medical data sharing.
We focus on the GDPR, as it currently represents a global
benchmark in data protection regulations. We argue that using
these technologies can reduce the reliance upon customized
data-sharing contracts. The use of standardized agreements for
multiparty processing of data in concert with privacy-enhancing
technologies can reduce the bottleneck on research. Finally, we
turn to address how these novel privacy-enhancing technologies
can be integrated within existing regulatory frameworks to
encourage increased data sharing while preserving data privacy.

Privacy and Security Issues of Current
Medical Data-Sharing Models

Overview
Before examining novel privacy-enhancing technologies, it is
necessary to examine the main models for exchanging medical
data for research purposes and the limitations of conventional
privacy protection mechanisms that are currently used to reduce
the risk of reidentification. We synthesize the data-sharing
models into three categories and analyze their main
technological issues (Figure 1).
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Figure 1. Overview of the three main data-sharing models: (A) centralized, (B) decentralized (site-level meta-analysis), and (C) decentralized (federated
learning).

Centralized Model: Trusted Dealer
The centralized model requires medical sites (ie, data providers)
that are willing to share data with each other to pool their
individual-level patient data into a single repository. The data
repository is usually hosted by one medical site or by an external
third party (eg, a cloud provider), playing the trusted dealer role.
The main advantage of this model is that the trusted dealer
enables authorized investigators to access all the patient-level
information needed for data cleaning and for conducting
statistical analysis. Moreover, such a data-sharing model
minimizes infrastructure costs at medical sites, as data storage
and computation are outsourced. However, from a data privacy
perspective the centralized model is often difficult to realize,
especially when medical and genetic data should be exchanged
across different jurisdictions. The central site hosting the data
repository represents a single point of failure in the data-sharing
process. All participating sites must trust such single entity for
protecting their patient-level data [9].

To minimize sensitive information leakage from data breaches,
traditional anonymization techniques include suppressing
directly identifying attributes, as well as the generalizing,
aggregating or randomizing quasi-identifying attributes in
individual patient records. In particular, the k-anonymity privacy
model [10] is a well-established privacy-preserving model that
aims to reduce the likelihood of reidentification attacks singling
out an individual. Specifically, the k-anonymity model ensures
that for each combination of quasi (or indirect) identifier, there
exists at least k individuals who share the same attributes.

However, given the increased sophistication of reidentification
attacks [10-16] and the rising dimensionality (number of clinical
and genetic attributes) of patient data, the above-mentioned
countermeasures are inadequate to ensure a proper level of
anonymization and preserve acceptable data utility. As a result,
these conventional anonymization techniques for
individual-level patient data are rarely used in practice.
Researchers prefer to rely upon simple pseudonymization
techniques (such as replacing direct identifiers with
pseudonymous codes) combined with legal measures defining
each party’s responsibilities regarding data transfer, access, and
use. This process generates administrative overheads that slow
down the pace of biomedical research. Furthermore, although
designed to comply with data protection regulations, contractual
safeguards may not eliminate the risk of individuals being
reidentified [17]. As we argue below, combining traditional
pseudonymization mechanisms and governance strategies meets
the legal standard of pseudonymization but not anonymization
under the GDPR.

Decentralized Model: Site-Level Meta-analysis
As opposed to the centralized data-sharing model, the
decentralized model does not require patient-level data to be
physically transferred out of the medical sites’ information
technology infrastructure. Medical sites keep control over their
individual-level patient data and define their own data
governance principles. For each clinical study, the statistical
analysis is first computed on local data sets. The resulting local
statistics are then sent to the site responsible for the final
meta-analysis that aggregates the separate contribution of each
data provider [18] to obtain the final result of the analysis. Under
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this model, the site performing the meta-analysis is trusted by
all other sites for the protection of their local statistics. As local
statistics have a significantly lower dimensionality with respect
to individual-level data, there is a lower risk of reidentification
in the decentralized data-sharing model.

