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Abstract— Controlling a non-statically bipedal robot is chal-
lenging due to the complex dynamics and multi-criterion
optimization involved. Recent works have demonstrated the
effectiveness of deep reinforcement learning (DRL) for sim-
ulation and physical robots. In these methods, the rewards
from different criteria are normally summed to learn a single
value function. However, this may cause the loss of dependency
information between hybrid rewards and lead to a sub-optimal
policy. In this work, we propose a novel reward-adaptive rein-
forcement learning for biped locomotion, allowing the control
policy to be simultaneously optimized by multiple criteria using
a dynamic mechanism. The proposed method applies a multi-
head critic to learn a separate value function for each reward
component. This leads to hybrid policy gradient. We further
propose dynamic weight, allowing each component to optimize
the policy with different priorities. This hybrid and dynamic
policy gradient (HDPG) design makes the agent learn more
efficiently. We show that the proposed method outperforms
summed-up-reward approaches and is able to transfer to
physical robots. The sim-to-real and MuJoCo results further
demonstrate the effectiveness and generalization of HDPG.

I. INTRODUCTION

Bipedal robots locomotion [1] is about controlling a robot
to walking on different surfaces with stable walking gaits.
This task is challenging because of the complex dynamics
involved especially where undulated surfaces or obstacles
are present. Traditional hand-crafted control policies, such
as zero moment point (ZMP) [2] and hybrid zero dynamics
(HZD) [3] and divergent component of motion (DCM) [4],
often suffer from limited adaptation to various environments.

Recently, reinforcement learning (RL) has made signifi-
cant progress in solving complex biped locomotion problems
[5], [6], [7], [8]. The core of RL is training robots to take
actions that maximize the expected cumulative rewards. A
reward function usually consists of multiple components
[9], [10], each of which quantitatively describes an aspect
of the quality for the walking task, such as body balance
maintenance, limb-alteration gait, conservative motor torques
and so on. Most existing approaches simply add up the
component rewards to learn a single value function [5], [10],
which may break the correlation between different rewards
and therefore limit learning efficiency [11], [12].

In this work, we propose a hybrid and dynamic policy
gradient (HDPG) optimization method to address the above-
mentioned issues. Specifically, we construct a multi-head
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Fig. 1. Left: The simulation bipedal robot. Middle: The physical bipedal
robot. Right: The sketch of robot.

critic in the deep deterministic policy gradient (DDPG) [13]
framework to capture the gradients separately obtained from
multiple rewards. Each head exclusively learns from corre-
sponding reward feedback. Meanwhile, the branch gradients
are merged during back-propagation with dynamically updat-
ing weights, which aims to guide the policy network to first
learn from the “simple” components before the “challenging”
ones. The motivation for this dynamic mechanism is that we
tentatively guide the robot to give higher priority to learn
from components that show fast reward accumulation. For
example, the agent is encouraged to learn to maintain body
balance before learning to move forward. Intuitively, keeping
balance is the prerequisite of moving forward. Thus, the
body balance component should have a higher priority than
moving forward in the initial learning stage. To achieve this
goal, we introduce dynamic weights to allow each component
gradient to optimize the policy with a different priority.
Therefore, the HDPG agent adaptively learns each reward
component during training. The contributions of this work
are summaries as following:

• We introduce a multi-head critic to learn a separate
value function for each component reward. The experi-
mental results show that our proposed multi-head design
outperforms the traditional reward-sum method in biped
locomotion tasks.

• We propose dynamic weights for hybrid policy gradients
to improve learning efficiency. In this way, the control
policy is optimized by hybrid policy gradients in a
dynamic manner.

• We build our bipedal robot in the gazebo simulator.
The sketch and the corresponding physical robot are
shown in Fig. 1. We also release 3 challenges, which
are push recovery challenges, obstacle challenges and
slope terrain challenges. We train HDPG policy with
simple dynamics randomization in the simulator. The
policy is successfully transferred to the physical robot
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without further tuning.
• We further conduct experiments on OpenAI gym [14] to

verify the generalization of HDPG. Experimental results
demonstrate that the proposed method can be applied
to more general continuous control tasks to improve
learning efficiency.