However, the sharing of only aggregate-level data does not
guarantee patients’ privacy by itself. Some aggregate-level
statistics may be too low for certain subpopulations (such as
patients with rare diseases) and can be considered personally
identifying. Moreover, in some circumstances aggregate-level
data from local analyses can be exploited to detect the presence
of target individuals in the original data set. For example, an
attacker may already hold the individual-level data of 1 or
several target individuals [19-23]. This membership information
can be subsequently used to infer sensitive and sometimes
stigmatizing attributes of the target individuals. For example,
detecting the membership of an individual in a HIV-positive
cohort reveals their HIV status. The intuition behind these
attacks is to measure the similarity between the individual-level
target data with statistics computed from the study data set and
statistics computed from the general population. The attacker’s
certainty about the target’s membership in the data set increases
with the similarity of the target’s data to the statistics derived
from the study data set.

To address these inference attacks, clinical sites can anonymize
their local statistics by applying obfuscation techniques that
mainly consist in adding a certain amount of statistical noise
on the aggregate-level data before transfer to third parties. This
process enables data providers to achieve formal notions of
privacy such as differential privacy [24,25]. In the statistical
privacy community, differential privacy is currently considered
as guaranteeing the likelihood of reidentification from the
release of aggregate-level statistics can be minimized to an
acceptable value. Similar to anonymization techniques for
individual-level data, statistical obfuscation techniques degrade
the utility of aggregate-level data. Consequently, the amount
of noise introduced by data obfuscation should be carefully
calibrated to reach the desired compromise between utility and
privacy. Often, when each data provider adds the required
amount of noise to reach an acceptable level of privacy, the
resulting aggregated results stemming from a meta-analysis are
too distorted to be reliable [26].

Beyond privacy considerations, this approach also suffers from
a lack of flexibility as the medical sites involved in the analysis
must coordinate before the analysis on the choice of parameters
and covariates to be considered. This coordination often depends
on manual approval, impeding the pace of the analysis itself.
Finally, as opposed to the centralized approach, accuracy of
results from a meta-analysis that combines the summary
statistics or results of local analysis can be affected by
cross-study heterogeneity. This can lead to inaccurate and
misleading conclusions [27].

Decentralized Model: Federated Analysis and Learning
The federated model is an evolution of the decentralized model
based on site-level meta-analysis. Instead of sharing the results
of local analyses, the participating data providers collaborate
to perform a joint analysis or the training of a machine learning

model in an interactive and iterative manner, only sharing
updates of the model’s parameters. One of the medical sites
participating in the multicentric research project (typically the
site responsible for the statistical analysis) becomes the reference
site (or central site) and defines the model to be trained (or
analysis to be performed) and executed on the data distributed
across the network. This model is referred to as the global
model. Each participating site is given a copy of the model to
train on their own individual-level data. Once the model has
been trained locally over several iterations, the sites send only
their updated version of the model parameters (aggregate-level
information) to the central site and keep their individual-level
data at their premises. The central site aggregates the
contributions from all the sites and updates the global model
[28]. Finally, the updated parameters of the global model are
shared again with the other sites. The process repeats iteratively
till convergence of the global model.

With respect to the distributed data-sharing approach based on
site-level meta-analysis, this federated approach is more robust
against heterogeneous distributions of the data across different
sites, thus yielding results accuracy that is comparable to the
results obtained with the same analysis conducted using the
centralized model. Moreover, this approach does not suffer from
the loss in statistical power of conventional meta-analyses.
Prominent projects that have attempted to employ federated
approaches to analysis and sharing of biomedical data are the
DataSHIELD project [29] and the Medical Informatics Platform
of the Human Brain Project [30].

The federated data-sharing approach combines the best features
of the other two approaches. However, although the risk or
reidentification is reduced compared to the centralized approach,
the federated approach remains vulnerable to the same inference
attacks of the meta-analysis approach. These inference attacks
exploit aggregate-level data released during collaboration
[31-34]. The potential for an inference attack is even increased
compared to a meta-analysis-based approach. This is due to the
iterative and collaborative nature of the data processing,
allowing adversaries to observe model changes over time and
with specific model updates. Melis et al [35] show that updates
of model parameters transferred during the collaborative training
phase can be used to infer the membership of a target individual
in the training data sets as well as some properties associated
with a particular subset of the training data. This inference is
possible if the context of the data release enables the attacker
to easily access some auxiliary individual-level information
about the target individual. In legal terms (as discussed below),
these aggregate-level data can potentially be considered personal
data. As for the meta-analysis approach, obfuscation techniques
can be used to anonymize the model’s updates at each iteration.
Nevertheless, the required perturbation can severely affect the
performance of the final model [26].

Finally, regardless of the type of distributed data-sharing model,
obfuscation techniques for anonymizing aggregate-level data
are rarely used in practice in medical research because of their
impact on data utility. As a result, these technical privacy
limitations are usually addressed via additional legal and
organizational mechanisms. For the DataSHIELD project, access
is limited to organizations that have consented to the terms of
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use for DataSHIELD and have sought appropriate ethics
approval to participate in a DataSHIELD analysis [36].
Therefore, implementing the platform will require cooperating
with governments and institutions so they are comfortable with
exposing sensitive data to the platform [29]. However, as we
discuss below, advanced technologies can also guarantee data
privacy.

Minimizing Risks by Leveraging
Advanced Privacy-Enhancing
Technologies

Overview
In the last few years, several cryptographic privacy-enhancing
technologies have emerged as significant potential advances
for addressing the above-mentioned data protection challenges
that still affect medical data sharing in the decentralized model.
Although hardware-based approaches could be envisioned for
this purpose, they are usually tailored to centralized scenarios
and introduce a different trust model involving the hardware
provider. Furthermore, they also depend on the validity of the
assumptions on the security of the hardware platform, for which
new vulnerabilities are constantly being discovered. In this
paper, we focus on two of the most powerful software-based
privacy-enhancing technologies: homomorphic encryption and
secure multiparty computation. Both rely upon mathematically
proven guarantees for data confidentiality, respectively grounded
on cryptographic hard problems and noncollusion assumptions.

Homomorphic Encryption
Homomorphic encryption [37] is a special type of encryption
that supports computation on encrypted data (ciphertexts)
without decryption. Thanks to this property, homomorphically
encrypted data can be securely handed out to third parties, who
can perform meaningful operations on them without learning
anything about their content. Fully homomorphic encryption
schemes, or schemes enabling arbitrary computations on
ciphertexts, are still considered nonviable due to the high
computational and storage overheads they introduce. Current
practical schemes that enable only a limited number of
computations on ciphertexts (such as polynomial operations)
have reached a level of maturity that permits their use in real
scenarios.

Secure Multiparty Computation
Secure multiparty computation [38-42] protocols enable multiple
parties to jointly compute functions over their private inputs
without disclosing to the other parties more information about
each other’s inputs than what can be inferred from the output
of the computation. This class of protocols is particularly
attractive in privacy-preserving distributed analytic platforms
due to the great variety of secure computations they enable.
However, this flexibility includes several drawbacks that hinder
their adoption, including high network overhead and the
requirement for parties to remain online during computation.

Multiparty Homomorphic Encryption
The combination of secure multiparty computation and
homomorphic encryption was proposed to overcome their

respective overheads and technical limitations; we refer to it as
multiparty homomorphic encryption [43-46]. Multiparty
homomorphic encryption enables flexible secure processing by
efficiently transitioning between encrypted local computation,
performed with homomorphic encryption, and interactive
protocols (secure multiparty computation). It can be used to
choose the most efficient approach for each step within a given
workflow, leveraging the properties of one technique to avoid
the bottlenecks of the other. Moreover, multiparty homomorphic
encryption ensures that the secret key of the underlying
homomorphic encryption scheme never exists in full. Instead,
it distributes the control over the decryption process across all
participating sites, each one holding a fragment of the key. All
participating sites have to agree to enable the decryption of any
piece of data, and no single entity alone can decrypt the data.

Unlike homomorphic encryption or secure multiparty
computation alone, multiparty homomorphic encryption
provides effective, scalable, and practical solutions for
addressing the privacy-preserving issues that affect the
distributed or federated approach for data sharing. For example,
systems such as Helen [47], MedCo [48], or POSEIDON [49]
use multiparty homomorphic encryption to guarantee that all
the information interchanged between the sites is always in
encrypted form, including aggregate data such as model
parameters and model updates, and only the final result (the
computed model or the predictions based on this model) is
revealed to the authorized user. Finally, multiparty homomorphic
encryption reduces the need of obfuscation techniques to protect
aggregate-level data from inference attacks. Furthermore, data
utility, which is typically lost with privacy-preserving distributed
approaches that only rely upon obfuscation techniques, can be
significantly improved. As aggregate-level data transfer and
processing across participating sites during the analysis or
training phase remains always encrypted, obfuscation can be
applied only to the decrypted final result of the analysis that is
released to the data analyst, instead of being applied to all local
model updates at each iteration. Hence, multiparty homomorphic
encryption enables a much lower utility degradation for the
same level of reidentification risk.