II. RELATED WORK

Bipedal locomotion problems were mostly targeted by
manually designed polices [15], [16], [17] using methods
such as zero moment point (ZMP) [18], [2], hybrid zero
dynamics (HZD)[19], [3], [20], divergent component of
motion (DCM) [21], [4] and so on. ZMP-based methods
[18], [2] use the simplified models, e.g., linear inverted
pendulum(LIP)dynamics, to generate walking patterns with
the constraints that ZMP should be maintained in the support
polygon. DCM-based methods [21], [4] simplify gait genera-
tion using the divergent component of center of mass (CoM)
which enlarges the support polygon and allows the robot
recover from external perturbations by step adjustment. HZD
approaches [3], [20] impose virtual constraints to put the
biped into zero dynamics surface via feedback linearization.
However, the flexibility of these manually designed polices
is limited, therefore, it is challenging to handle difficult
situations where obstacles and inclined surfaces are present.
In addition, such manually designed policies heavily based
on the precondition that the robot dynamics and kinematic
are known and determined. They cannot be implemented on
robots that dynamics and kinematic are unknown.

To generalize the walking capability for bipeds to such
challenging situations and enable the agent to learn the
policy without knowing robot dynamics, imitation-learning
(IL) based approaches aim to train neural network models
supervised by expert policies [6], [22], [23], [5]. But these
methods rely on human experts to manually design a control
policy as reference, which can be laborious.

Reinforcement learning system optimizes the policy by
exploration and interaction with a simulation environment.
It encourages favorable movements and punishes improper
ones to learn an optimal policy. In order to address the afore-
mentioned issues of traditional controller and imitation learn-
ing, many researches attempt to learn bipedal locomotion
policies following a reinforcement learning framework [24],
[25]. However, they did not demonstrate the effectiveness
on physical robots. Recently, Xie et al. [10] formulates a
feedback control problem as finding the optimal policy for a
Markov Decision Process to learn robust walking controllers
that imitate a reference motion with DRL. This proved to
be effective on Cassie simulation. Subsequently, they use an
iterative training method and Deterministic Action Stochastic
State (DASS) tuples to learn a more robust policy [6]. Siek-
mann et al. [5] introduce recurrent neural networks (RNNs)
to learn memory features that reflect physical properties.
However, all of these approaches use the sum of rewards
to learn a single value function, which may cause the loss of
the dependency information between different rewards and
limit the learning efficiency of value function [11].

In this paper, we aim to make full use of the dependency
between different reward components to improve learning
efficiency, which is related to Hybrid Reward Architecture
(HRA) [11], Decomposed Reward Q-Learning (drQ) [26],
and DDPG [13]. Specifically, we first proposed a multi-head
critic to learn a separate value function for each component
reward function, which is similar to HRA [11] and drQ [26].
HRA and drQ first decompose the reward function of the
environment into n different reward functions. They aim to
learn a separate value function; each of them is assigned
a reward component. Learning a separate value function is
proved to enable more effective learning. However, both
HRA and drQ are based on Q-learning and can only be used
for discrete action space tasks. Our HDPG is based on DDPG
[13], which allows learning continuous actions. Moreover,
we further propose the dynamic weight for hybrid policy
gradients to optimize the policy with different priorities. This
hybrid and dynamic policy gradient (HDPG) design make the
agent learn more efficiently.

III. PRELIMINARIES

In this section, we will briefly introduce the the back-
ground and annotations of RL and the theory of deep
deterministic policy gradient (DDPG) [13], which is the base
model of the proposed method.

A. Markov Decision Process(MDP)

Specifically, biped locomotion is formulated as a Markov
Decision Process problem. A standard reinforcement learning
includes an agent interacting with an environment E and
receiving a reward r at every time step t in MDP. MDP can
be denoted as the tuple (S,A,P,R, γ), where S is the state
space, A is the action space, blue P : S × A 7→ S is the
transition probability function, and R is the reward function,
γ ∈ (0, 1] is the discount factor.