Regulatory Hurdles for the Use of
Encryption Technologies

Overview
In this section, we focus on the features of EU data protection
law concerning encryption and data sharing. We focus on the
GDPR because of the persistence of national divergences in
member state law, despite the passage of the GDPR. In
particular, the GDPR provides member states can introduce
further conditions, including restrictions on processing of genetic
data, biometric data, or health-related data. These exceptions
exist outside the narrow circumstances in which special
categories of personal data, which genetic data, biometric data,
or health-related data belong to, can be processed [6]. This
flexibility increases the potential for divergences in national
law that require customized contracts between institutions in
different EU member states [5].
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Data Anonymization and Pseudonymization
The GDPR defines personal data as concerning an identifiable
natural person. Therefore, pseudonymized data, where all
identifiers have been removed from those data, remain personal
data. However, the provisions of the GDPR do not concern
anonymized data or data which have been processed so
individuals are no longer identifiable. In particular, anonymized
data may be used for research or statistical processing without
the need to comply with the GDPR.

Spindler and Schmechel [50] note there are two conflicting
approaches to classifying personal and anonymized data. The
first is an absolute approach, where anonymized data constitute
personal data if there is even a theoretical chance of
reidentification. This approach represents the state of national
law in a minority of EU member states, such as France [51].
The second is the relative approach, where anonymized data
are no longer personal data if it is reasonably likely that methods
do not exist to reidentify individuals [50]. This approach
represents the state of national law in countries such as Ireland,
where the Irish Data Protection Commission has held that data
are anonymized if it is unlikely current technology can be used
to reidentify those data [52]. Likewise, the German Federal
Ministry for Economic Affairs and Energy held that data
(including health-related personal data) are anonymized under
the Bundesdatenschutzgesetz (German Federal Data Protection
Act) where individuals cannot be reidentified with reasonable
effort [53]. In both these jurisdictions, if an unreasonable effort
were required to reidentify anonymized data, then it would no
longer be personal data [50].

At the supranational level, the former Article 29 Working Party
(now the European Data Protection Board) has favored a relative
over an absolute approach to anonymization. First, the Article
29 Working Party held that the words “means reasonably likely”
suggests a theoretical possibility of reidentification will not be
enough to render those data personal data [54]. A subsequent
opinion of the Working Party reinforced this support for the
relative approach and compared different techniques for
anonymization or pseudonymization. For example, encrypting
data with a secret key means that data could be decrypted by
the key holder. For this party, the data would therefore be
pseudonymized data. But, if a party does not have the key, the
data would be anonymized. Likewise, if data are aggregated to
a sufficiently high level, these data would no longer be personal
data [55]. Nevertheless, following the Article 29 Working
Party’s ruling, no single anonymization technique can fully
guard against orthogonal risks of reidentification [56].

Data Processing
The GDPR’s provisions apply to data controllers, or entities
determining the purpose and means of processing personal data.
This definition encompasses both health care institutions and
research institutions. Data controllers must guarantee personal
data processing is lawful, proportionate, and protects the rights
of data subjects. In particular, the GDPR provides that
encryption should be used as a safeguard when personal data
are processed for a purpose other than which they were
collected. Although the GDPR does not define encryption, the
Article 29 Working Party treats encryption as equivalent to

stripping identifiers from personal data. The GDPR also lists
encryption as a strategy that can guarantee personal data
security. Furthermore, the GDPR emphasizes that data
controllers should consider the state of the art, along with the
risks associated with processing, when adopting security
measures. The GDPR also provides that data processing for
scientific purposes should follow the principle of data
minimization. This principle requires data processors and
controllers to use nonpersonal data unless the research can only
be completed with personal data. If personal data are required
to complete the research, pseudonymized or aggregate data
should be used instead of directly identifying data.

The GDPR imposes obligations on data controllers with respect
to the transfer of data, particularly outside of the European
Union. Specifically, the GDPR requires the recipient jurisdiction
to offer adequate privacy protection before a data controller
transfers data there. Otherwise, the data controller must ensure
there are organizational safeguards in place to ensure the data
receives GDPR-equivalent protection. Furthermore, data
controllers must consider the consequences of exchanging data
between institutions, and whether these are joint controllership
or controller–processor arrangements. Under the GDPR, data
subject rights can be exercised against any and each controller
in a joint controllership agreement. Furthermore, controllers
must have in place an agreement setting out the terms of
processing. By contrast, a data controller-processor relationship
exists where a controller directs a data processor to perform
processing on behalf of the controller, such as a cloud services
provider. The GDPR provides that any processing contract must
define the subject matter, duration, and purpose of processing.
Contracts should also define the types of personal data processed
and require processors to guarantee both the confidentiality and
security of processing.

Advanced Privacy-Enhancing Technologies and EU
Data Governance Requirements
In this section, we argue that multiparty homomorphic
encryption, or homomorphic encryption and secure multiparty
computation used in concert, meets the requirements for
anonymization of data under the GDPR. Furthermore, we argue
the use of multiparty homomorphic encryption can significantly
reduce the need for custom contracts to govern data sharing
between institutions. We focus on genetic and clinical data
sharing due to the potential for national derogations pertaining
to the processing of health-related data. Nevertheless, our
conclusions regarding the technical and legal requirements for
data sharing using multiparty homomorphic encryption, or
homomorphic encryption and secure multiparty computation,
may apply to other sectors, depending on regulatory
requirements [57].

Under the GDPR, separating pseudonymized data and identifiers
is analogous to separating decryption keys and encrypted data.
For pseudonymized data, any entity with physical or legal access
to the identifiers will possess personal data [58]. To this end,
Spindler and Schmechel [50] suggest that encrypted data remain
personal data to the entity holding the decryption keys. The
encrypted data also remain personal data for any third party
with lawful means to access the decryption keys. Applying this

J Med Internet Res 2021 | vol. 23 | iss. 2 | e25120 | p. 6https://www.jmir.org/2021/2/e25120
(page number not for citation purposes)

Scheibner et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


approach to homomorphic encryption, if a party has access to
the decryption key corresponding to the encryption key that
was used to homomorphically encrypt data, that party will have
access to personal data. Likewise, if a party has lawful access
to data jointly processed as part of secure multiparty
computation, those data will remain personal data for that party
[59].

Whether a party to data processing using advanced
privacy-enhancing technologies has lawful access to data or
decryption keys depends on the legal relationship between the
parties. With respect to joint controllership, recent CJEU case
law has established that parties can be joint controllers even
without access to personal data [60-62]. The CJEU held that
the administrator of a fan page hosted on Facebook was a joint
controller despite only having access to aggregate data in
paragraph 38 [60];however, Article 26, paragraph 1 of the GDPR
[63] requires that joint controllers establish a contract allocating
responsibility for processing of personal data. Hospitals or
research institutions processing patient data using secure
multiparty computation jointly determine how these data are
processed. These entities would be classified as joint controllers,
at least when engaging in secret sharing (as a joint purpose of
data processing). These entities would need an agreement to
establish that only the entity with physical access to patient data
can access those data. If a request is made to a hospital or
research institution that does not possess these data, the request
must be referred to the entity that does.

Applying these principles to processing with privacy-enhancing
technologies, for homomorphic encryption, there is no
mathematical possibility of decrypting the data without the
decryption key. This holds true when both the data are at rest
or when the data are processed in the encrypted space via secure
operations such as homomorphic addition or multiplication.
Whether data processed as part of secure multiparty computation
or multiparty homomorphic encryption remain personal data
depends on whether entities have lawful access to personal data
or decryption keys respectively. If entities can only access
personal data they physically hold as part of a joint controller
agreement, the data fragments exchanged during secret sharing
via secure multiparty computation are not personal data.
Likewise, under multiparty homomorphic encryption each
individual entity only has access to a fragment of the decryption
key, which can only be recombined with the approval of all
other entities holding the remaining fragments. This argument
is reinforced by Recital 57 of the GDPR [63], which provides
controllers forbidden from identifying individuals are not
required to collect identifying information to comply with the
GDPR.