At every time step t, the robot observes current state
st ∈ S, and takes an action at according to a policy
π : at = π(st). Then, the agent transits to the next state
st+1 = P(st+1|st, at) and receives a reward rt = R(st, at)
as well as a new state st+1 ∈ S from the environment. The
return from a state st as the cumulative γ-discounted reward:∑T
k=t γ

k−tR(sk, ak). The objective of RL is to optimize the
policy π by maximizing the expected return from the initial
state. According to the Bellman Equation, the expected return
starts from state st, takes action at, and follows policy π,
which is denoted as action-value function Qπ(st, at):

Qπ(st, at) = Ert,st+1∼E [r(st, at) + γQπ(st+1, π(st+1))] (1)

B. Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) [13] is a
representative model-free RL method. Considering its re-
markable performance for the continuous control problem,
DDPG is utilized as our basic model. It consists of a Q-
function (the critic) and a policy function (the actor) to
learn a deterministic continuous policy. The actor π and the
critic Q are learnt with deep function optimization, which is
parameterized by θπ and θQ, respectively.
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Fig. 2. Overview. The biped robot interacts with the simulator and obtains
experience transitions (st, at, st+1, rt). The multi-head critic of HDPG
learns a separate Q-value function for each reward component. The dynamic
weight is assigned for the hybrid policy gradient to adjust the learning
priority of each policy gradient component.

To avoid the agents falling into a local optimum and
further improve the exploration efficiency, an exploration
noise is introduced to the policy. The output action can
be expresses as: at = π(st) + Nt, where Nt ∈ NOU . It
utilizes the experience replay strategy which collects the
experience tuples (st, at, rt, st+1) stored in a replay buffer
B during exploration. In training stage, the training data
are sampled from the replay buffer to optimize the policy.
DDPG approximates Q-function by a critic network, which
is updated by minimizing the Bellman loss:

L(θQ) = Est,at,rt,st+1∼B(yt −Q(st, at|θQ)), (2)

where yt = rt + γQ(st+1, π(st+1)|θQ) is the target
value. Then the actor learns a Q-optimal policy: π(s) =
argmaxaQ(s, a) and optimizes the policy by using the
sampled policy gradient:

∇θπJ ≈ Est,at∼B [∇aQ(st, π(st)|θQ)∇θππ(st|θπ)]. (3)

IV. METHOD

The framework of our method is given in Fig. 2. The
robot observes the current state st from Gazebo environ-
ment, which contains the data from the inertial measurement
unit (IMU) and angular positions of all joints. Inspired by
“memory-based control” [5], [9], we use state sequence
(st−2, st−1, st) as the input of actor to contain temporal
information. The predict action at from the actor contains
the control signal about the angular position of joints. It is
sent to a minimum jerk planning module [27] to generate
their smooth transition trajectories. A low level PD controller
is applied to track these joint position trajectories. After that,
the agent will receive a reward rt from the environment. This
process is iterative until termination.

Learning biped locomotion is a complex task due to
multiple constraints involved [28], [29], [30]. When walking
forward, the robot needs to maintain the balance of the
pelvis and avoid the abnormal states, such as falling down,
over-torque and strange posture. This usually results in
multi-dimensional rewards, each of which corresponds to
a constraint. Existing methods usually use the weighted
sum of rewards to learn a single value [9], [6], [5]: rt =∑K
k=1 wkrt,k, where K is the number of rewards and wk is

the weight of each reward. However, simply summing the
rewards will lose the dependency between different rewards.
Two sets of very different rewards may get the same sum,
which results in Q-value not giving insight into factors
contributing to policy. For example, when the robot receives
a negative reward, it cannot understand whether it is due to
the unnatural pose or the over-torque of servomotors.

A. Multi-head Critic for multiple values learning

Inspired by “hybrid reward architecture (HRA)” [11], we
conduct a multi-head critic to learn a separate value function
for each component reward function, as shown in Fig. 2.
Therefore, the reward is decomposed and can be expressed
as a vector: rt = [rt,1, rt,2, ..., rt,K ]. Each head of the critic
learns an action-value corresponding to a specific sub-reward.
In this way, the overall Q-value is also expressed as a vector:

Q(st, at|θQ) = [Qt,1, Qt,2, ..., Qt,K ] (4)

HRA [11] estimate the Q-value based on Deep Q Network
(DQN) [31]: Qk(st, at) ← rk + γmax

at+1

Qk(st+1, at+1),

which can be rewritten as:

Qk(st, at)← rk + γQk(st+1, at+1(k)), (5)

where at+1(k) = argmax
at+1

Qk(st+1, at+1). Eq. (5) indi-

cates HRA updates different Qk with different policies (or
at+1(k)), ignoring the influence of other components on the
overall Q-function. To overcome this problem, we adopt a
more effective and elegant update in HDPG, i.e., we have:

Qk(st, at)← rk + γQk(st+1, at+1), (6)

where at+1 = π(st+1|θπ). By comparing Eq. (5) and (6),
we can see that our HDPG converges toward the value of
the consistent policy. According to Eq. (2), the loss function
associated with the multi-head critic is:

L(θQ) = Est,at,rt∼B

K∑
k=1

[(yt,k −Qk(st, at|θQk ))
2
] (7)

where yt,k = rt,k + γQk(st+1, π(st+1)|θQk ). Note that we
use θQk to differentiate the parameters of different Qk. In
practical, different θQk have share multiple lower-level layers
of a critic network. Only the last layer is independent of
each other. Then, the overall Q-value is defined as the sum

of each Qk: Q(st, at) =
K∑
k=1

Qk(st, at).

B. Dynamic policy gradient

Eq. (3) can be re-expressed as:

∇θπJ ≈ Est,at∼B [∇a
K∑
k=1

Qk(st, π(st)|θQk )∇θππ(st|θ
π)]

=

K∑
k=1

∇Jk

(8)

where ∇Jk = Est,at∼B [∇aQk(st, π(st)|θ
Q
k )∇θππ(st|θπ)].

This formula indicates that all Q-values update the policy
with the same weight. In other words, the agent learns all



skills in parallel with the same learning rate. However, if
there are potential dependencies between reward compo-
nents, then learning all components with the same learning
rate can be challenging and inefficient. At the same time,
some components are much easier to learn than others.
Therefore, we propose to learn each skill orderly according
to the priority. We then evaluate the priority based on the
difficulty of each component relative to the current policy.

Intuitively, the motivation of dynamic weights is to encour-
age the agent to learn the easier components first, and then
gradually learn the more complex components. To achieve
this, the agent first utilizes current policy πT to interact with
the environment and obtains N experience samples, which
contains N one-step rewards: rn = [rn1 , r

n
2 , ..., r

n
K ], n ∈

[1, N ]. All component rewards are normalized to the same
value range (e.g., (0, 1)). Then, the mean and the variance
of reward samples are calculated as µ = [µ1, µ2, ..., µK ] and
σ = [σ1, σ2, ...σK ], respectively.

A larger µk means that the k component is easier to get a
larger reward, so it is easier to learn for the current policy,
and vice versa. The variance reflects the dispersion of each
reward’s distribution. Stable walking will produce uniform
rewards for biped robot, which leads to a small variance σ.
In contrast, the larger variance σk indicates that the policy
is more unstable in component k. Intuitively, in order to
make the policy more stable, we would like to increase
the learning rate of the unstable components. We define the
priority weight mk of each policy gradient component to
mathematically formulate these rules.

mk =
K(µk + eσ

2
k )

K∑
k=1

(µk + eσ
2
k )

(9)

Therefore, the total policy gradient is dynamic updated ac-

cording to: ∇θπJ =
K∑
k=1

mk∇Jk, where the priority weights

will be updated every T episodes.

C. Rewards design

HDPG does not rely on manually designed reference
trajectories to guide the learning process. Existing non-
reference methods mainly require careful engineering of the
reward function. In other words, the reward function may
contain many components (e.g., there are 10 reward com-
ponents involved in [9]). In this work, only some principles
of human gait are utilized to design the reward function. It
consists of 6 sub-rewards with regards to walking forward,
walking gait, energy consumption and robot pose, which are
expressed as step reward, gait reward, height reward, torque
reward, orientation reward and fall down reward. The multi-
head critic learns the value function with the reward vector,
which is defined as: rt = [rgt rst rft rht rot rdt ]

Gait reward rgt : The gait walking is the ultimate goal
of the biped robot. The gait occurs when the single support
period and double support period arise in time sequence. We

formulate this principle as following:

rgt =

{
w1d

g
t cos θ

g, if a gait occur
0, otherwise

(10)

where dgt is the length of the gait, and w1 is a weight
parameter. Assuming T is the time’s length of a gait occurs
at s time step. θg is the angle between the direction of the
robot at (t−T ) and t. The intention is to encourage the robot
to walk forward instead of the other directions.

Step reward rst : We also introduce a step reward rst to
encourage the robot to move forward at each time step. The
step reward function is defined as:

rst = w2d
s
t cos θ

s (11)

where dst is the move distance at t time step, and w2 is a
weight parameter of step reward. θs is the angle between the
direction of the robot at (t− 1) and t.

Torque reward rft : The torque reward is inverse propor-
tional to the torque magnitude of the joint motors. Negative
torque reward is to punish excessive torque of servomotors
while walking. The purpose is to lower walking energy and
to make walking trajectories smoother. The same torque
reward function has proved to be effective in the Robotschool
simulator of OpenAI Gym [14].

rtt = −w3

I∑
i=1

|f it | (12)

where I is the number of joints, f it is the torque on the
i-th joint. Meanwhile, the pose of the robot is one of
the important indicators for assessing whether the robot is
walking normally, which is evaluated with the height and
the orientation of the pelvis. The height reward and the
orientation reward are defined as:

rht = −w4|ht − h0| (13)

rot = −w5(|αrt |+ |α
p
t |) (14)

where ht is the current height of pelvis and h0 is the desired
height. In Equation (14), αrt is the roll angle and αpt is the
pitch angle of the pelvis. Finally, the fall down reward rdt
is set as -50 for the robot fell to the ground.

V. EXPERIMENTS

To verify the effectiveness of the proposed method, we
conduct our simulator, named AIDA, to support develop-
ment, training, and validation of biped locomotion. AIDA is
built on Robot Operating System (ROS) framework 1 and
Gazebo simulation environment. We use Open Dynamics
Engine (ODE) in our simulation, which is the default phys-
ical engine of Gazebo. The biped robot and the terrain are
modelled with SolidWorks 2, as shown in Figure 3. The robot
contains 10 degrees of freedom (DoF), and each leg has 5
DoF. The center of mass of the pelvis is maintained at the
center of the pelvis, which is similar to humans.

1 https://www.ros.org/.
2 https://www.solidworks.com/

https://www.ros.org/.
https://www.solidworks.com/
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Fig. 3. Illustrations of biped locomotion tasks: (a) walking under random
disturbance; (b) walking cross obstacles; (c) walking on the slope.

A. AIDA robot

Simulation. We built our AIDA bipedal robot on Robot
Operating System (ROS) framework and Gazebo simulation
environment. The biped robot is modelled with SolidWork,
as shown in Fig. 1. It contains 10 degrees of freedom (DoF),
and each leg has 5 DoF. We will release the AIDA simulator
and the code of HDPG later.

Physical robot The physical robot is equipped with a mini
computer (Intel NUC8i7BEH), an IMU (YIS100-A-DK), 10
servo motors for joint control (DYNAMIXEL XH430-W210-
T actuator) and a USB communication converter (U2D2). At
testing time, the trained policy is evaluated on NUC in real
time. The policy network predicts appropriate controls based
on only the current joint angles and IMU data. The U2D2
receives controls from NUC and transfers them to the motor
controllers of the robot.

B. Biped locomotion benchmark

To make comprehensive evaluation of the proposed
method, we further define a biped locomotion benchmark
that contains 3 walking tasks, which simulate 3 correspond-
ing real-world challenging problems: walking under random
disturbances, walking cross obstacle, and walking on the
slope. The details of 3 tasks are described as follows:

• Walking under random disturbance: The robot walks
under disturbances from different directions, as shown
in Figure 3(a). The disturbance range is from 6N to
14N, and the duration is 0.2s. The directions contain
forward, backward and sideward (either on the left or
right side). We measure the success rate that the robot
recovers from push disturbances.

• Walking cross obstacles: We randomly placed static
obstacles of different heights on the ground, as shown
in Fig. 3(b). We separately measure the success rate of
the robot crossing obstacles of different heights.