Therefore, we submit that both homomorphic encryption and
secure multiparty computation, when used alone or together
through multiparty homomorphic encryption can jointly compute
health-related data while complying with the GDPR. These data
remain anonymous even though entities processing data using
multiparty homomorphic encryption are joint controllers.
Furthermore, the use of advanced privacy-enhancing
technologies should become a best standard for the processing

of health-related data for three reasons. First, the Article 29
Working Party has recommended using encryption and
anonymization techniques in concert to protect against
orthogonal privacy risks and overcome the limits of individual
techniques [55]. Second, the GDPR emphasizes the use of
state-of-the-art techniques for guaranteeing the processing of
sensitive data. Homomorphic encryption, secure multiparty
computation, and multiparty homomorphic encryption are
considered state-of-the-art technologies in that they carry a
mathematical guarantee of privacy. Third, the Article 29
Working Party has held the data controller is responsible for
demonstrating that the data have been and remain anonymized
[55]. Further support from this argument comes from a case
heard before the Swiss Federal Supreme Court [64]; in paragraph
5.12, the Federal Supreme Court endorsed a relative approach
to anonymization, but also placed the onus on the data controller
to establish anonymization. Switzerland is not a member of the
European Union and does not have to comply with the GDPR.
However, Switzerland’s close proximity to the European Union
means the Swiss Federal Act on Data Protection has been
revised. These revisions ensure the continued free exchange of
data between Switzerland and EU countries [65].

Therefore, we argue that multiparty homomorphic encryption
involves processing anonymized data under EU data protection
law. Although homomorphic encryption, secure multiparty
computation, and multiparty homomorphic encryption do not
obliviate the need for a joint controllership agreement, they
lessen the administrative burden required for data sharing.
Furthermore, they promote the use of standard processing
agreements that can help ameliorate the impacts of national
differences within and outside the European Union. Accordingly,
we submit that multiparty homomorphic encryption, along with
other forms of advanced privacy-enhancing technologies, should
represent the standard for health data processing in low trust
environments [66]. This processing can include performing
computations on sensitive forms of data, such as providing
genomic diagnoses without revealing the entire sequence for a
patient [67]. Furthermore, the encrypted outputs of
homomorphic encryption and secure multiparty computation
are mathematically private, as they do not reveal any personal
data [68]. Finally, the fact that multiparty homomorphic
encryption involves processing anonymized data broadens the
purposes for which health-related data can be used. For example,
as part of a clinical trial protocol data might be collected from
patients via their personal devices. These devices can either
store these data locally or transmit them to a hospital. The data
may then be queried in an anonymized form as part of a research
project without needing to seek additional consent that would
otherwise be required under data protection law for those data
to be processed [69]. The ability to reuse data that are stored on
a patient’s personal device can also help support innovative
forms of clinical trials, such as remote patient monitoring. The
various states of data processed using novel privacy-enhancing
technologies such as multiparty homomorphic encryption is
displayed in Figure 2. Table 1 demonstrates the status of
personal data at different stages of processing.
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Figure 2. Comparison of the status of personal data under a distributed approach relying upon traditional privacy-enhancing technologies (eg, aggregation
and pseudonymization) and a distributed approach relying on multiparty homomorphic encryption (eg, homomorphic encryption and secure multiparty
computation).
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Table 1. Data status at different stages of processing.

Status of data based on the scenarioDescriptionScenario

Personal dataHospital/research institution physically holds personal dataA

Pseudonymized dataHospital/research institution has legal access to decryption key/personal dataB

Anonymized dataHospital/research institution combine decryption keys/personal data to process dataC

Anonymized dataThird party (cloud service provider) carries out processing, hospitals share encryption keys jointlyD

The lack of reliance upon custom contracts may encourage
institutions to align their data formats to common international
interoperability standards. In the next section, we turn to address
the standardization of these advanced privacy-enhancing
technologies.

Regulatory Instruments to Encourage the
Use of Novel Privacy-Enhancing
Technologies

At present, regulatory instruments provide limited guidance on
the different types of privacy-enhancing technologies required
to process medical data in a privacy-conscious fashion.
However, the techniques described in this paper may represent
a future best standard for processing medical data for clinical
or research purposes. Because of the novelty of both
technologies, the standardization of homomorphic encryption
and secure multiparty computation is ongoing, with the first
community standard released in 2018 [70].

Furthermore, there are numerous documents published by data
protection agencies that can aid the development of such
guidelines. For example, the Commission Nationale de
l'Informatique et des Libertés (French Data Protection Agency)
published a set of guidelines following the passage of the GDPR
on how to secure personal data. This document provides
recommendations on when encryption should be used, including
for data transfer and storage [71]. Likewise, the Agencia
Española de Protección de Datos (Spanish Data Protection
Agency) has already recommended using homomorphic
encryption as a mechanism for achieving data privacy by design
pursuant to Article 25 of the GDPR [72].

Nevertheless, any standards will need to be continually updated
to respond to new technological changes. For example, one of
the most significant drawbacks of fully homomorphic encryption
is the complexity of computation. This computational
complexity makes it hard to predict running times, particularly
for low-power devices such as wearables and smartphones. For
the foreseeable future, this may limit the devices upon which
fully homomorphic encryption can be used [73]. Therefore,
specialized standards may need to be developed for using
homomorphic encryption on low-power devices in a medical
context. Specifically, these standards must be compliant with
the legal requirements for access to and sharing of data by
patients themselves, including the right to data portability as
contained within Article 20 of the GDPR [54]. Although
homomorphic encryption and secure multiparty computation
offer privacy guarantees, there is still an orthogonal risk of
reidentifying individuals from aggregate-level results that are
eventually decrypted and can be exploited by inference attacks

[19,21,27,74]. However, as mentioned earlier, the use of
multiparty homomorphic encryption or secure multiparty
computation enables the application of statistical obfuscation
techniques for anonymizing aggregate-level results with a better
privacy-utility trade-off than the traditional distributed approach,
thus facilitating the implementation of end-to-end anonymized
data workflows.

A final consideration relates to ethical issues that exist beyond
whether homomorphic encryption, multiparty computation, and
multiparty homomorphic encryption involve processing
anonymized or personal data. First, the act of encrypting
personal data constitutes further processing of those data under
data protection law. Therefore, health care and research
institutions must seek informed consent from patients or research
participants [50]. Institutions must consider how to explain these
technologies in a manner that is understandable and enables the
patient to exercise their rights under data protection law. Second,
the institution that holds the data must have procedures in place
that govern who can access data encrypted using advanced
privacy-enhancing technologies. Institutions should also
determine which internal entity is responsible for governing
access requests. These entities can include ethics review
committees or data access committees [2].

Conclusion

Medical data sharing is essential for modern clinical practice
and medical research. However, traditional privacy-preserving
technologies based on data perturbation, along with centralized
and decentralized data-sharing models, carry inherent privacy
risks and may have high impact on data utility. These
shortcomings mean that research and health care institutions
combine these traditional privacy-preserving technologies with
contractual mechanisms to govern data sharing and comply with
data protection laws. These contractual mechanisms are
context-dependent and require trusted environments between
research and health care institutions. Although federated learning
models can help alleviate these risks as only aggregate-level
data are shared across institutions, there are still orthogonal
risks to privacy from indirect reidentification of patients from
partial results [66]. Furthermore, changes in case law (such as
the already mentioned recent invalidation of the US-EU Privacy
Shield [3]) can undermine data sharing with research partners
outside the European Union. In this paper, we demonstrated
how these privacy risks can be addressed through using
multiparty homomorphic encryption, an efficient combination
of homomorphic encryption and secure multiparty computation.
In particular, we demonstrated how homomorphic encryption
and secure multiparty computation can be used to compute
accurate federated analytics without needing to transfer personal
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data. Combining these technologies (multiparty homomorphic
encryption) for medical data sharing can improve the
performance overheads of privacy enhancing technology while
reducing the risk of GDPR noncompliance. Furthermore,
personal data do not leave the host institution where they are
stored when processed using multiparty homomorphic
encryption. Therefore, the lack of personal data transfer with

multiparty homomorphic encryption will encourage increased
data sharing and standardization between institutions. Data
protection agencies, as well as health care and research
institutions, should promote multiparty homomorphic encryption
and other advanced privacy-enhancing technologies for their
use to become widespread for clinical and research data sharing.
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