• Walking on the slope: We build a slope with different
angles to evaluate the terrain adaptability of the robot, as
shown in Figure 3(c).We separately measure the success
rate of the robot climbing slopes of different angles.

C. Implementation details

In this section, the implementation details of HDPG will
be elaborated. The robot state st, as shown in Figure 2,
contains the IMU data and the angular position of each
joint. In order to extract temporal features, 3 state frames
(st−2, st−1, st) are concatenated and fed into the policy

network to predict an action. The combined states yield 69-
dimensional state space (23D for each state). The predicted
action is the angular position of each joint, which is a 10-
dimensional vector.

Actor. The actor network consists of 3 fully con-
nected layers. The concatenating state (st−2, st−1, st) passes
through 3 fully connected layers of size (69,128), (128,256)
and (256,10) to predict an action.

Multi-head critic. Multi-head critic aims to learn a sep-
arate value function through a multi-head network, which
is similar to HRA [11]. The action at and the state st are
passes through one fully connected layer of size (10,128)
and (69, 128), respectively. They are then concatenated and
pass through two fully connected layers of size (256,256)
and (256,6) to produce predicted 6 Q-values, each value
corresponding one reward component, as shown in Fig. 2.

Training. In the training process, the discount factor is
set as 0.99. The learning rate of actor network and critic
network are set as 1e−5 and 1e−4, respectively. And the
training batch size is set as 64. The priority-based dynamic
weight for hybrid policy gradient is updated every T = 20
episodes. All training uses Adam optimizer [32]

Reward normalization. The weights of torque reward and
step reward are referred to Walker2d of OpenAI Gym [14],
where w1 and w3 are set as 1.0 and 0.001, respectively.
The other weights (e.g., w2, w4, w5) are set as 1.0. We
use simple max-min normalization for each component. To
clarify how to normalize rewards, gait reward is given as an
example. Firstly, the maximum achievable gait length dgmax
is calculated according to the physical limitations. So the
maximum and minimum gait rewards are rgmax = w1d

g
max

and rgmin = −w1d
g
max, respectively (according to Eq. (10)).

Hence, any gait reward rg can be normalized to (0,1) by
(rg−rgmin)/(rgmax−r

g
min). It is the same for other rewards.

VI. RESULTS

The simulation results and sim-to-real results of biped
walking experiments are illustrated in Sec. VI-A and Sec. VI-
B. Experimental results from both simulation and transfer-to-
real robots are presented in this video 3. We finally conduct
the experiments on MuJoCo of OpenAI gym [14] to further
demonstrate the generalization of HDPG, as illustrated in
Sec. VI-C.

A. Simulation results

In this section, we will qualitatively and quantitatively an-
alyze the performance of the proposed HDPG with ZMP[2]
method and DDPG [13], which is the baseline of the pro-
posed method.

• ZMP: ZMP-based algorithm [18], [2] is a kind of
traditional classical control method. It has been proven
effective in many bipedal walking tasks.

• DDPG: DDPG [13] is a advanced actor-critic model-
free RL algorithm. It is also considered as the basic
model with single-head critic.

3 https://youtu.be/3jvysrbeHzQ

https://youtu.be/3jvysrbeHzQ


Fig. 4. Comparison of DDPG, MHDDPG and HDPG training curves. Left: The comparison of DDPG, MHDDPG and HDPG. Our HDPG achieves a
much higher reward than MHDDPG and DDPG. It performs the highest learning efficiency at the same time. Middle: The training curve of each reward
of MHDDPG. Right: The training curve of each reward of HDPG.

Fig. 5. Comparison of the success rate in “walking under random disturbance” task. The robot is commanded to walk forward, and random push force
will be applied to the robot’s pelvis from different directions. We conducted 100 trials for each test. A trial is considered successful if the robot recovers
stable walking from push disturbance.

Fig. 6. Comparison of the success rate in “walking cross obstacles” task
and “walking on the slope” task. A trial is considered successful if the robot
is able to walk stable for 10 seconds. Left: The success rate of robot crossing
obstacles with the height from range (0.6, 1.4)(cm). Right: The success rate
of robot walk on the slope with the angle from range (3, 15)(deg).

• MHDDPG: MHDDPG represents the DDPG [13] model
equipped the proposed multi-head critic. We keep the
experimental settings and parameter settings consistent
with DDPG. The only difference is that we learn hybrid
policy gradients with multi-head critic, and each policy
gradient is assigned with the same static weight to
optimize the policy (e.g., m1 = m2 = ... = mK = 1).

• HDPG: HDPG is the complete version of the proposed
method. It can be regarded as MHDDPG incorporate
with dynamic weight for each policy gradient.

We train the bipedal robot with DDPG [13], MHDDPG
and HDPG, respectively. The training curves are shown in
Figure 4(Left). The accumulative reward of HDPG starts to
rise after training 2k episodes while MHDDPG and DDPG
require 4k and 6k episodes, respectively. The performance
of MHDDPG is much better than vanilla DDPG [13]. Since
vanilla DDPG simply sums the rewards up to a single value,
it is unable to explicitly express the value of each compo-
nent. This results in single Q-value not giving insight into
factors contributing to policy, as mentioned in Sec. IV. Some

value functions are much easier to learn than others [11],
then learning a separate value function is more effective.
Obviously, the proposed HDPG outperforms DDPG and
MHDDPG. With the utility of dynamic weight, HDPG can
adjust the learning priorities of each gradient component and
learn in a more efficient way.

1) Walking under random disturbance: To evaluate the
robustness of the above several methods, the robot is asked
to walk under various push disturbances from different
directions, as mentioned in Sec. V-B The success rate results
are shown in Fig 5. For 6N disturbances from 3 directions,
all algorithms show good resilience. In 8N disturbance 8N
from sideward tasks, only HDPG can maintain a success rate
of over 90%. In comparison, the success rate of DDPG and
MHDDPG dropped sharply to about 80%. As the disturbance
increases, the success rate of the ZMP-based method drops
the fastest and exhibits the worst robustness. For example,
when the disturbance increases to 10N, the success rate of
ZMP in 3 directions is only 38%, 38% and 24% respectively.
While the other RL-based methods can maintain a success
rate of over 50%. As the disturbance increases to 12N and
14N, HDPG shows greater stability. It is at least about
10% higher than other methods in forward tasks. In general,
the proposed MHDDPG and HDPG outperform DDPG on
all walking under random disturbance tasks, and HDPG
achieves the best performance.

2) walking cross obstacle: We simulate the obstacle on
the ground to further evaluate the robustness of different
algorithms. In our experiment, obstacles are randomly placed
on the ground. The success rate curve is shown on the left
of Fig. 6. Since ZMP agent can hardly walk cross obstacles,
no comparison is made here. RL-based methods show better
adaptability. In this task, HDPG performs the best robustness



Fig. 7. Simulation to real experiment. The HDPG policy trained with dynamics randomization in simulation is successfully transferred to physical robot.
The bipedal robot is able to recover stable walking from the forward push force. Please see the YouTube link for a video version.

in crossing obstacles of all heights, while MHDDPG achieves
the second performance. For 0.6cm obstacles, HDPG and
MHDDPG are able to maintain a 100% success rate of re-
covery. For 1.2cm obstacles, only HDPG achieves a success
rate over 60%, while MHDDPG and DDPG 50% drop to
about 50%. For 1.4cm obstacles, although HDPG has the
best performance, it is only about 40%. This is due to the
limitation of the height of the robot’s leg lift.

3) Walking on the slope: Walking on the undulating
terrain is another challenging task for a biped robot. We test
the success rate of walking on the slope for 10 seconds, as
shown in the right of Fig. 6. The performance of DDPG
and MHDDPG is close, which means that multi-head critic
doesn¡¯t have a strong effect in this task. HDPG also has
the best performance. When the slope angle is 12 degrees,
HDPG shows more robust performance, and the success rate
is nearly 20% higher than the other two algorithms.

4) The effectiveness of dynamic weight: To further reveal
the effectiveness of dynamic weight, we recorded the cumu-
lative reward of each reward during training, as shown in Fig.
4 (Middle and Right). In order to observe the training char-
acteristic of torque reward, we calculate the average torque
reward for each time step and scale it up so it can be visible
compared to other rewards. For MHDDPG, height reward,
torque reward and orientation reward learning are relatively
stable. However, the step reward and gait reward are very
unstable, which indicates that there is dependency between
different reward components, and different components will
influence each other during training. On the contrary, HDPG
exhibits stable training of all 5 components, as shown in the
Fig. 4(Right). It is worth noting that the height reward and
orientation reward first rises at about 2k episodes, while the
gait reward and step reward then rise at about 6k episodes.
This means that the robot first learns how to keep body
balance, and then learns to walk forward. It implies that
priority weight allows the robot to learn different components
in a more orderly manner.

B. Sim-to-real results

The policies trained with dynamics randomization in
simulation are successfully transferred to physical robot.
For dynamics randomization, we only randomize the pelvis
center of mass, which is introduced in [5]. As shown in
Fig. 7, the biped robot was disturbed by push force at 13.1s.
Subsequently, The pelvis tilted at 13.5s. As the policy adjusts
the actions, the robot recovers to stable gait at 13.9s. This
demonstrates that the policy trained with HDPG is robust

TABLE I
PERFORMANCE ON MUJOCO TASKS. THE RESULTS SHOW THE MEAN

AND STANDARD DEVIATION ACROSS 10 RUNS.

Methods Hopper-v3 Walker2d-v3 HalfCheetah-v3

DDPG 3476.5±98.0 2398.5±1169.7 12422.9±620.4
MHDDPG 3539.3±23.9 3162.0±1263.8 12748.9±501.8
HDPG 3600.4±30.5 3217.5±1144.8 12895.3±528.1

PPO 2609.3±700.8 3588.5±756.6 5783.9±1244.0
HD-PPO 3263.5±367.8 4688.0±220.1 6165.2±150.4

enough to handle the shift from simulation to reality.

C. MuJoCo results

To further verify the generalization of the proposed
method, we evaluate HDPG on 3 locomotion tasks on
MuJoCo continuous control environment of OpenAI Gym
[14], i.e., Walker2d, HalfCheetah and Hopper. We conduct
MuJoCo experiment using the publicly released implementa-
tion repository4 as baseline. Following the same experiment
settings, we compare the performances of DDPG, MHD-
DPG, and HDPG. As shown in the Table I, MHDDPG and
HDPG outperform DDPG baselines on all tasks within 1M
environment steps, and HDPG achieves the best performance
on all tasks. It implies that the proposed “learning a separate
value function” and “dynamic policy gradient” can be applied
to more general continuous control tasks. Furthermore, we
equip HDPG with proximal policy optimization algorithms
(PPO) [33] to verify the generalization of HDPG, which
is denoted as HD-PPO. The best results are highlighted in
bold. Hopper and Walker tasks contain 3 reward components,
while HalfCheetah contains 2 reward components. Obvi-
ously, hybrid and dynamic policy gradient method is able
to improve the performance of DDPG and PPO on all tasks.
It is worth noting that HD-PPO has achieved a breakthrough
of more than 25% on Hopper and Walker tasks, while it has
nearly increased by about 6.6% on HalfCheetah task. This
demonstrates that the proposed method obtains relatively
unobvious improvement on tasks with simple rewards, such
as HalfCheetah, where there are only 2 components in
its reward function. While the improvement is obvious in
Hopper and Walker tasks, where there are more components
in its reward function.

VII. CONCLUSION

In this work, we propose a reward-adaptive reinforcement
learning method for bipedal locomotion tasks, also called

4 https://github.com/thu-ml/tianshou

https://github.com/thu-ml/tianshou


hybrid and dynamic policy gradient (HDPG) optimization.
It decomposes the commonly adopted holistic polynomial
reward function and introduces priority weights to enable
the agent to adaptively learn each reward component. Ex-
perimental evaluation illustrates the effectiveness of HDPG
framework by showing better performance on Gazebo sim-
ulation in perturbation walking challenges, walking cross
obstacles challenges and walking on undulating terrain chal-
lenges. With dynamics randomization, the policy trained in
simulation is successfully transferred to a physical robot. In
addition, we further verify the generalization of HDPG on
3 MuJoCo tasks. Our future work is to transfer the policy
trained in simulation into real physical robots in walking
across obstacle challenges and undulating terrain challenges.
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